hush/libbb/pw_encrypt_des.c

819 lines
23 KiB
C
Raw Normal View History

/*
* FreeSec: libcrypt for NetBSD
*
* Copyright (c) 1994 David Burren
* All rights reserved.
*
* Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
* this file should now *only* export crypt(), in order to make
* binaries of libcrypt exportable from the USA
*
* Adapted for FreeBSD-4.0 by Mark R V Murray
* this file should now *only* export crypt_des(), in order to make
* a module that can be optionally included in libcrypt.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of other contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This is an original implementation of the DES and the crypt(3) interfaces
* by David Burren <davidb@werj.com.au>.
*
* An excellent reference on the underlying algorithm (and related
* algorithms) is:
*
* B. Schneier, Applied Cryptography: protocols, algorithms,
* and source code in C, John Wiley & Sons, 1994.
*
* Note that in that book's description of DES the lookups for the initial,
* pbox, and final permutations are inverted (this has been brought to the
* attention of the author). A list of errata for this book has been
* posted to the sci.crypt newsgroup by the author and is available for FTP.
*
* ARCHITECTURE ASSUMPTIONS:
* It is assumed that the 8-byte arrays passed by reference can be
* addressed as arrays of uint32_t's (ie. the CPU is not picky about
* alignment).
*/
/* Parts busybox doesn't need or had optimized */
#define USE_PRECOMPUTED_u_sbox 1
#define USE_REPETITIVE_SPEEDUP 0
#define USE_ip_mask 0
#define USE_de_keys 0
/* A pile of data */
static const uint8_t IP[64] = {
58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
};
static const uint8_t key_perm[56] = {
57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
};
static const uint8_t key_shifts[16] = {
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
};
static const uint8_t comp_perm[48] = {
14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
};
/*
* No E box is used, as it's replaced by some ANDs, shifts, and ORs.
*/
#if !USE_PRECOMPUTED_u_sbox
static const uint8_t sbox[8][64] = {
{ 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
},
{ 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
},
{ 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
},
{ 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
},
{ 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
},
{ 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
},
{ 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
},
{ 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
}
};
#else /* precomputed, with half-bytes packed into one byte */
static const uint8_t u_sbox[8][32] = {
{ 0x0e, 0xf4, 0x7d, 0x41, 0xe2, 0x2f, 0xdb, 0x18,
0xa3, 0x6a, 0xc6, 0xbc, 0x95, 0x59, 0x30, 0x87,
0xf4, 0xc1, 0x8e, 0x28, 0x4d, 0x96, 0x12, 0x7b,
0x5f, 0xbc, 0x39, 0xe7, 0xa3, 0x0a, 0x65, 0xd0,
},
{ 0x3f, 0xd1, 0x48, 0x7e, 0xf6, 0x2b, 0x83, 0xe4,
0xc9, 0x07, 0x12, 0xad, 0x6c, 0x90, 0xb5, 0x5a,
0xd0, 0x8e, 0xa7, 0x1b, 0x3a, 0xf4, 0x4d, 0x21,
0xb5, 0x68, 0x7c, 0xc6, 0x09, 0x53, 0xe2, 0x9f,
},
{ 0xda, 0x70, 0x09, 0x9e, 0x36, 0x43, 0x6f, 0xa5,
0x21, 0x8d, 0x5c, 0xe7, 0xcb, 0xb4, 0xf2, 0x18,
0x1d, 0xa6, 0xd4, 0x09, 0x68, 0x9f, 0x83, 0x70,
