Apple llgs
Assembly Programming
Crash Course

Dagen Brock

dagenbrock@gmail.com

KansaskFest 2013

Sources Online:
https://github.com/digarok/gslib

In The Beginning:

The following diagram shows a simple program that can be compiled in Merlin 16 and run from a standard
AppleSoft basic prompt. Since there’s no ORG statement at the top, Merlin will compile it at $8000, but it really
doesn’t matter. This program is a single instruction, RTS. It can be loaded to, and run, from anywhere!

KA KA AR A A A A A A A A A AR A A I A A AR A A A A A A kA Ak, Kk

* Quit *
R I b I b I I I b b b i b b b I b b b b b b b I b b b b b b I b b b b b

rts ; return from wherever we were called

If you want to try it,
o launch Merlin and Load the “quit” source file (you don’t need to type the “s”), this will leave you in the full-
screen editor
« hit OpenApple-A to assemble the code, then hit escape to go back to the main menu
« save the Object file as “quit”, then quit out of Merlin and launch basic
« assuming you are in the right directory in BASIC, you can type “BRUN QUIT”
« you could also “BLOAD QUIT” then “CALL 32768 (that’s hex $8000)
« or “BLOAD QUIT” then “CALL -151" to enter monitor and “8000g” to run it.

Prodos 8:

If you were to write the same thing, in ProDOS8, a program that just exits immediate, then you would have to do
things a bit differently. ProDOS8 introduces the concept of calling a Quit routine. In this case, you can try the
program yourself by just Loading “quit8” then hitting OpenApple-A to assemble. Thanks to the DSK and TYP
commands (actually compiler directives), it will automatically write out a P8 system file that you can launch
from GSOS or any ProDOS launcher.

KA KA AR A A A A A A A AR AR A A I A A AR A A A Ak Ak Ak XA,k

* Quit8 *

* *

* Dagen Brock <dagenbrock@gmail.com> *

* 2013-06-24 *
khkhkkhkkhkhkhkhkhkkhhkhkhhkkhkhAhkhkhkkhhkhhhkhkhkhkhkkhkkhhkhrhhkkhkhkhkhkh*k
org $2000 ; start at $2000 (all ProDOS8 system files)
dsk quit8.system ; tell compiler what name for output file
typ $ff ; set P8 type ($ff = “SYS”) for output file
MLT equ S$bf00
Quit jsr MLI ; first actual command, call ProDOS vector
dfb $65 ; with “quit” request ($65)

da QuitParm
bcs Error
brk $00 ; shouldn’t ever here!

QuitParm dfb 4 number of parameters

dfb 0 ; standard quit type

da $0000 ; not needed when using standard quit
dfb 0 ; not used

da $0000 ; not used

Error brk $00 ; shouldn’t be here either

GSOS/ProDOS16:

Similar to ProDOS 8, GSOS expects you to call a quit routine. The main new concepts here are that we are
telling the compiler to create relocatable code that can be loaded anywhere in memory, via the REL command.
Since our programs can be loaded anywhere, we always want to start by pushing our program bank register and
pulling it back as our data bank. GSOS doesn’t guarantee that it will point the data bank to where it loads your
program because it doesn’t know where you want to access data banks!

hhkhkhkhkhkhk Ak A hkhkrhkkhkrhhkhkhkdkhkkhkrhkkhkrhkhkrhkkhkkhkxkkxk

* Quitlé *

R I i B I I S I S b S S I S b S b S b I b b S b S b I S b S 3 S
rel ; compile as relocatable code
dsk Quitlé6.1l ; Save Name
prhk ; Set Data Bank to Program Bank
plb ; Always do this first!

