ewm/cpu.c
2016-11-16 15:43:10 -05:00

465 lines
14 KiB
C

// The MIT License (MIT)
//
// Copyright (c) 2015 Stefan Arentz - http://github.com/st3fan/ewm
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include <assert.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include <mach/mach.h>
#include <mach/mach_time.h>
#include "cpu.h"
#include "ins.h"
#include "mem.h"
/* Private API */
typedef void (*cpu_instruction_handler_t)(struct cpu_t *cpu);
typedef void (*cpu_instruction_handler_byte_t)(struct cpu_t *cpu, uint8_t oper);
typedef void (*cpu_instruction_handler_word_t)(struct cpu_t *cpu, uint16_t oper);
// Stack management.
void _cpu_push_byte(struct cpu_t *cpu, uint8_t b) {
_mem_set_byte_direct(cpu, 0x0100 + cpu->state.sp, b);
cpu->state.sp -= 1;
}
void _cpu_push_word(struct cpu_t *cpu, uint16_t w) {
_cpu_push_byte(cpu, (uint8_t) (w >> 8));
_cpu_push_byte(cpu, (uint8_t) w);
}
uint8_t _cpu_pull_byte(struct cpu_t *cpu) {
cpu->state.sp += 1;
return _mem_get_byte_direct(cpu, 0x0100 + cpu->state.sp);
}
uint16_t _cpu_pull_word(struct cpu_t *cpu) {
return (uint16_t) _cpu_pull_byte(cpu) | ((uint16_t) _cpu_pull_byte(cpu) << 8);
}
// Because we keep the processor status bits in separate fields, we
// need a function to combine them into a single register. This is
// only used when we need to push the register on the stack for
// interupt handlers. If this turns out to be inefficient then they
// can be stored in their native form in a byte.
uint8_t _cpu_get_status(struct cpu_t *cpu) {
return 0x30
| (((cpu->state.n != 0) & 0x01) << 7)
| (((cpu->state.v != 0) & 0x01) << 6)
| (((cpu->state.b != 0) & 0x01) << 4)
| (((cpu->state.d != 0) & 0x01) << 3)
| (((cpu->state.i != 0) & 0x01) << 2)
| (((cpu->state.z != 0) & 0x01) << 1)
| (((cpu->state.c != 0) & 0x01) << 0);
}
void _cpu_set_status(struct cpu_t *cpu, uint8_t status) {
cpu->state.n = (status & (1 << 7));
cpu->state.v = (status & (1 << 6));
cpu->state.b = (status & (1 << 4));
cpu->state.d = (status & (1 << 3));
cpu->state.i = (status & (1 << 2));
cpu->state.z = (status & (1 << 1));
cpu->state.c = (status & (1 << 0));
}
static void cpu_format_instruction(struct cpu_t *cpu, char *buffer) {
*buffer = 0x00;
cpu_instruction_t *i = &instructions[mem_get_byte(cpu, cpu->state.pc)];
uint8_t opcode = mem_get_byte(cpu, cpu->state.pc);
/* Single byte instructions */
if (i->bytes == 1) {
sprintf(buffer, "%s", i->name);
}
/* JSR is the only exception */
else if (opcode == 0x20) {
sprintf(buffer, "%s $%.4X", i->name, mem_get_word(cpu, cpu->state.pc+1));
}
/* Branches */
else if ((opcode & 0b00011111) == 0b00010000) {
int8_t offset = (int8_t) mem_get_byte(cpu, cpu->state.pc+1);
uint16_t addr = cpu->state.pc + 2 + offset;
sprintf(buffer, "%s $%.4X", i->name, addr);
}
else if ((opcode & 0b00000011) == 0b00000001) {
switch ((opcode & 0b00011100) >> 2) {
case 0b000:
sprintf(buffer, "%s ($%.2X,X)", i->name, mem_get_byte(cpu, cpu->state.pc+1));
