Test refactoring; complete timing and nearly complete functional

This commit is contained in:
edmccard 2012-04-02 20:58:51 -04:00
parent afc38b6775
commit f79021fc14
5 changed files with 2713 additions and 699 deletions

File diff suppressed because it is too large Load Diff

View File

@ -58,6 +58,19 @@ template CPU(string arch, bool strict, bool cumulative)
}
auto makeCpu(T)(CpuInfo info)
if (isCpu!T)
{
auto cpu = new T();
cpu.programCounter = info.PC;
cpu.stackPointer = info.SP;
cpu.flag.fromByte(info.S);
cpu.accumulator = info.A;
cpu.xIndex = info.X;
cpu.yIndex = info.Y;
return cpu;
}
// Connects test memory to a cpu.
void connectMem(T, S)(T cpu, ref S mem)
if (isCpu!T)
@ -222,6 +235,33 @@ if (isCpu!T)
}
struct CpuInfo
{
ushort PC;
ubyte SP = 0xFF;
ubyte A, X, Y;
ubyte S = 0x30;
string toString() const
{
return format("PC %0.4X SP %0.2X S %0.2X A %0.2X X %0.2X Y %0.2X",
PC, SP, S, A, X, Y);
}
static CpuInfo fromCpu(T)(T cpu)
{
CpuInfo info;
info.PC = cpu.programCounter;
info.SP = cpu.stackPointer;
info.A = cpu.accumulator;
info.X = cpu.xIndex;
info.Y = cpu.yIndex;
info.S = cpu.flag.toByte();
return info;
}
}
// Sets the program counter.
void setPC(T)(T cpu, int addr)
if (isCpu!T)
@ -229,6 +269,16 @@ if (isCpu!T)
cpu.programCounter = cast(ushort)addr;
}
void setPC(T : CpuInfo)(ref T cpu, int addr)
{
cpu.PC = cast(ushort)addr;
}
void incPC(T : CpuInfo)(ref T cpu, int amt = 1)
{
cpu.PC = pageCrossAdd(cpu.PC, amt);
}
// Returns the program counter.
ushort getPC(T)(T cpu)
if (isCpu!T)
@ -236,6 +286,11 @@ if (isCpu!T)
return cpu.programCounter;
}
ushort getPC(T : CpuInfo)(ref T cpu)
{
return cpu.PC;
}
/*
* Sets the stack pointer.
@ -250,6 +305,23 @@ if (isCpu!T)
cpu.stackPointer = cast(ubyte)val;
}
void setSP(T : CpuInfo)(ref T cpu, int val)
{
assert(val < 0x0200);
cpu.SP = cast(ubyte)val;
}
void incSP(T : CpuInfo)(ref T cpu, int amt = 1)
{
cpu.SP = cast(ubyte)pageWrapAdd(cpu.SP, amt);
}
void decSP(T : CpuInfo)(ref T cpu, int amt = -1)
{
cpu.SP = cast(ubyte)pageWrapAdd(cpu.SP, amt);
}
/*
* Returns the stack address (in the range 0x0100-0x01FF) represented
* by the stack pointer.
@ -260,6 +332,66 @@ if (isCpu!T)
return 0x100 | cpu.stackPointer;
}
ushort getSP(T : CpuInfo)(ref T cpu)
{
return 0x0100 | cpu.SP;
}
// The names of the registers.
enum Reg
{
A, X, Y
}
// Sets a register.
void setReg(T)(ref T cpu, Reg reg, int val)
if (isCpu!T || is(T == CpuInfo))
{
final switch (reg)
{
case Reg.A: setA(cpu, val); break;
case Reg.X: setX(cpu, val); break;
case Reg.Y: setY(cpu, val); break;
}
}
// Returns a register
ubyte getReg(T)(ref T cpu, Reg reg)
if (isCpu!T || is(T == CpuInfo))
{
final switch (reg)
{
case Reg.A: return getA(cpu);
case Reg.X: return getX(cpu);
case Reg.Y: return getY(cpu);
}
}
// Sets the A register.
void setA(T)(T cpu, int val)
if (isCpu!T)
{
cpu.accumulator = cast(ubyte)val;
}
void setA(T : CpuInfo)(ref T cpu, int val)
{
cpu.A = cast(ubyte)val;
}
// Returns the A register.
ubyte getA(T)(T cpu, int val)
if (isCpu!T)
{
return cpu.accumulator;
}
ubyte getA(T : CpuInfo)(ref T cpu)
{
return cpu.A;
}
// Sets the X register.
void setX(T)(T cpu, int val)
@ -268,6 +400,11 @@ if (isCpu!T)
cpu.xIndex = cast(ubyte)val;
}
void setX(T : CpuInfo)(ref T cpu, int val)
{
cpu.X = cast(ubyte)val;
}
// Returns the X register.
ubyte getX(T)(T cpu)
if (isCpu!T)
@ -275,6 +412,11 @@ if (isCpu!T)
return cpu.xIndex;
}
ubyte getX(T : CpuInfo)(ref T cpu)
{
return cpu.X;
}
// Sets the Y register.
void setY(T)(T cpu, int val)
@ -283,6 +425,11 @@ if (isCpu!T)
cpu.yIndex = cast(ubyte)val;
}
void setY(T : CpuInfo)(ref T cpu, int val)
{
cpu.Y = cast(ubyte)val;
}
// Returns the Y register.
ubyte getY(T)(T cpu)
if (isCpu!T)
@ -290,6 +437,11 @@ if (isCpu!T)
return cpu.yIndex;
}
ubyte getY(T : CpuInfo)(ref T cpu)
{
return cpu.Y;
}
// The names of the status flags.
enum Flag : ubyte
@ -302,6 +454,20 @@ enum Flag : ubyte