Jjsl $SE100A8
da $29

adrl QuitParm
bcs Error

Prodos 16 entry point

Quit code

address of parameter table
never taken

N Ne Ne N

Error brk ; should never get here
QuitParm adrl $0000 ; pointer to pathname (not used here)
da $00 ; quit type (absolute quit)
If you want to try it,

« hit OpenApple-O to open the “Command” window and type “link’, this will assemble and link your file,
and create an executable System16 binary called “Quit16”

« you can launch that from the GSOS desktop

« or, from Merlin’s main menu, you can hit Disk Command and type “-quit16” to launch directly

SHR (Super Hi-Res) Graphics Mode:

There are actually two SHR modes on the Apple IIgs, 320x200 and 640x200. We will only discuss the 320 mode
which supports 16 colors per palette, with up to 16 palettes for a total of 256 colors on screen. You can actually
go higher than this, but that requires writing precisely timed code to swap palettes and control bytes while the
screen is updating.

The IIgs also lets you set the text, background and border color of the “text” screen. I mention this, because it’s
common to set the border color to black or some other color during games or graphical displays.

The Ilgs display is mapped to bank $E1, starting at memory location $2000. It can also be shadowed into bank
$01. You will quickly see that much graphics code regularly references $£12000 or $012000.

The IIgs also has a video blanking register that you can read and syncronize your code with to create flicker free
effects.

Unfortunately, there’s no built-in sprite hardware and the screen memory is locked at a dismally slow 1MHz, but
luckily it’s quite easy to program for.

Color Palettes ($9E00-$9FFF)

Relevant Video Registers in Memory Bank $00 Memory Bank $E1 — = Rosorved 0) =P
A A L L
Text Color Background Color $FFFF r T 7T T :
ik belomud o rlelslalsfz[1]o] [r]e]s]a]s]2]1]o]
Screen Color Register (Text Mode) $C022 |7]s]s]alal2]1]0] Exen Byl Oud Bie
(16 Palettes, each containing 16 colors)
Real-Time Clock Border Colar Palette $0 ...through... Palette $F
' L
v w 1
. Color $0 $9E00-01 Color $0 $9FEQ-E1
Border Color Register (All Modes) $C034 |7]e]s]als]2]1]0] Color $1 $9E02-03 Color §1 $9FE2-E3
Calor $2 $9E04-05 Color $2 $OFE4-E5
Color $3 $OED6-07 Color §3 S9FEG-ET
DO NOT MODIFY Color $4 $9EDB-09 Color §4 $9FES-EQ
Color $5 $9E0A-0B Color §5 SOFEA-EB
Color $6 $9E0C-0D Color $6 $9FEC-ED
Reserved, do not modify Calor 37 FOEOE-OF feovwsnsvannnsans Color $7 $9FEE-EF
Golor $8 $9E10-11 Color $8 $9FFO-F1
; ; Color $8 $9E12-13 Color §9 $OFF2-F3
New Video Register $C029 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Color $A $9E14-15 Color §A $9FF4-F5
Color $B $9E16-17T Color $B $9FFE-F7
Vdeo Mode = (0) Apple Il compatible video or (1) Super Hi-Res mode $OFFF gg:s’r :g :ggia% ggtg‘; :‘D; :giii";%
Linearize SHR Memery ($2000-$9D00) = (0) disabled or (1) enabled ~g— Golon 3 $9E1C-1D Calor SE $OFFC-FD
Calor $F $9E1E-1F Calor §F SOFFE-FF
Color Palettes o e
Double Hi-Res Golor Mode = (0) color or (1) black & white p——
Enable bank latch = (0} Aux/Softswitch or (1) lgnored - $9E00 Scan-line Control bytes ($9000-$9D07]
Scan-line Control Bytes
$9D00 Palette Select
Vertical Blank (RDVBLBAR) $C019 |7]s]s]als]2]1]0]
Lrlelslalsl2]1]0]
Vertical Blank = (0) YES or (1) NO
horizontal resolution = (0) 320 or (1) 640

generate interrupt = (0) disabled or (1) enabled f——

color fill mode (320 only) = (0) disabled or (1) f—————

Turning on SHR mode: enabled Palette (50-5F)

reserved = write (| -———————

Here’s a simple, but common, routine for turning on the SHR graphics mode. Note, we switch to 8-bit to set flags

only on that byte at bank $00, location $C029. Pixel Data ($2000-$9CFF)