break;
case 0b001:
sprintf(buffer, "%s $%.2X", i->name, mem_get_byte(cpu, cpu->state.pc+1));
break;
case 0b010:
sprintf(buffer, "%s #$%.2X", i->name, mem_get_byte(cpu, cpu->state.pc+1));
break;
case 0b011:
sprintf(buffer, "%s $%.2X%.2X", i->name, mem_get_byte(cpu, cpu->state.pc+2), mem_get_byte(cpu, cpu->state.pc+1));
break;
case 0b100:
sprintf(buffer, "%s ($%.2X),Y", i->name, mem_get_byte(cpu, cpu->state.pc+1));
break;
case 0b101:
sprintf(buffer, "%s $%.2X,X", i->name, mem_get_byte(cpu, cpu->state.pc+1));
break;
case 0b110:
sprintf(buffer, "%s $%.2X%.2X,Y", i->name, mem_get_byte(cpu, cpu->state.pc+2), mem_get_byte(cpu, cpu->state.pc+1));
break;
case 0b111:
sprintf(buffer, "%s $%.2X%.2X,X", i->name, mem_get_byte(cpu, cpu->state.pc+2), mem_get_byte(cpu, cpu->state.pc+1));
break;
}
}
else if ((opcode & 0b00000011) == 0b00000010) {
switch ((opcode & 0b00011100) >> 2) {
case 0b000:
sprintf(buffer, "%s #$%.2X", i->name, mem_get_byte(cpu, cpu->state.pc+1));
break;
case 0b001:
sprintf(buffer, "%s $%.2X", i->name, mem_get_byte(cpu, cpu->state.pc+1));
break;
case 0b010:
sprintf(buffer, "%s", i->name);
break;
case 0b011:
sprintf(buffer, "%s $%.2X%.2X", i->name, mem_get_byte(cpu, cpu->state.pc+2), mem_get_byte(cpu, cpu->state.pc+1));
break;
case 0b101:
sprintf(buffer, "%s $%.2X,X", i->name, mem_get_byte(cpu, cpu->state.pc+1));
break;
case 0b111:
sprintf(buffer, "%s $%.2X%.2X,X", i->name, mem_get_byte(cpu, cpu->state.pc+2), mem_get_byte(cpu, cpu->state.pc+1));
break;
}
}
else if ((opcode & 0b00000011) == 0b00000000) {
switch ((opcode & 0b00011100) >> 2) {
case 0b000:
sprintf(buffer, "%s #$%.2X", i->name, mem_get_byte(cpu, cpu->state.pc+1));
break;
case 0b001:
sprintf(buffer, "%s $%.2X", i->name, mem_get_byte(cpu, cpu->state.pc+1));
break;
case 0b011:
sprintf(buffer, "%s $%.2X%.2X", i->name, mem_get_byte(cpu, cpu->state.pc+2), mem_get_byte(cpu, cpu->state.pc+1));
break;
case 0b101:
sprintf(buffer, "%s $%.2X,X", i->name, mem_get_byte(cpu, cpu->state.pc+1));
break;
case 0b111:
sprintf(buffer, "%s $%.2X%.2X,X", i->name, mem_get_byte(cpu, cpu->state.pc+2), mem_get_byte(cpu, cpu->state.pc+1));
break;
}
}
}
static void cpu_format_state(struct cpu_t *cpu, char *buffer) {
sprintf(buffer, "A=%.2X X=%.2X Y=%.2X S=%.2X SP=%.4X %c%c%c%c%c%c%c%c",
cpu->state.a, cpu->state.x, cpu->state.y, cpu->state.s, 0x0100 + cpu->state.sp,
cpu->state.n ? 'N' : '-',
cpu->state.v ? 'V' : '-',
'-',
cpu->state.b ? 'B' : '-',
cpu->state.d ? 'D' : '-',
cpu->state.i ? 'I' : '-',
cpu->state.z ? 'Z' : '-',
cpu->state.c ? 'C' : '-');
}
static void cpu_format_stack(struct cpu_t *cpu, char *buffer) {
*buffer = 0x00;
for (uint16_t sp = cpu->state.sp; sp != 0xff; sp++) {
char tmp[8];
sprintf(tmp, " %.2X", _mem_get_byte_direct(cpu, 0x0100 + sp));
buffer = strcat(buffer, tmp);
}
}
static mach_timebase_info_data_t timebase_info;
static uint64_t abs_to_nanos(uint64_t abs) {