N = 0x80
}
string flagToString(Flag f)
{
switch (f)
{
case Flag.C: return "C";
case Flag.Z: return "Z";
case Flag.I: return "I";
case Flag.D: return "D";
case Flag.V: return "V";
case Flag.N: return "N";
default: return "?";
}
}
// Sets one or more status flags.
void setFlag(T)(T cpu, Flag[] flags...)
if (isCpu!T)
@ -311,6 +477,11 @@ if (isCpu!T)
cpu.flag.fromByte(reg);
}
void setFlag(T : CpuInfo)(ref T cpu, Flag[] flags...)
{
foreach (flag; flags) cpu.S |= flag;
}
// Clears one or more status flags.
void clearFlag(T)(T cpu, Flag[] flags...)
if (isCpu!T)
@ -320,6 +491,11 @@ if (isCpu!T)
cpu.flag.fromByte(reg);
}
void clearFlag(T : CpuInfo)(ref T cpu, Flag[] flags...)
{
foreach (flag; flags) cpu.S &= ~flag;
}
// Returns a status flag.
bool getFlag(T)(T cpu, Flag f)
if (isCpu!T)
@ -327,9 +503,39 @@ if (isCpu!T)
return (cpu.flag.toByte() & f) != 0;
}
// Sets or clears a single status flag.
void updateFlag(T)(T cpu, Flag f, bool val)
bool getFlag(T : CpuInfo)(ref T cpu, Flag f)
{
return (cpu.S & f) != 0;
}
// Sets the status register from a byte.
void setStatus(T)(T cpu, int val)
if (isCpu!T)
{
cpu.flag.fromByte(cast(ubyte)val);
}
void setStatus(T : CpuInfo)(ref T cpu, int val)
{
cpu.S = cast(ubyte)val | 0x30;
}
// Returns the status register as a byte.
ubyte getStatus(T)(T cpu)
if (isCpu!T)
{
return cpu.flag.toByte();
}
ubyte getStatus(T : CpuInfo)(ref T cpu)
{
return cpu.S | 0x30;
}
// Sets or clears a single status flag.
void updateFlag(T)(ref T cpu, Flag f, bool val)
if (isCpu!T || is(T == CpuInfo))
{
if (val)
setFlag(cpu, f);
@ -337,10 +543,15 @@ if (isCpu!T)
clearFlag(cpu, f);
}
void setNZ(T : CpuInfo)(ref T cpu, ubyte val)
{
updateFlag(cpu, Flag.Z, (val == 0));
updateFlag(cpu, Flag.N, (val >= 0x80));
}
// Sets or clears the flag required for a given opcode to branch.
void expectBranch(T)(T cpu, ubyte opcode)
if (isCpu!T)
void expectBranch(T)(ref T cpu, ubyte opcode)
if (isCpu!T || is(T == CpuInfo))
{
switch (opcode)
{
@ -348,19 +559,19 @@ if (isCpu!T)
case /*BMI*/ 0x30: setFlag(cpu, Flag.N); break;
case /*BVC*/ 0x50: clearFlag(cpu, Flag.V); break;
case /*BVS*/ 0x70: setFlag(cpu, Flag.V); break;
case /*BRA*/ 0x80: break;
case /*BCC*/ 0x90: clearFlag(cpu, Flag.C); break;
case /*BCS*/ 0xB0: setFlag(cpu, Flag.C); break;
case /*BNE*/ 0xD0: clearFlag(cpu, Flag.Z); break;
case /*BEQ*/ 0xF0: setFlag(cpu, Flag.Z); break;
default:
if (isCMOS!T) { if (opcode == /*BRA*/ 0x80) break; }
enforce(0, format("not a branching opcpde %0.2X", opcode));
}
}
// Returns whether an opcode would branch if executed.
bool wouldBranch(T)(T cpu, ubyte opcode)
if (isCpu!T)
bool wouldBranch(T)(ref T cpu, ubyte opcode)
if (isCpu!T || is(T == CpuInfo))
{
switch (opcode)
{
@ -368,18 +579,19 @@ if (isCpu!T)
case /*BMI*/ 0x30: return getFlag(cpu, Flag.N);
case /*BVC*/ 0x50: return !getFlag(cpu, Flag.V);
case /*BVS*/ 0x70: return getFlag(cpu, Flag.V);
case /*BRA*/ 0x80: return true;
case /*BCC*/ 0x90: return !getFlag(cpu, Flag.C);
case /*BCS*/ 0xB0: return getFlag(cpu, Flag.C);
case /*BNE*/ 0xD0: return !getFlag(cpu, Flag.Z);
case /*BEQ*/ 0xF0: return getFlag(cpu, Flag.Z);
default:
if (isCMOS!T) { if (opcode == /*BRA*/ 0x80) return true; }
assert(0, format("not a branching opcpde %0.2X", opcode));
}
}
// Sets or clears the flag required for a given opcode to not branch.
void expectNoBranch(T)(T cpu, ubyte opcode)
void expectNoBranch(T)(ref T cpu, ubyte opcode)
if (isCpu!T || is(T == CpuInfo))
{
switch (opcode)
{
@ -406,6 +618,17 @@ ushort address(ubyte l, ubyte h)
}
ubyte addrLo(ushort addr)
{
return cast(ubyte)(addr & 0xFF);
}
ubyte addrHi(ushort addr)
{
return cast(ubyte)(addr >> 8);
}
/*
* Adds an offset to an address, resulting in an address in the same
* page.
@ -435,7 +658,7 @@ ubyte XX()
// A number different from some other number.
ubyte notXX(ubyte val)
{
return cast(ubyte)(val ^ 0xAA);
return cast(ubyte)~val;
}