0x4b, 0xf1, 0xe2, 0x3c, 0xb5, 0x5a, 0x2e, 0xc7,
},
{ 0xd7, 0x8d, 0xbe, 0x53, 0x60, 0xf6, 0x09, 0x3a,
0x41, 0x72, 0x28, 0xc5, 0x1b, 0xac, 0xe4, 0x9f,
0x3a, 0xf6, 0x09, 0x60, 0xac, 0x1b, 0xd7, 0x8d,
0x9f, 0x41, 0x53, 0xbe, 0xc5, 0x72, 0x28, 0xe4,
},
{ 0xe2, 0xbc, 0x24, 0xc1, 0x47, 0x7a, 0xdb, 0x16,
0x58, 0x05, 0xf3, 0xaf, 0x3d, 0x90, 0x8e, 0x69,
0xb4, 0x82, 0xc1, 0x7b, 0x1a, 0xed, 0x27, 0xd8,
0x6f, 0xf9, 0x0c, 0x95, 0xa6, 0x43, 0x50, 0x3e,
},
{ 0xac, 0xf1, 0x4a, 0x2f, 0x79, 0xc2, 0x96, 0x58,
0x60, 0x1d, 0xd3, 0xe4, 0x0e, 0xb7, 0x35, 0x8b,
0x49, 0x3e, 0x2f, 0xc5, 0x92, 0x58, 0xfc, 0xa3,
0xb7, 0xe0, 0x14, 0x7a, 0x61, 0x0d, 0x8b, 0xd6,
},
{ 0xd4, 0x0b, 0xb2, 0x7e, 0x4f, 0x90, 0x18, 0xad,
0xe3, 0x3c, 0x59, 0xc7, 0x25, 0xfa, 0x86, 0x61,
0x61, 0xb4, 0xdb, 0x8d, 0x1c, 0x43, 0xa7, 0x7e,
0x9a, 0x5f, 0x06, 0xf8, 0xe0, 0x25, 0x39, 0xc2,
},
{ 0x1d, 0xf2, 0xd8, 0x84, 0xa6, 0x3f, 0x7b, 0x41,
0xca, 0x59, 0x63, 0xbe, 0x05, 0xe0, 0x9c, 0x27,
0x27, 0x1b, 0xe4, 0x71, 0x49, 0xac, 0x8e, 0xd2,
0xf0, 0xc6, 0x9a, 0x0d, 0x3f, 0x53, 0x65, 0xb8,
},
};
#endif
static const uint8_t pbox[32] = {
16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
};
static const uint32_t bits32[32] =
{
0x80000000, 0x40000000, 0x20000000, 0x10000000,
0x08000000, 0x04000000, 0x02000000, 0x01000000,
0x00800000, 0x00400000, 0x00200000, 0x00100000,
0x00080000, 0x00040000, 0x00020000, 0x00010000,
0x00008000, 0x00004000, 0x00002000, 0x00001000,
0x00000800, 0x00000400, 0x00000200, 0x00000100,
0x00000080, 0x00000040, 0x00000020, 0x00000010,
0x00000008, 0x00000004, 0x00000002, 0x00000001
};
static const uint8_t bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
static int
ascii_to_bin(char ch)
{
if (ch > 'z')
return 0;
if (ch >= 'a')
return (ch - 'a' + 38);
if (ch > 'Z')
return 0;
if (ch >= 'A')
return (ch - 'A' + 12);
if (ch > '9')
return 0;
if (ch >= '.')
return (ch - '.');
return 0;
}
/* Static stuff that stays resident and doesn't change after
* being initialized, and therefore doesn't need to be made
* reentrant. */
struct const_des_ctx {
#if USE_ip_mask
uint8_t init_perm[64]; /* referenced 2 times */
#endif
uint8_t final_perm[64]; /* 2 times */
uint8_t m_sbox[4][4096]; /* 5 times */
};
#define C (*cctx)
#define init_perm (C.init_perm )
#define final_perm (C.final_perm)
#define m_sbox (C.m_sbox )
static struct const_des_ctx*
const_des_init(void)
{
unsigned i, j, b;
struct const_des_ctx *cctx;
#if !USE_PRECOMPUTED_u_sbox
uint8_t u_sbox[8][64];
cctx = xmalloc(sizeof(*cctx));
/* Invert the S-boxes, reordering the input bits. */
for (i = 0; i < 8; i++) {
for (j = 0; j < 64; j++) {
b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
u_sbox[i][j] = sbox[i][b];
}
}
for (i = 0; i < 8; i++) {
fprintf(stderr, "\t{\t");
for (j = 0; j < 64; j+=2)
fprintf(stderr, " 0x%02x,", u_sbox[i][j] + u_sbox[i][j+1]*16);
fprintf(stderr, "\n\t},\n");
}
/*
* Convert the inverted S-boxes into 4 arrays of 8 bits.
* Each will handle 12 bits of the S-box input.
*/
for (b = 0; b < 4; b++)
for (i = 0; i < 64; i++)
for (j = 0; j < 64; j++)
m_sbox[b][(i << 6) | j] =
(uint8_t)((u_sbox[(b << 1)][i] << 4) |
u_sbox[(b << 1) + 1][j]);
#else
cctx = xmalloc(sizeof(*cctx));
/*
* Convert the inverted S-boxes into 4 arrays of 8 bits.
* Each will handle 12 bits of the S-box input.
