There were several existing optimizations that could change behavior in ways that violated the IEEE standard with regard to infinities, NaNs, or signed zeros. They are now gated behind a new #pragma optimize flag. This change allows intermediate code peephole optimization and common subexpression elimination to be used while maintaining IEEE conformance, but also keeps the rule-breaking optimizations available if desired.
See section F.9.2 of recent C standards for a discussion of how these optimizations violate IEEE rules.
This could give incorrect results for extended-to-comp conversions of certain negative integers like -2147483648 and -53021371269120. To get a fix for the same problem with regard to long long, ORCA/C should be linked with the latest version of ORCALib (which also works around some instances of the problem at run time). There are still other cases involving code in SysFloat that has not yet been patched.
This means that floating-point constants can now have the range and precision of the extended type (aka long double), and floating-point constant expressions evaluated within the compiler also have that same range and precision (matching expressions evaluated at run time). This new behavior is intended to match the behavior specified in the C99 and later standards for FLT_EVAL_METHOD 2.
This fixes the previous problem where long double constants and constant expressions of type long double were not represented and evaluated with the full range and precision that they should be. It also gives extra range and precision to constants and constant expressions of type double or float. This may have pluses and minuses, but at any rate it is consistent with the existing behavior for expressions evaluated at run time, and with one of the possible models of floating point evaluation specified in the C standards.
The code of PeepHoleOptimization is now big enough that it triggers bogus "Relative address out of range" range errors from the linker. This is a linker bug and should be fixed there.
This allows the code to be displayed properly on GitHub and in modern text editors, which typically do not support the irregularly-spaced tab stops used for ORCA/M code. It also avoids any possibility of problems building the code if the SysTabs file is missing or has been customized with non-standard tab stops.
This is necessary to compile some very large functions, such as the main interpreter loop in Git.
This consumes about 8K of extra memory for the additional label records.