View File

@ -10,12 +10,12 @@ if (isCpu!T)
{
static if (isNMOS!T)
enum REG_OPS = cast(ubyte[])
x"0A 18 1A 2A 38 3A 4A 58 5A 6A 78 7A 8A 88 98 9A
x"0A 18 1A 2A 38 3A 4A 58 5A 6A 78 7A 88 8A 98 9A
A8 AA B8 BA C8 CA D8 DA E8 EA F8 FA";
else
enum REG_OPS = cast(ubyte[])
x"0A 18 1A 2A 38 3A 4A 58 6A 78 8A 88 98 9A
A8 AA B8 BA C8 CA D8 E8 EA F8";
x"0A 18 1A 2A 38 3A 4A 58 6A 78 88 8A 98 9A A8 AA
B8 BA C8 CA D8 E8 EA F8";
}

View File

@ -77,14 +77,14 @@ if (isCpu!T)
auto opcode = mem[pc];
assert(IMM_OPS!T.canFind(opcode));
bool decimal = isCMOS!T && isStrict!T && getFlag(cpu, Flag.D) &&
bool decimal = isCMOS!T && getFlag(cpu, Flag.D) &&
BCD_OPS!T.canFind(opcode);
cycles = 2 + decimal;
return [Bus(Action.READ, pc),
Bus(Action.READ, pc+1)] ~
If!decimal(
[Bus(Action.READ, pc+2)]);
If!decimal(If!(isStrict!T)(
[Bus(Action.READ, pc+2)]));
}
@ -287,6 +287,7 @@ if (isCpu!T && isNMOS!T)
auto opcode = mem[pc];
assert(HLT_OPS!T.canFind(opcode));
cycles = 1;
return [Bus(Action.READ, pc)];
}
@ -346,14 +347,14 @@ if (isCpu!T)
bool rmw = RMW_OPS!T.canFind(opcode);
bool write = !rmw && WRITE_OPS!T.canFind(opcode);
bool read = !rmw && !write;
bool decimal = isCMOS!T && isStrict!T && getFlag(cpu, Flag.D) &&
bool decimal = isCMOS!T && getFlag(cpu, Flag.D) &&
BCD_OPS!T.canFind(opcode);
cycles += (rmw ? 3 : (write ? 1 : (1 + decimal)));
return If!read(
[Bus(Action.READ, addr)] ~
If!decimal(
[Bus(Action.READ, pc + opLen)])) ~
If!decimal(If!(isStrict!T)(
[Bus(Action.READ, pc + opLen)]))) ~
If!write(
[Bus(Action.WRITE, addr)]) ~
If!rmw(
@ -612,93 +613,116 @@ template timesetup_t(T)
}
// Tests the bus access patterns and cycles taken for a given opcode.
void test_opcode_timing(T)(ubyte opcode)
alias void delegate(int, const Bus[], int, const Bus[], ubyte, string)
busreport;
auto run_timing_test(T)(timesetup_t!T expect, busreport report)
{
addrsetup_t!T[] function(ubyte) setups1;
datasetup_t!T[] function(ubyte) setups2;
mixin(getMemSetup!T());
auto setup(ubyte opcode, CpuInfo cpu, Block[] data, OpInfo info,
string msg, TestSetup* next)
{
mixin testCallNext;
auto testcpu = makeCpu!T(cpu);
auto mem = TestMemory(data);
timesetup_t!T expected;
mixin(getExpected!T());
int expCycles;
auto expBus = expect(testcpu, mem, expCycles);
expBus = expBus ~ new Bus[8 - expBus.length];
auto funcs1 = setups1(opcode);
string name1;
foreach(func1; funcs1)
{
ushort addr;
int cycles;
auto cpu = new T();
auto block1 = func1(cpu, addr, name1);
auto mem = TestMemory(block1);
connectMem(cpu, mem);
auto exp = expected(cpu, mem, cycles);
exp = exp ~ new Bus[8 - exp.length];
auto actual = recordBus(cpu);
auto actualCycles = recordCycles(cpu);
// XXX debug
write(format("Testing %s (%0.2X) -- ", name1, opcode));
try
{
runOneOpcode(cpu);
connectMem(testcpu, mem);