*/
for (b = 0; b < 4; b++)
for (i = 0; i < 64; i++)
for (j = 0; j < 64; j++) {
uint8_t lo, hi;
hi = u_sbox[(b << 1)][i / 2];
if (!(i & 1))
hi <<= 4;
lo = u_sbox[(b << 1) + 1][j / 2];
if (j & 1)
lo >>= 4;
m_sbox[b][(i << 6) | j] = (hi & 0xf0) | (lo & 0x0f);
}
#endif
/*
* Set up the initial & final permutations into a useful form.
*/
for (i = 0; i < 64; i++) {
final_perm[i] = IP[i] - 1;
#if USE_ip_mask
init_perm[final_perm[i]] = (uint8_t)i;
#endif
}
return cctx;
}
struct des_ctx {
const struct const_des_ctx *const_ctx;
uint32_t saltbits; /* referenced 5 times */
#if USE_REPETITIVE_SPEEDUP
uint32_t old_salt; /* 3 times */
uint32_t old_rawkey0, old_rawkey1; /* 3 times each */
#endif
uint8_t un_pbox[32]; /* 2 times */
uint8_t inv_comp_perm[56]; /* 3 times */
uint8_t inv_key_perm[64]; /* 3 times */
uint32_t en_keysl[16], en_keysr[16]; /* 2 times each */
#if USE_de_keys
uint32_t de_keysl[16], de_keysr[16]; /* 2 times each */
#endif
#if USE_ip_mask
uint32_t ip_maskl[8][256], ip_maskr[8][256]; /* 9 times each */
#endif
uint32_t fp_maskl[8][256], fp_maskr[8][256]; /* 9 times each */
uint32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; /* 9 times */
uint32_t comp_maskl[8][128], comp_maskr[8][128]; /* 9 times each */
uint32_t psbox[4][256]; /* 5 times */
};
#define D (*ctx)
#define const_ctx (D.const_ctx )
#define saltbits (D.saltbits )
#define old_salt (D.old_salt )
#define old_rawkey0 (D.old_rawkey0 )
#define old_rawkey1 (D.old_rawkey1 )
#define un_pbox (D.un_pbox )
#define inv_comp_perm (D.inv_comp_perm )
#define inv_key_perm (D.inv_key_perm )
#define en_keysl (D.en_keysl )
#define en_keysr (D.en_keysr )
#define de_keysl (D.de_keysl )
#define de_keysr (D.de_keysr )
#define ip_maskl (D.ip_maskl )
#define ip_maskr (D.ip_maskr )
#define fp_maskl (D.fp_maskl )
#define fp_maskr (D.fp_maskr )
#define key_perm_maskl (D.key_perm_maskl )
#define key_perm_maskr (D.key_perm_maskr )
#define comp_maskl (D.comp_maskl )
#define comp_maskr (D.comp_maskr )
#define psbox (D.psbox )
static struct des_ctx*
des_init(struct des_ctx *ctx, const struct const_des_ctx *cctx)
{
int i, j, b, k, inbit, obit;
uint32_t p;
const uint32_t *bits28, *bits24;
if (!ctx)
ctx = xmalloc(sizeof(*ctx));
const_ctx = cctx;
#if USE_REPETITIVE_SPEEDUP
old_rawkey0 = old_rawkey1 = 0;
old_salt = 0;
#endif
saltbits = 0;
bits28 = bits32 + 4;
bits24 = bits28 + 4;
/* Initialise the inverted key permutation. */
for (i = 0; i < 64; i++) {
inv_key_perm[i] = 255;
}
/*
* Invert the key permutation and initialise the inverted key
* compression permutation.
*/
for (i = 0; i < 56; i++) {
inv_key_perm[key_perm[i] - 1] = (uint8_t)i;
inv_comp_perm[i] = 255;
}
/* Invert the key compression permutation. */
for (i = 0; i < 48; i++) {
inv_comp_perm[comp_perm[i] - 1] = (uint8_t)i;
}
/*
* Set up the OR-mask arrays for the initial and final permutations,
* and for the key initial and compression permutations.