return abs * timebase_info.numer / timebase_info.denom;
}
static uint64_t nanos_to_abs(uint64_t nanos) {
return nanos * timebase_info.denom / timebase_info.numer;
}
static int cpu_execute_instruction(struct cpu_t *cpu) {
/* Trace code - Refactor into its own function or module */
char trace_instruction[256];
char trace_state[256];
char trace_stack[256];
if (cpu->trace) {
cpu_format_instruction(cpu, trace_instruction);
}
uint64_t start_time = mach_absolute_time();
/* Fetch instruction */
cpu_instruction_t *i = &instructions[mem_get_byte(cpu, cpu->state.pc)];
if (i->handler == NULL) {
return EWM_CPU_ERR_UNIMPLEMENTED_INSTRUCTION;
}
/* Remember the PC since some instructions modify it */
uint16_t pc = cpu->state.pc;
/* Advance PC */
if (pc == cpu->state.pc) {
cpu->state.pc += i->bytes;
}
/* Execute instruction */
switch (i->bytes) {
case 1:
((cpu_instruction_handler_t) i->handler)(cpu);
break;
case 2:
((cpu_instruction_handler_byte_t) i->handler)(cpu, mem_get_byte(cpu, pc+1));
break;
case 3:
((cpu_instruction_handler_word_t) i->handler)(cpu, mem_get_word(cpu, pc+1));
break;
}
if (cpu->trace) {
cpu_format_state(cpu, trace_state);
cpu_format_stack(cpu, trace_stack); // TODO: This crashes on the hello world test
switch (i->bytes) {
case 1:
fprintf(stderr, "CPU: %.4X %-20s | %.2X %-20s STACK: %s\n",
pc, trace_instruction, mem_get_byte(cpu, pc), trace_state, trace_stack);
break;
case 2:
fprintf(stderr, "CPU: %.4X %-20s | %.2X %.2X %-20s STACK: %s\n",
pc, trace_instruction, mem_get_byte(cpu, pc), mem_get_byte(cpu, pc+1), trace_state, trace_stack);
break;
case 3:
fprintf(stderr, "CPU: %.4X %-20s | %.2X %.2X %.2X %-20s STACK: %s\n",
pc, trace_instruction, mem_get_byte(cpu, pc), mem_get_byte(cpu, pc+1), mem_get_byte(cpu, pc+2), trace_state, trace_stack);
break;
}
}
/* Delay */
if (timebase_info.denom == 0) {
(void) mach_timebase_info(&timebase_info);
}
uint64_t now = mach_absolute_time();
uint64_t elapsed_nano = abs_to_nanos(now - start_time);
uint64_t expected_duration = (i->cycles * (1000000000 / 960000));
uint64_t delay_nano = expected_duration - elapsed_nano;
//fprintf(stderr, "Expected: %" PRId64 " Elapsed: %" PRId64 " Delay: %" PRId64 "\n", expected_duration, elapsed_nano, delay_nano);
mach_wait_until(now + nanos_to_abs(delay_nano));
return 0;
}
/* Public API */
void cpu_init(struct cpu_t *cpu) {
memset(cpu, 0x00, sizeof(struct cpu_t));
}
void cpu_add_mem(struct cpu_t *cpu, struct mem_t *mem) {
if (cpu->mem == NULL) {
cpu->mem = mem;
mem->next = NULL;
} else {
mem->next = cpu->mem;
cpu->mem = mem;
}
// If this is RAM mapped to the zero-page and to the stack then we
// keep a shortcut to it so that we can do direct and fast access
// with our _mem_get/set_byte/word_direct functions.
//
// This makes two assumptions: when RAM is added, it covers both
// pages. And that mem->obj points to a block of memory. This is
// fine for the Apple I and Apple II emulators.
