Mini Memory Tester

Alpha Documentation

By Dagen Brock

Table of Contents

Table of Contents
Main Menu
Testing
Test Address Ranges
Running Tests
Memory Errors
Generating memory corruption
Missing Features

Description

Mini Memory Tester is a simple testing program for Apple lilgs memory cards.

Main Menu
Here’s a look at the main screen with the menu options on the left:

afficr

IS Test Setting: EX

Start BANk: [0ed
End BANE: 1F

Start AOOR: AA4
End ADOR: FFFF

0l

K

BEGIN TEST

USE ARROW KEYS TO MOUE - USE ENTER TO SELECT/EDIT

Using the up and down arrows, you can select which menu item you want (indicated with
square brackets), and hit enter to edit it, or if “‘BEGIN TEST” is selected, it will of course begin
testing memory using your specified parameters.

When entering values, it expects hexadecimal numbers (0 through F). You do not need to hit
enter. Text entry is complete when you type the appropriate length of hexadecimal number.
You can hit ESC to cancel the current number entry.

Parameters should be fairly obvious:

e Start Bank - End Bank
o Range of memory banks that will be tested
e Start Addr - End Addr
o Hex address to test at within banks
e TestByte
o Hex value that will be used to write during test
e Test Delay
o Delay in seconds (HEX!) between passes

Testing

When you begin test, the program will write your specified test value to all memory locations
specified, wait the desired period, and then read the same locations looking for your value. If
the wrong value is read, it will generate an error (see Errors).

Test Address Ranges
If you specify a range of, say “2000-8000” across multiple banks, then it will only test that
range. Example, if you say banks 10 through 11, with the address range above then it will
only test:

10/2000 ... 10/8000

11/2000 ... 11/8000
Just be aware that it's not contiguous between banks.

Running Tests

Running tests show the current pass, and the current address chunk being written or read,
and a timer if it is waiting for the next pass.

IS Test Settings EX

Start BANK: 06
End BANK: 1F Pazs: QEE3

Start AOOR: @44 Reading: B7/CA44
End AOOR: FFFF

Test Bute: D@
Test Delay: @3

CBEGIN TEST]

USE ARROW KEYS TO MOUE - USE ENTER TO SELECT/EDIT

After each pass of writing and reading, the pass number is incremented, and the next pass
starts.

Note: Memory Data is not scrambled between passes!

Note: If you press a key, the test will cancel at the end of the current Write/Read pass.

Memory Errors

When the test encounters an error, it will show an error message. You can press a key to
continue testing. It will leave the memory error during testing until another error is
encountered or the test is cancelled.

Generating memory corruption
It is helpful (particularly to test the program itself!) to be able to corrupt some memory during

the test to see that things are working properly. To do this, simply press “c” (lowercase) to
“corrupt” the current spot being written. This will change the border color to let you know that
some memory was changed and should generate an error when the Read pass occurs.

You can see the border color has changed to red after | hit “c” during this test.

aflicr

3 Test Settings EB

Start BAMR: fe
End BAHK: 1F Pazs: G084

Start AOOR: BG4 Writing: @B/(A8
End ADOR: FFFF

i

K

[BECIN TEST]

USE ARROM KEYS TO MOWE - USE ENTER TO SELECT/EDIT

Then during the read phase, it caused this error:

=S Test Settings ET

Start BANK: Ao —
End BAME: 1F Pass: @A@4

Start AOOR: 0AAA Reading: B7/6008
End AOOR: FFFF

Test Bute: B0
Test Delay: 63 Error at: $87./6880 |

Expected: $08 %
[BECIN TEST] Read: $10 XA4E

USE ARROW KEYS TO MOUE - USE ENTER TO SELECT/EDIT

As you can see, it shows the error location, the expected value (in hex and binary) and the
value we got when we read that location.

Missing Features

As an alpha release, | made a conscious decision to “get something out the door” versus
making people wait for perfection (which will surely never come).

Some things that | think are missing:

e Allow user to set the writer to use pseudo-random values as well as just a
simple Test Byte.

e Full 16-bit version of test. | think this might be important to find things that
might not be visible on only the 8-bit data lines.
Wiping behaviors. Allow user to specify some sort of wipe between passes.
Count total errors. Might be nice.
Checkerboard writes. Maybe write 00,FF,00,FF,... on one pass, then

FF,00,FF,00,... on the next pass. Possibly less important if Wiping behaviors
are supported.