*/
for (k = 0; k < 8; k++) {
uint32_t il, ir;
uint32_t fl, fr;
for (i = 0; i < 256; i++) {
#if USE_ip_mask
il = 0;
ir = 0;
#endif
fl = 0;
fr = 0;
for (j = 0; j < 8; j++) {
inbit = 8 * k + j;
if (i & bits8[j]) {
#if USE_ip_mask
obit = init_perm[inbit];
if (obit < 32)
il |= bits32[obit];
else
ir |= bits32[obit - 32];
#endif
obit = final_perm[inbit];
if (obit < 32)
fl |= bits32[obit];
else
fr |= bits32[obit - 32];
}
}
#if USE_ip_mask
ip_maskl[k][i] = il;
ip_maskr[k][i] = ir;
#endif
fp_maskl[k][i] = fl;
fp_maskr[k][i] = fr;
}
for (i = 0; i < 128; i++) {
il = 0;
ir = 0;
for (j = 0; j < 7; j++) {
inbit = 8 * k + j;
if (i & bits8[j + 1]) {
obit = inv_key_perm[inbit];
if (obit == 255)
continue;
if (obit < 28)
il |= bits28[obit];
else
ir |= bits28[obit - 28];
}
}
key_perm_maskl[k][i] = il;
key_perm_maskr[k][i] = ir;
il = 0;
ir = 0;
for (j = 0; j < 7; j++) {
inbit = 7 * k + j;
if (i & bits8[j + 1]) {
obit = inv_comp_perm[inbit];
if (obit == 255)
continue;
if (obit < 24)
il |= bits24[obit];
else
ir |= bits24[obit - 24];
}
}
comp_maskl[k][i] = il;
comp_maskr[k][i] = ir;
}
}
/*
* Invert the P-box permutation, and convert into OR-masks for
* handling the output of the S-box arrays setup above.
*/
for (i = 0; i < 32; i++)
un_pbox[pbox[i] - 1] = (uint8_t)i;
for (b = 0; b < 4; b++) {
for (i = 0; i < 256; i++) {
p = 0;
for (j = 0; j < 8; j++) {
if (i & bits8[j])
p |= bits32[un_pbox[8 * b + j]];
}
psbox[b][i] = p;
}
}
return ctx;
}
static void
setup_salt(struct des_ctx *ctx, uint32_t salt)
{
uint32_t obit, saltbit;
int i;
#if USE_REPETITIVE_SPEEDUP
if (salt == old_salt)
return;
old_salt = salt;
#endif
saltbits = 0;
saltbit = 1;
obit = 0x800000;
for (i = 0; i < 24; i++) {
if (salt & saltbit)
saltbits |= obit;
saltbit <<= 1;
obit >>= 1;
}
}
static void
des_setkey(struct des_ctx *ctx, const char *key)
{
uint32_t k0, k1, rawkey0, rawkey1;
int shifts, round;
rawkey0 = ntohl(*(const uint32_t *) key);
rawkey1 = ntohl(*(const uint32_t *) (key + 4));
#if USE_REPETITIVE_SPEEDUP
if ((rawkey0 | rawkey1)
&& rawkey0 == old_rawkey0
&& rawkey1 == old_rawkey1
) {
/*
* Already setup for this key.
* This optimisation fails on a zero key (which is weak and
* has bad parity anyway) in order to simplify the starting
* conditions.
*/
return;
}
old_rawkey0 = rawkey0;
old_rawkey1 = rawkey1;
#endif
/*
* Do key permutation and split into two 28-bit subkeys.
*/
k0 = key_perm_maskl[0][rawkey0 >> 25]
| key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
| key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
| key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
| key_perm_maskl[4][rawkey1 >> 25]
| key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
| key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
| key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
k1 = key_perm_maskr[0][rawkey0 >> 25]
| key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
| key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
| key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
| key_perm_maskr[4][rawkey1 >> 25]
| key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
| key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
| key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
/*
* Rotate subkeys and do compression permutation.