if (mem->type == MEM_TYPE_RAM) {
if (mem->start == 0x0000 && mem->length >= 0x200) {
cpu->memory = mem->obj;
}
}
}
// RAM Memory
static uint8_t _ram_read(struct cpu_t *cpu, struct mem_t *mem, uint16_t addr) {
return ((uint8_t*) mem->obj)[addr - mem->start];
}
static void _ram_write(struct cpu_t *cpu, struct mem_t *mem, uint16_t addr, uint8_t b) {
((uint8_t*) mem->obj)[addr - mem->start] = b;
}
void cpu_add_ram(struct cpu_t *cpu, uint16_t start, uint16_t length) {
struct mem_t *mem = (struct mem_t*) malloc(sizeof(struct mem_t));
mem->type = MEM_TYPE_RAM;
mem->obj = malloc(length);
mem->start = start;
mem->length = length;
mem->read_handler = _ram_read;
mem->write_handler = _ram_write;
mem->next = NULL;
cpu_add_mem(cpu, mem);
}
// ROM Memory
static uint8_t _rom_read(struct cpu_t *cpu, struct mem_t *mem, uint16_t addr) {
return ((uint8_t*) mem->obj)[addr - mem->start];
}
void cpu_add_rom_data(struct cpu_t *cpu, uint16_t start, uint16_t length, uint8_t *data) {
struct mem_t *mem = (struct mem_t*) malloc(sizeof(struct mem_t));
mem->type = MEM_TYPE_ROM;
mem->obj = data;
mem->start = start;
mem->length = length;
mem->read_handler = _rom_read;
mem->write_handler = NULL;
mem->next = NULL;
cpu_add_mem(cpu, mem);
}
void cpu_add_rom_file(struct cpu_t *cpu, uint16_t start, char *path) {
int fd = open(path, O_RDONLY);
if (fd == -1) {
return;
}
struct stat file_info;
if (fstat(fd, &file_info) == -1) {
close(fd);
return;
}
if (file_info.st_size > (64 * 1024 - start)) {
close(fd);
return;
}
char *data = malloc(file_info.st_size);
if (read(fd, data, file_info.st_size) != file_info.st_size) {
close(fd);
return;
}
close(fd);
cpu_add_rom_data(cpu, start, file_info.st_size, (uint8_t*) data);
}
// IO Memory
void cpu_add_iom(struct cpu_t *cpu, uint16_t start, uint16_t length, void *obj, mem_read_handler_t read_handler, mem_write_handler_t write_handler) {
struct mem_t *mem = (struct mem_t*) malloc(sizeof(struct mem_t));
mem->type = MEM_TYPE_IOM;
mem->obj = obj;
mem->start = start;
mem->length = length;
mem->read_handler = read_handler;
mem->write_handler = write_handler;
mem->next = NULL;
cpu_add_mem(cpu, mem);
}
void cpu_trace(struct cpu_t *cpu, uint8_t trace) {
cpu->trace = trace;
}
void cpu_reset(struct cpu_t *cpu) {
cpu->state.pc = mem_get_word(cpu, EWM_VECTOR_RES);
fprintf(stderr, "CPU: cpu->state.pc = %.4x\n", cpu->state.pc);
cpu->state.a = 0x00;
cpu->state.x = 0x00;
cpu->state.y = 0x00;
cpu->state.n = 0;
cpu->state.v = 0;
cpu->state.b = 0;
cpu->state.d = 0;
cpu->state.i = 1;
cpu->state.z = 0;
cpu->state.c = 0;
cpu->state.sp = 0xff;
}
void cpu_irq(struct cpu_t *cpu) {
_cpu_push_word(cpu, cpu->state.pc);
_cpu_push_byte(cpu, _cpu_get_status(cpu));
cpu->state.i = 1;
cpu->state.pc = mem_get_word(cpu, EWM_VECTOR_IRQ);
}
void cpu_nmi(struct cpu_t *cpu) {
_cpu_push_word(cpu, cpu->state.pc);
_cpu_push_byte(cpu, _cpu_get_status(cpu));
cpu->state.i = 1;
cpu->state.pc = mem_get_word(cpu, EWM_VECTOR_NMI);
}
int cpu_run(struct cpu_t *cpu) {
uint64_t instruction_count = 0;
int err = 0;
while ((err = cpu_execute_instruction(cpu)) == 0) {
/* TODO: Tick? */
instruction_count++;
}
fprintf(stderr, "Executed %" PRId64 " instructions\n", instruction_count);
return err;
}
int cpu_boot(struct cpu_t *cpu) {
cpu_reset(cpu);
return cpu_run(cpu);
}
int cpu_step(struct cpu_t *cpu) {
return cpu_execute_instruction(cpu);
}