Pixel Data
. . . §2000 $2001 §2002 $20A0 Scan-line Control Bytes
Comparing it to the table above, you can see we set bits: | 4 for each line
7 = SHR mode L1 E ll:i.ne{: : :zgg:}
ine 1 -
6 = Linearize the SHR memory at locations $2000-9CFF
1 = Enable Bank Latch NS
Pixels
Nk hkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkrkhkhkrkhhkhhkrkhkhkhkhkhkkhhkhxkhkxkkhx
* *
Turn on SHR mode [Line 198 - $9DC5
Nk hkhkhkhkhkhkhkhhhkhkhkhkhhkhkrhkhkrkhhhk ok hkhkhkhkkhhkrkhkxkhx l:l Line 166 - 39DCE
GraphicsOn sep #$30 ;8-bit mode T [_| Line 200- $9DC7
lda #sC1 ;%1100 0001 $2000 ks
stal $00C029 ;Turn on SHR mode
rep #$30 ;back to 16-bit mode : : 5 z ;
Screen Memory is completely linear in relation to pixels!
Pixel 1 Pixel 2 Pixel 3 Pixel 4
L 5 w 4 L) T . 1]
7lelslalalel1]o]lz]els]ala]2]1]0]
SHR Memory Map: l U ,
$0000
The next page illustrates the Apple IIgs memory map. Word (2 bytes) = 4 pixels*
(largest possible single instruction write)
. *in 320 mode, in 640 mode it's 8 pixel
Refer to the online sources to see: RS B
shrl.s SHR1, Shows how to turn on SHR Graphics Mode and clear screen
shr2.s SHR2, Shows how to write palettes, clear screen to color, set scan-line control bytes

DAGEN’S MEGA SUPER HI-RES GRAPHICS REFERENCE PAGE!

Toolbox:

The Apple IIgs contains an entire ecosystem of routines that are included in the firmware. It’s called the Toolbox
and later versions of ProDOS16 and GSOS also update those tools by loading new tools in RAM. (You can even
write your own tools!)

We won't concern ourself with a majority of tools, like those used when writing desktop applications. It’s enough
to simply know about the “big five”

Tool Locator: Takes care of loading and dispatching tools calls so you don't have to think about it!
Memory Manager: Allocates memory. You must use this to request memory for your application
Miscellaneous Tool Set: Random system-level routines. We'll use the “UnPackBytes” toolcall

QuickDraw II: Handles drawing routines for desktop software. We will NOT be using this!!!

Event Manager: Traps all events (mouse/keyboard) and provides a convenient queue for processing events
in your application

How to make a tool call:

Tools are meant to run in full native 65816 mode with all 16 bit registers. You call them using a common vector,
kind of like calling ProDOS 8 calls. The entry point for the Toolbox routines is $£1/0000.

Here’s how to call a tool:
o Push zeros (or anything) on the stack to make room for any results, depending on whether the tool you are
calling returns anything
« Load the 2-byte tool call number into X. e.g. “LDX #$0201° calls tool $01, command $02
eDoaJSL $E10000 to call the Toolbox dispatcher
o Pull any results off the stack, again depending on whether the tool you are calling returns anything
o Check the carry flag for an error. Carry will be set if an error occured during the last tool call and the Ac-
cumulator will hold the error code. Otherwise, Carry and Accumulator will be zero

KAKKA KNI IR A A A AN A R A A A A AR A I AR A A A A AR AR A Ak Kk

* Call TLStartUP *
* - there are no parameters to pass or *
* results to pull off of the stack *

KA KK AR A AR AR A AN A A A IA A A AR A R AR A A A A A A A A A XA,k

ldx #$0201 ;the code for TLStartup
jsl $E10000 ;call the Toolbox vector

Here's an example that passes variables and returns a result. This particular piece of code requests a block of
memory from the memory manager.