*/
shifts = 0;
for (round = 0; round < 16; round++) {
uint32_t t0, t1;
shifts += key_shifts[round];
t0 = (k0 << shifts) | (k0 >> (28 - shifts));
t1 = (k1 << shifts) | (k1 >> (28 - shifts));
#if USE_de_keys
de_keysl[15 - round] =
#endif
en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
| comp_maskl[1][(t0 >> 14) & 0x7f]
| comp_maskl[2][(t0 >> 7) & 0x7f]
| comp_maskl[3][t0 & 0x7f]
| comp_maskl[4][(t1 >> 21) & 0x7f]
| comp_maskl[5][(t1 >> 14) & 0x7f]
| comp_maskl[6][(t1 >> 7) & 0x7f]
| comp_maskl[7][t1 & 0x7f];
#if USE_de_keys
de_keysr[15 - round] =
#endif
en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
| comp_maskr[1][(t0 >> 14) & 0x7f]
| comp_maskr[2][(t0 >> 7) & 0x7f]
| comp_maskr[3][t0 & 0x7f]
| comp_maskr[4][(t1 >> 21) & 0x7f]
| comp_maskr[5][(t1 >> 14) & 0x7f]
| comp_maskr[6][(t1 >> 7) & 0x7f]
| comp_maskr[7][t1 & 0x7f];
}
}
static void
do_des(struct des_ctx *ctx, /*uint32_t l_in, uint32_t r_in,*/ uint32_t *l_out, uint32_t *r_out, int count)
{
const struct const_des_ctx *cctx = const_ctx;
/*
* l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
*/
uint32_t l, r, *kl, *kr;
uint32_t f = f; /* silence gcc */
uint32_t r48l, r48r;
int round;
/* Do initial permutation (IP). */
#if USE_ip_mask
uint32_t l_in = 0;
uint32_t r_in = 0;
l = ip_maskl[0][l_in >> 24]
| ip_maskl[1][(l_in >> 16) & 0xff]
| ip_maskl[2][(l_in >> 8) & 0xff]
| ip_maskl[3][l_in & 0xff]
| ip_maskl[4][r_in >> 24]
| ip_maskl[5][(r_in >> 16) & 0xff]
| ip_maskl[6][(r_in >> 8) & 0xff]
| ip_maskl[7][r_in & 0xff];
r = ip_maskr[0][l_in >> 24]
| ip_maskr[1][(l_in >> 16) & 0xff]
| ip_maskr[2][(l_in >> 8) & 0xff]
| ip_maskr[3][l_in & 0xff]
| ip_maskr[4][r_in >> 24]
| ip_maskr[5][(r_in >> 16) & 0xff]
| ip_maskr[6][(r_in >> 8) & 0xff]
| ip_maskr[7][r_in & 0xff];
#elif 0 /* -65 bytes (using the fact that l_in == r_in == 0) */
l = r = 0;
for (round = 0; round < 8; round++) {
l |= ip_maskl[round][0];
r |= ip_maskr[round][0];
}
bb_error_msg("l:%x r:%x", l, r); /* reports 0, 0 always! */
#else /* using the fact that ip_maskX[] is constant (written to by des_init) */
l = r = 0;
#endif
do {
/* Do each round. */
kl = en_keysl;
kr = en_keysr;
round = 16;
do {
/* Expand R to 48 bits (simulate the E-box). */
r48l = ((r & 0x00000001) << 23)
| ((r & 0xf8000000) >> 9)
| ((r & 0x1f800000) >> 11)
| ((r & 0x01f80000) >> 13)
| ((r & 0x001f8000) >> 15);
r48r = ((r & 0x0001f800) << 7)
| ((r & 0x00001f80) << 5)
| ((r & 0x000001f8) << 3)
| ((r & 0x0000001f) << 1)
| ((r & 0x80000000) >> 31);
/*
* Do salting for crypt() and friends, and
* XOR with the permuted key.
*/
f = (r48l ^ r48r) & saltbits;
r48l ^= f ^ *kl++;
r48r ^= f ^ *kr++;
/*
* Do sbox lookups (which shrink it back to 32 bits)
* and do the pbox permutation at the same time.
*/
f = psbox[0][m_sbox[0][r48l >> 12]]
| psbox[1][m_sbox[1][r48l & 0xfff]]
| psbox[2][m_sbox[2][r48r >> 12]]
| psbox[3][m_sbox[3][r48r & 0xfff]];
/* Now that we've permuted things, complete f(). */
f ^= l;
l = r;
r = f;
} while (--round);
r = l;
l = f;
} while (--count);
/* Do final permutation (inverse of IP). */
*l_out = fp_maskl[0][l >> 24]
| fp_maskl[1][(l >> 16) & 0xff]
| fp_maskl[2][(l >> 8) & 0xff]
| fp_maskl[3][l & 0xff]
| fp_maskl[4][r >> 24]
| fp_maskl[5][(r >> 16) & 0xff]
| fp_maskl[6][(r >> 8) & 0xff]
| fp_maskl[7][r & 0xff];
*r_out = fp_maskr[0][l >> 24]
| fp_maskr[1][(l >> 16) & 0xff]
| fp_maskr[2][(l >> 8) & 0xff]
| fp_maskr[3][l & 0xff]
| fp_maskr[4][r >> 24]
| fp_maskr[5][(r >> 16) & 0xff]
| fp_maskr[6][(r >> 8) & 0xff]
| fp_maskr[7][r & 0xff];
}
#define DES_OUT_BUFSIZE 21
static void
to64_msb_first(char *s, unsigned v)
{
#if 0
*s++ = ascii64[(v >> 18) & 0x3f]; /* bits 23..18 */
*s++ = ascii64[(v >> 12) & 0x3f]; /* bits 17..12 */
*s++ = ascii64[(v >> 6) & 0x3f]; /* bits 11..6 */
*s = ascii64[v & 0x3f]; /* bits 5..0 */
#endif
*s++ = i64c(v >> 18); /* bits 23..18 */
*s++ = i64c(v >> 12); /* bits 17..12 */
*s++ = i64c(v >> 6); /* bits 11..6 */
*s = i64c(v); /* bits 5..0 */
}
static char *
NOINLINE
des_crypt(struct des_ctx *ctx, char output[DES_OUT_BUFSIZE],
const unsigned char *key, const unsigned char *setting)
{
uint32_t salt, r0, r1, keybuf[2];
uint8_t *q;
/*
* Copy the key, shifting each character up by one bit
* and padding with zeros.
