hush/bunzip2.c

2341 lines
55 KiB
C
Raw Normal View History

/* Modified for busybox by Glenn McGrath <bug1@optushome.com.au> */
/*--
This file is a part of bzip2 and/or libbzip2, a program and
library for lossless, block-sorting data compression.
Copyright (C) 1996-2000 Julian R Seward. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
3. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.
4. The name of the author may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Julian Seward, Cambridge, UK.
jseward@acm.org
bzip2/libbzip2 version 1.0 of 21 March 2000
This program is based on (at least) the work of:
Mike Burrows
David Wheeler
Peter Fenwick
Alistair Moffat
Radford Neal
Ian H. Witten
Robert Sedgewick
Jon L. Bentley
For more information on these sources, see the manual.
--*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <busybox.h>
//#define TRUE 1
//#define FALSE 0
#define MTFA_SIZE 4096
#define MTFL_SIZE 16
#define BZ_N_GROUPS 6
#define BZ_G_SIZE 50
#define BZ_MAX_ALPHA_SIZE 258
#define BZ_OK 0
#define BZ_RUN_OK 1
#define BZ_FLUSH_OK 2
#define BZ_FINISH_OK 3
#define BZ_STREAM_END 4
#define BZ_SEQUENCE_ERROR (-1)
#define BZ_PARAM_ERROR (-2)
#define BZ_MEM_ERROR (-3)
#define BZ_DATA_ERROR (-4)
#define BZ_DATA_ERROR_MAGIC (-5)
#define BZ_IO_ERROR (-6)
#define BZ_UNEXPECTED_EOF (-7)
#define BZ_OUTBUFF_FULL (-8)
#define BZ_CONFIG_ERROR (-9)
#define BZ_RUNA 0
#define BZ_RUNB 1
#define BZ_MAX_UNUSED 5000
#define FILE_NAME_LEN 1034
/*-- states for decompression. --*/
#define BZ_X_IDLE 1
#define BZ_X_OUTPUT 2
#define BZ_X_MAGIC_1 10
#define BZ_X_MAGIC_2 11
#define BZ_X_MAGIC_3 12
#define BZ_X_MAGIC_4 13
#define BZ_X_BLKHDR_1 14
#define BZ_X_BLKHDR_2 15
#define BZ_X_BLKHDR_3 16
#define BZ_X_BLKHDR_4 17
#define BZ_X_BLKHDR_5 18
#define BZ_X_BLKHDR_6 19
#define BZ_X_BCRC_1 20
#define BZ_X_BCRC_2 21
#define BZ_X_BCRC_3 22
#define BZ_X_BCRC_4 23
#define BZ_X_RANDBIT 24
#define BZ_X_ORIGPTR_1 25
#define BZ_X_ORIGPTR_2 26
#define BZ_X_ORIGPTR_3 27
#define BZ_X_MAPPING_1 28
#define BZ_X_MAPPING_2 29
#define BZ_X_SELECTOR_1 30
#define BZ_X_SELECTOR_2 31
#define BZ_X_SELECTOR_3 32
#define BZ_X_CODING_1 33
#define BZ_X_CODING_2 34
#define BZ_X_CODING_3 35
#define BZ_X_MTF_1 36
#define BZ_X_MTF_2 37
#define BZ_X_MTF_3 38
#define BZ_X_MTF_4 39
#define BZ_X_MTF_5 40
#define BZ_X_MTF_6 41
#define BZ_X_ENDHDR_2 42
#define BZ_X_ENDHDR_3 43
#define BZ_X_ENDHDR_4 44
#define BZ_X_ENDHDR_5 45
#define BZ_X_ENDHDR_6 46
#define BZ_X_CCRC_1 47
#define BZ_X_CCRC_2 48
#define BZ_X_CCRC_3 49
#define BZ_X_CCRC_4 50
#define BZ_MAX_CODE_LEN 23
#define BZ_VERSION "1.0.1, 23-June-2000"
#define OM_TEST 3
#define SM_F2F 3
typedef struct {
char *next_in;
unsigned int avail_in;
unsigned int total_in_lo32;
unsigned int total_in_hi32;
char *next_out;
unsigned int avail_out;
unsigned int total_out_lo32;
unsigned int total_out_hi32;
void *state;
void *(*bzalloc)(void *,int,int);
void (*bzfree)(void *,void *);
void *opaque;
} bz_stream;
typedef struct {
bz_stream strm;
FILE *handle;
unsigned char initialisedOk;
unsigned char writing;
char buf[BZ_MAX_UNUSED];
int lastErr;
int bufN;
} bzFile;
/*-- Structure holding all the decompression-side stuff. --*/
typedef struct {
/* pointer back to the struct bz_stream */
bz_stream* strm;
/* state indicator for this stream */
int state;
/* for doing the final run-length decoding */
unsigned char state_out_ch;
int state_out_len;
unsigned char blockRandomised;
int rNToGo;
int rTPos;
/* the buffer for bit stream reading */
unsigned int bsBuff;
int bsLive;