KK A KRK A AR AR AR AR A A A AN A A A A A A A A A A AR A A A,k kK

* Call NewHandle *
* - PushLong and PushWord and ToolCall *
* are Merlin macros that are *

* INVALUABLE in Toolbox programming *
khkkhkhkhkhkkhkkhkhkhkhkhkhhkhhkkhkkhkhkhkhhkkhhkhrhkhkkhkhhrhkkhkkhkhrhhkhk*x
PushLong #$0000 ;space for result
PushLong #$2000 ;size of block needed
PushWord MyID ;your applications userID
PushWord #$0000 ;attribute byte for your block
PushLong #$0000 ;address requests (or none, in this case)
ToolCall $0902 ;NewHandle
PulllLong MyHandle ;don’t forget to pull your result off the stack
bcc :noErr ;error handling would follow

Memory Manager:

You use the memory manager to allocate memory for your program. You may have some memory “baked-in” to
your program, like variables and tables generated at compile time. But if you want to request a block of memory;,
perhaps to load a file and store it somewhere, you will use the NewHandle call from the Memory Manager.

When you first start your program, you will commonly start the Tool Locator, then you will start the Memory
Manager and get a UserID that you will use for subsequent memory requests.

R R I b S b b 2b S S b S b I b S b S Sb I b S JE S db S Sh b I Sb b S 4 3

* Typical tool startup *
Ak hkkhkhkhkhkhkhkkhhkhkhkhkkhkhAkhrhkkhkkhhkhrhhkkhkhkrhkkhkkhhkhrhkhkk,hxkxkx*k
_TLStartUp ;start Tool Locator
pha
_MMStartUp ;start Memory Manager
bcs :Error ; should never happen
pla
sta MasterId ;master handle references the memory allocated to us
ora #50100 ;set auxID = $01 (valid values $01-0f)
sta UserId ;any memory we request must use our own id

Requesting a block of memory:

You request memory from the memory manager by the use of the NewHandle call. You assign it to your UserID
and tell the memory manager what attributes it has, like whether or not it’s relocateable.

Memory Manager Tool Set ($02)
Tool Call $0902 NewHandle

Parameters

Stack before call

previous contents

- - longResultSpace - - Long — Space for result
0= blockSize =9 Long — size, in bytes, of the block to create
userlD Word — User ID to associate with the block
attributes Word — Attributes (see Memory Attributes diagram)
- - locationPtr =9 Long — POINTER to where in memory the block is to begin
1 ¢—SP

previous contents

theHandle Word — HANDLE of new block, or empty if block of 0 bytes created

Memory Manager Attributes: PackBytes/UnPackBytes:

I want to mention the UnPackBytes routine, because I use that in examples to load SHR “packbytes” images.
These images are smaller, so you can load them faster and they take up less memory. It’s worth using PackBytes
images, even if you don’t understand how it works. Many Apple IIgs Paint programs can save in the PackBytes

When requestiong memory, you pass in an attribute that specifies what kind of restrictions youd like on your
memory block. The common/main ones for programmers is to make the block locked so you can dereference
the handle to get your pointer and, from then on, just work on that block of memory directly, as opposed to

f t.
always checking to make sure it hasn't moved. orma
You can also specify an address, using the locationPtr parameter, but if you want to do that you must also set the Miscellaneous Tool Set ($03)
attributes for fixed address and/or fixed bank. Tool Call $2703 UnPackBytes
Parameters

Memory Manager Attributes Word
Stack before call

15 |14 ‘13 12 |11 (10 "iin 7|65 ' 4 13[2]1]0 previous contents
attrLocked 4—, resultSpace Word — Space for result
Locked; block can't be moved or purged = 1
Unlocked; block may be moved or purged = 0
- = bufferPtr =9 Long — POINTER to the buffer containing the packed data
attrFixed
Block can't move while in memaory = 1 .
Block may move =0 bufferSize Word — Size of the packed data buffer
FiaeareH; etio D = - - startHandle = -+ Long — POINTER to POINTER to area where the data will be unpacked

alirPurge &=
Purge level 3 = 11
Purge level 2 = 10 .
Purge level 1 = 01 - = sizePtr = Long — POINTER to Word containing size of area for unpacked data
Purge level 0 = 00