*/
q = (uint8_t *)keybuf;
while (q - (uint8_t *)keybuf != 8) {
*q = *key << 1;
if (*q)
key++;
q++;
}
des_setkey(ctx, (char *)keybuf);
/*
* setting - 2 bytes of salt
* key - up to 8 characters
*/
salt = (ascii_to_bin(setting[1]) << 6)
| ascii_to_bin(setting[0]);
output[0] = setting[0];
/*
* If the encrypted password that the salt was extracted from
* is only 1 character long, the salt will be corrupted. We
* need to ensure that the output string doesn't have an extra
* NUL in it!
*/
output[1] = setting[1] ? setting[1] : output[0];
setup_salt(ctx, salt);
/* Do it. */
do_des(ctx, /*0, 0,*/ &r0, &r1, 25 /* count */);
/* Now encode the result. */
#if 0
{
uint32_t l = (r0 >> 8);
q = (uint8_t *)output + 2;
*q++ = ascii64[(l >> 18) & 0x3f]; /* bits 31..26 of r0 */
*q++ = ascii64[(l >> 12) & 0x3f]; /* bits 25..20 of r0 */
*q++ = ascii64[(l >> 6) & 0x3f]; /* bits 19..14 of r0 */
*q++ = ascii64[l & 0x3f]; /* bits 13..8 of r0 */
l = ((r0 << 16) | (r1 >> 16));
*q++ = ascii64[(l >> 18) & 0x3f]; /* bits 7..2 of r0 */
*q++ = ascii64[(l >> 12) & 0x3f]; /* bits 1..2 of r0 and 31..28 of r1 */
*q++ = ascii64[(l >> 6) & 0x3f]; /* bits 27..22 of r1 */
*q++ = ascii64[l & 0x3f]; /* bits 21..16 of r1 */
l = r1 << 2;
*q++ = ascii64[(l >> 12) & 0x3f]; /* bits 15..10 of r1 */
*q++ = ascii64[(l >> 6) & 0x3f]; /* bits 9..4 of r1 */
*q++ = ascii64[l & 0x3f]; /* bits 3..0 of r1 + 00 */
*q = 0;
}
#else
/* Each call takes low-order 24 bits and stores 4 chars */
/* bits 31..8 of r0 */
to64_msb_first(output + 2, (r0 >> 8));
/* bits 7..0 of r0 and 31..16 of r1 */
to64_msb_first(output + 6, (r0 << 16) | (r1 >> 16));
/* (bits 15..0 of r1 + 00) and NUL byte */
to64_msb_first(output + 10, (r1 << 8));
#endif
return output;
}
#undef USE_PRECOMPUTED_u_sbox
#undef USE_REPETITIVE_SPEEDUP
#undef USE_ip_mask
#undef USE_de_keys
#undef C
#undef init_perm
#undef final_perm
#undef m_sbox
#undef D
#undef const_ctx
#undef saltbits
#undef old_salt
#undef old_rawkey0
#undef old_rawkey1
#undef un_pbox
#undef inv_comp_perm
#undef inv_key_perm
#undef en_keysl
#undef en_keysr
#undef de_keysl
#undef de_keysr
#undef ip_maskl
#undef ip_maskr
#undef fp_maskl
#undef fp_maskr
#undef key_perm_maskl
#undef key_perm_maskr
#undef comp_maskl
#undef comp_maskr
#undef psbox