auto actualBus = recordBus(testcpu);
auto actualCycles = recordCycles(testcpu);
runOneOpcode(testcpu);
report(actualCycles, actualBus, expCycles, expBus,
opcode, T.stringof ~ " | " ~ msg);
callNext();
}
catch (TestException e) // possibly not related to timing
return TestSetup(&setup);
}
auto report_timing_debug()
{
void report(int actualCycles, const Bus[] actualBus,
int expectCycles, const Bus[] expectBus,
ubyte opcode, string msg)
{
// XXX wrap
throw e;
}
if (actual != exp)
if (actualBus != expectBus)
{
// XXX make error message, throw
}
if (actualCycles != cycles)
if (actualCycles != expectCycles)
{
// XXX make error message, throw
}
if (actual == exp && actualCycles == cycles)
writeln("OK");
if (actualBus == expectBus && actualCycles == expectCycles) {}
else
{
write(format("[%0.2X] %s", opcode, msg));
writeln();
writeln(actualCycles, " ", cycles);
writeln(actual);
writeln(exp);
writeln(expectCycles, " ", actualCycles);
writeln(expectBus);
writeln(actualBus);
throw new TestException("timing");
}
}
return &report;
}
// Tests the bus access patterns and cycles taken for a given opcode.
void test_opcode_timing(T)(ubyte opcode, busreport report)
{
TestSetup setup_addr;
TestSetup setup_test;
testexpect expect;
timesetup_t!T expected;
mixin(getMemSetup!T());
mixin(getExpected!T());
auto setup = connect(setup_mask_flags(), setup_addr, setup_test);
auto run = connect(setup, run_timing_test!T(expected, report));
run.run(opcode);
}
unittest
{
auto report = report_timing_debug();
alias CPU!("65C02", false, false) T1;
for (int op = 0x00; op < 0x100; op++)
test_opcode_timing!T1(cast(ubyte)op);
test_opcode_timing!T1(cast(ubyte)op, report);
alias CPU!("65C02", true, false) T2;
for (int op = 0x00; op < 0x100; op++)
test_opcode_timing!T2(cast(ubyte)op);
test_opcode_timing!T2(cast(ubyte)op, report);
alias CPU!("6502", false, false) T3;
for (int op = 0x00; op < 0x100; op++)
test_opcode_timing!T3(cast(ubyte)op);
test_opcode_timing!T3(cast(ubyte)op, report);
alias CPU!("6502", true, false) T4;
for (int op = 0x00; op < 0x100; op++)
test_opcode_timing!T4(cast(ubyte)op);
test_opcode_timing!T4(cast(ubyte)op, report);
alias CPU!("65C02", false, true) T5;
for (int op = 0x00; op < 0x100; op++)
test_opcode_timing!T5(cast(ubyte)op);
test_opcode_timing!T5(cast(ubyte)op, report);
alias CPU!("65C02", true, true) T6;
for (int op = 0x00; op < 0x100; op++)
test_opcode_timing!T6(cast(ubyte)op);
test_opcode_timing!T6(cast(ubyte)op, report);
alias CPU!("6502", false, true) T7;
for (int op = 0x00; op < 0x100; op++)
test_opcode_timing!T7(cast(ubyte)op);
test_opcode_timing!T7(cast(ubyte)op, report);
alias CPU!("6502", true, true) T8;
for (int op = 0x00; op < 0x100; op++)
test_opcode_timing!T8(cast(ubyte)op);
test_opcode_timing!T8(cast(ubyte)op, report);
}