Reserved: set to () = B SP
midiobinise - Stack after call
May not cross bank bgundan’a= 1 Y
May cross bank boundary =0 previous contents
atirhNoSpec - numUnpackbytes Word — Number of source bytes unpacked
May not use special memaory = 1 : .
May use special memory = 0 3 : <—SP

............................

atfrNoPage =
Block must be page aligned = 1

Block might not be page aligned = 0 Refer to the online sources to see:

shrloadimg]l.s Shows how to start tools, request memory, load and unpack picture
atfrAddr -4

e e i andresa = 3 shrloadimg?2.s Same as above, but with some fade/palette routines and memory shadowing
Block may be moved to other addresss = 0

atirBank -4

Block must remain at specified fixed bank = 1
Block may be moved to other banks = 0

Refer to the online sources to see:
shrloadimg]l.s Shows how to start tools, request memory, load and unpack picture
shrloadimg2.s Same as above, but with some fade/palette routines and memory shadowing

Sprites:

As mentioned, there is no sprite hardware on the IIgs. You simply copy pixel data to the screen memory. This
means you are on your own to write sprite routines.

Generally, you can just create tables of sprites and copy them over

BALL hex OQFFFFO0O
hex OFFFFFFO
hex OFFFFFFO
hex OFFFFFFO
hex OFFFFFFO
hex OQFFFFO0O

DrawBallAtX lda Ball
stal $E12000, x
lda Ball+2
stal $E12002,x
lda Ball+4
stal S$E120A0,x ;next line, so add 160 (hex $A0)
. etc

The problem with this method is that it draws over everything. What if we want to see some background sur-
round our ball? With the above code it will have a box arount it.

The solution is to use masking. We load the screen data, mask oft the area to draw our pixels using AND, then
combine our sprite data with the screen data using OR. Here’s a visual example:

Load Logical AND | Result Logical OR | |Save Result

SCREEN BALLMASK MASKRESULT BALL SCREENRESULT
hex 33333333 hex FFOOOOFF hex 33000033 hex OOFFFFO00 hex 33FFFF33
hex 33333333 hex FO000000F hex 30000003 hex OFFFFFFO hex 3FFFFFF3
hex 33333333 hex FO000000F hex 30000003 hex OFFFFFFO hex 3FFFFFF3
hex 33333333 hex FO000000F hex 30000003 hex OFFFFFFO hex 3FFFFFF3
hex 33333333 hex FO000000F hex 30000003 hex OFFFFFFO hex 3FFFFFF3
hex 33333333 hex FFOOOOFF hex 33000033 hex OOFFFFO00 hex 33FFFF33
*get screen data *mask off hole area * we've created a hole * now apply sprite data *result is masked sprite

There are a lot of ways to optimize this, like only masking bytes or words where there is a transparent area. For

more information on this, and a great tool for compiling optimized sprites, I recommend you look at “Mr. Sprite”

by Brutal Deluxe. He does a much more in-depth explanation of the technical concepts behind drawing to the

IIgs screen and has nice color versions of the above tables that really make things clear.
http://www.brutaldeluxe.fr/products/crossdevtools/mrsprite/

Keep in mind, this isn't specific to only the Apple IIgs. This is a common paradigm for systems that have some

sort of memory mapped display area and no specialized sprite routines.

Input (TBA):

You can use your standard Apple II keyboard routines, as we have here, or use the event manager. I'll discuss the
latter in an online update, as well as add some mouse routines.

Sound (TBA):

You can program the Ensoniq DOC directly, or using Tools. There are built in sound tools, as well as some really

great third-party tools for playing music. I'll try to cover these in future online updates.

THANKS FOR COMING TO KANSASFEST!

