This prohibits initializers in "extern" declarations within a function, and in the parameter declarations of non-prototyped functions.
Here are examples illustrating these cases:
int main(void) {
extern int i = 50;
}
void f(i)
int i = 60;
{
}
This covers code like the following:
int main(void) {
auto int a[20];
static int *p = &a[5];
}
Previously, this would compile without error, and then either give a linker error or be linked to refer to the global symbol "a" (if there was one).
This occurred due to looking for the symbol in all namespaces rather than only variable space.
Here is an example affected by this:
int X;
int main(void) {
struct X {int i;};
static int *i = &X;
}
Varargs-only stack repair (i.e. using #pragma optimize bit 3 but not bit 6) was broken by commit 32975b720fb4d79. It removed some code that was needed to allocate the direct page location used to hold the stack pointer value in that case. This would lead to invalid code being produced, which could cause a crash when run. The fix is to revert the erroneous parts of commit 32975b720fb4d79 (which do not affect its core purpose of enabling intermediate code peephole optimization to be used when stack repair code is active).
Redeclaration of a pascal function could cause spurious errors when using strict type checking. (This was similar to the issue fixed in commit b5b276d0f40844, but this time occurring due to the CompTypes call in NewSymbol.) There may also have been subtle misbehavior in other corner cases.
Now the reversal of parameters for pascal functions is applied only once, in Declarator prior to calling NewSymbol. This ensures that symbols for pascal functions have the correct types whenever they are processed, and also simplifies the previous code, where the parameters could be reversed, un-reversed, and re-reversed in three separate places.
When a function has a single return statement at the end and meets certain other constraints, we now generate a different intermediate code instruction to evaluate the return value as part of the return operation, rather than assigning it to (effectively) a variable and then reading that value again to return it.
This approach could actually be used for all returns in C code, but for now we only use it for a single return at the end. Directly applying it in other cases could increase the code size by duplicating the function epilogue code.
This would previously happen if a segment directive with "dynamic" appeared before the first function in the program. That would cause the resulting program not to work, because the root segment needs to be a static segment at the start of the program, but if it is dynamic it would come after a jump table and a static segment of library code.
The root segments are also configured to refer to main or the NDA/CDA entry points using LEXPR records, so that they can be in dynamic segments (not that they necessarily should be). That change is intentionally not done for CDEV/XCMD/NBA, because they use code resources, which do not support dynamic segments, so it is better to force a linker error in these cases.
I think the reason this was originally disallowed is that the old code sequence for stack repair code (in ORCA/C 2.1.0) ended with TYA. If this was followed by STA dp or STA abs, the native code peephole optimizer (prior to commit 7364e2d2d329d81) would have turned the combination into a STY instruction. That is invalid if the value in A is needed. This could come up, e.g., when assigning the return value from a function to two different variables.
This is no longer an issue, because the current code sequence for stack repair code no longer ends in TYA and is not susceptible to the same kind of invalid optimization. So it is no longer necessary to disable the native code peephole optimizer when using stack repair code (either for all calls or just varargs calls).
This is smaller and more efficient than the previous code that called memcpy(). It also avoids a theoretical issue if the user's code included an incompatible definition of memcpy.
*Initialization of floating-point variables from unsigned long expressions with value > LONG_MAX would give the wrong value.
*Initialization of floating-point variables from (unsigned) long long expressions would give the wrong value.
*Initialization of _Bool variables should give 0 or 1, as per the usual rules for conversion to _Bool.
*Initialization of integer variables from floating-point expressions should be allowed, applying the usual conversions.
There is a tradeoff of code size vs. speed, since a sequence of STZ instructions is faster than a call to ~ZERO but could be quite large for a big array or struct. We now use ~ZERO for initializations of over 50 bytes to avoid excessive code bloat; the exact number chosen is somewhat arbitrary.
Static initialization of arrays/structs/unions now essentially "executes" the initializer records to fill in a buffer (and keep track of relocations), then emits pcode to represent that initialized state. This supports overlapping and out-of-order initializer records, as can be produced by designated initialization.
This prohibits empty initializers ({}) for arrays of unknown size, consistent with C23 requirements. Previous versions of C did not allow empty initializers at all, but ORCA/C historically did in some cases, so this patch still allows them for structs/unions/arrays of known size.
When the expression is initially parsed, we do not necessarily know whether it is the initializer for the struct/union or for its first member. That needs to be determined based on the type. To support that, a new function is added to evaluate the expression separately from using it to initialize an object.
This is currently used in a couple places in the designated initializer code (solving the problem with #pragma expand in the last commit). It could probably be used elsewhere too, but for now it is not.
As noted previously, there is some ambiguity in the standards about how anonymous structs/unions participate in initialization. ORCA/C follows the model that they do participate as structs or unions, and designated initialization of them is implemented accordingly.
This currently has a slight issue in that extra copies of the anonymous member field name will be printed in #pragma expand output.
This generally simplifies things, and always generates individual initializer records for each explicit initialization of a bit-field (which was previously done for automatic initialization, but not static).
This should work correctly for automatic initialization, but needs corresponding code changes in GenSymbols for static initialization.
This could maybe be simplified to just fill on levels with braces, but I want to consider that after implementing designated initializers for structs and unions.
The idea (not yet implemented) is to use this to support out-of-order initialization. For automatic variables, we can just initialize the subobjects in the order that initializers appear. For static variables, we will eventually need to reorder the initializers in order, but this can be done based on their recorded displacements.