package apple2 import ( "encoding/binary" "io" ) /* Language card with 16 extra kb for the Apple ][ and ][+ Manual: http://www.applelogic.org/files/LANGCARDMAN.pdf The language card doesn't have ROM for Cx00. It would not be used in slot 0 anyway. Note also that language cards for the Apple ][ had ROM on board to replace the main board F8 ROM with Autostart. That was not used/needed on the Apple ][+. As this emulates the Apple ][+, it is not considered. For the Plus it is often refered as Language card but it is really a 16 KB Ram card, "When RAM is deselected, the ROM on the Language card is selected for the top 2K ($F800-$FFFF), and the ROM on the main board is selected for $D000-$F7FF. Power on RESET initializes ROM to read mode and RAM to write mode, and selects the second 4K bank to map $D000-$DFFF." Writing to the softswtich disables writing in LC? Saw that somewhere but doing so fails IIe self check. */ type cardLanguage struct { cardBase readState bool writeState uint8 altBank bool // false is bank1, true is bank2 } const ( // Write enabling requires two softswitch accesses lcWriteDisabled = 0 lcWriteHalfEnabled = 1 lcWriteEnabled = 2 ) func (c *cardLanguage) assign(a *Apple2, slot int) { c.readState = false c.writeState = lcWriteEnabled c.altBank = true // Start on bank2 if a.isApple2e { // The Apple //e with 128kb has two blocks of language upper RAM a.mmu.initLanguageRAM(2) } else { a.mmu.initLanguageRAM(1) } for i := uint8(0x0); i <= 0xf; i++ { iCopy := i c.addCardSoftSwitchR(iCopy, func(*ioC0Page) uint8 { c.ssAction(iCopy) return 0 }, "LANGCARDR") c.addCardSoftSwitchW(iCopy, func(*ioC0Page, uint8) { c.ssAction(iCopy) }, "LANGCARDW") } c.cardBase.assign(a, slot) c.applyState() } func (c *cardLanguage) ssAction(ss uint8) { c.altBank = ((ss >> 3) & 1) == 0 action := ss & 0x3 switch action { case 0: // RAM read, no writes c.readState = true c.writeState = lcWriteDisabled case 1: // ROM read, RAM write c.readState = false c.writeState++ case 2: // ROM read, no writes c.readState = false c.writeState = lcWriteDisabled case 3: //RAM read, RAM write c.readState = true c.writeState++ } if c.writeState > lcWriteEnabled { c.writeState = lcWriteEnabled } c.applyState() } func (c *cardLanguage) applyState() { c.a.mmu.setLanguageRAM(c.readState, c.writeState == lcWriteEnabled, c.altBank) } func (c *cardLanguage) save(w io.Writer) error { err := binary.Write(w, binary.BigEndian, c.readState) if err != nil { return err } err = binary.Write(w, binary.BigEndian, c.writeState) if err != nil { return err } err = binary.Write(w, binary.BigEndian, c.altBank) if err != nil { return err } return c.cardBase.save(w) } func (c *cardLanguage) load(r io.Reader) error { err := binary.Read(r, binary.BigEndian, &c.readState) if err != nil { return err } err = binary.Read(r, binary.BigEndian, &c.writeState) if err != nil { return err } err = binary.Read(r, binary.BigEndian, &c.altBank) if err != nil { return err } c.applyState() return c.cardBase.load(r) }