104
test/test_func.d Normal file
View File

@ -0,0 +1,104 @@
module test.test_func;
import std.string;
import test.base, test.cpu, test.opcodes;
alias void delegate(ubyte, ref Expected, CpuInfo, const ref TestMemory, string)
testreport;
/*
* Runs one opcode. Calls expect for the expected values of the cpu
* registers and memory. Calls report with the expected and actual
* values.
*/
auto run_opcode_test(T)(testexpect expect, testreport report)
{
auto setup(ubyte opcode, CpuInfo cpu, Block[] data, OpInfo info,
string msg, TestSetup* next)
{
mixin testCallNext;
auto testcpu = makeCpu!T(cpu);
auto mem = TestMemory(data);
auto expected = Expected(cpu, mem);
expect(expected, info);
connectMem(testcpu, mem);
runOneOpcode(testcpu);
auto cpuResult = CpuInfo.fromCpu(testcpu);
report(opcode, expected, cpuResult, mem, T.stringof ~ " | " ~ msg);
callNext();
}
return TestSetup(&setup);
}
// Dummy function. Reports nothing.
auto report_none()
{
void report(ubyte opcode, ref Expected expected, CpuInfo cpu,
const ref TestMemory mem, string msg)
{
}
return &report;
}
// Prints the differences between expected and actual cpu/memory.
auto report_debug()
{
void report(ubyte opcode, ref Expected expected, CpuInfo cpu,
const ref TestMemory mem, string msg)
{
import std.stdio;
bool badCpu = (expected.cpu != cpu);
bool badMem = (expected.mem != mem);
if (badCpu || badMem)
writeln(format("[%0.2X] %s", opcode, msg));
if (badCpu)
{
writeln(" expect ", expected.cpu);
writeln(" actual ", cpu);
}
if (badMem)
{
foreach (h; MemDiff(expected.mem, mem))
{
writeln(format(" %0.4X | %s", h.base, formatMemory(h.a, 8)));
writeln(format(" | %s", formatMemory(h.b, 8)));
}
}
if (badCpu || badMem) throw new Exception("BAD");
}
return &report;
}
void test_one_opcode(T)(ubyte opcode, testreport report)
{
TestSetup setup_addr;
TestSetup setup_test;
testexpect expect;
mixin(getMemSetup!T());
auto setup = connect(setup_mask_flags(), setup_addr, setup_test);
auto run = connect(setup, run_opcode_test!T(expect, report));
run.run(opcode);
}
unittest
{
auto report = report_debug();
alias CPU!("65C02", false, false) T1;
foreach (opcode; 0..255)
test_one_opcode!T1(cast(ubyte)opcode, report);
alias CPU!("6502", false, false) T2;
foreach (opcode; 0..255)
test_one_opcode!T2(cast(ubyte)opcode, report);
}