/* misc administratium */
int blockSize100k;
unsigned char smallDecompress;
int currBlockNo;
int verbosity;
/* for undoing the Burrows-Wheeler transform */
int origPtr;
unsigned int tPos;
int k0;
int unzftab[256];
int nblock_used;
int cftab[257];
int cftabCopy[257];
/* for undoing the Burrows-Wheeler transform (FAST) */
unsigned int *tt;
/* for undoing the Burrows-Wheeler transform (SMALL) */
unsigned short *ll16;
unsigned char *ll4;
/* stored and calculated CRCs */
unsigned int storedBlockCRC;
unsigned int storedCombinedCRC;
unsigned int calculatedBlockCRC;
unsigned int calculatedCombinedCRC;
/* map of bytes used in block */
int nInUse;
unsigned char inUse[256];
unsigned char inUse16[16];
unsigned char seqToUnseq[256];
/* for decoding the MTF values */
unsigned char mtfa [MTFA_SIZE];
unsigned char selector [2 + (900000 / BZ_G_SIZE)];
unsigned char selectorMtf[2 + (900000 / BZ_G_SIZE)];
unsigned char len [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
int mtfbase[256 / MTFL_SIZE];
int limit [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
int base [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
int perm [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
int minLens[BZ_N_GROUPS];
/* save area for scalars in the main decompress code */
int save_i;
int save_j;
int save_t;
int save_alphaSize;
int save_nGroups;
int save_nSelectors;
int save_EOB;
int save_groupNo;
int save_groupPos;
int save_nextSym;
int save_nblockMAX;
int save_nblock;
int save_es;
int save_N;
int save_curr;
int save_zt;
int save_zn;
int save_zvec;
int save_zj;
int save_gSel;
int save_gMinlen;
int *save_gLimit;
int *save_gBase;
int *save_gPerm;
} DState;
int BZ2_rNums[512];
//int verbosity_level;
unsigned char smallMode;
unsigned char noisy;
char *progName;
char inName[FILE_NAME_LEN];
char outName[FILE_NAME_LEN];
int srcMode;
int opMode;
unsigned char deleteOutputOnInterrupt;
FILE *outputHandleJustInCase;
int numFileNames;
int numFilesProcessed;
int exitValue;
unsigned int BZ2_crc32Table[256] = {
/*-- Ugly, innit? --*/
0x00000000L, 0x04c11db7L, 0x09823b6eL, 0x0d4326d9L,
0x130476dcL, 0x17c56b6bL, 0x1a864db2L, 0x1e475005L,
0x2608edb8L, 0x22c9f00fL, 0x2f8ad6d6L, 0x2b4bcb61L,
0x350c9b64L, 0x31cd86d3L, 0x3c8ea00aL, 0x384fbdbdL,
0x4c11db70L, 0x48d0c6c7L, 0x4593e01eL, 0x4152fda9L,
0x5f15adacL, 0x5bd4b01bL, 0x569796c2L, 0x52568b75L,
0x6a1936c8L, 0x6ed82b7fL, 0x639b0da6L, 0x675a1011L,
0x791d4014L, 0x7ddc5da3L, 0x709f7b7aL, 0x745e66cdL,
0x9823b6e0L, 0x9ce2ab57L, 0x91a18d8eL, 0x95609039L,
0x8b27c03cL, 0x8fe6dd8bL, 0x82a5fb52L, 0x8664e6e5L,
0xbe2b5b58L, 0xbaea46efL, 0xb7a96036L, 0xb3687d81L,
0xad2f2d84L, 0xa9ee3033L, 0xa4ad16eaL, 0xa06c0b5dL,
0xd4326d90L, 0xd0f37027L, 0xddb056feL, 0xd9714b49L,
0xc7361b4cL, 0xc3f706fbL, 0xceb42022L, 0xca753d95L,
0xf23a8028L, 0xf6fb9d9fL, 0xfbb8bb46L, 0xff79a6f1L,
0xe13ef6f4L, 0xe5ffeb43L, 0xe8bccd9aL, 0xec7dd02dL,
0x34867077L, 0x30476dc0L, 0x3d044b19L, 0x39c556aeL,
0x278206abL, 0x23431b1cL, 0x2e003dc5L, 0x2ac12072L,
0x128e9dcfL, 0x164f8078L, 0x1b0ca6a1L, 0x1fcdbb16L,
0x018aeb13L, 0x054bf6a4L, 0x0808d07dL, 0x0cc9cdcaL,
0x7897ab07L, 0x7c56b6b0L, 0x71159069L, 0x75d48ddeL,
0x6b93dddbL, 0x6f52c06cL, 0x6211e6b5L, 0x66d0fb02L,
0x5e9f46bfL, 0x5a5e5b08L, 0x571d7dd1L, 0x53dc6066L,
0x4d9b3063L, 0x495a2dd4L, 0x44190b0dL, 0x40d816baL,
0xaca5c697L, 0xa864db20L, 0xa527fdf9L, 0xa1e6e04eL,
0xbfa1b04bL, 0xbb60adfcL, 0xb6238b25L, 0xb2e29692L,
0x8aad2b2fL, 0x8e6c3698L, 0x832f1041L, 0x87ee0df6L,
0x99a95df3L, 0x9d684044L, 0x902b669dL, 0x94ea7b2aL,
0xe0b41de7L, 0xe4750050L, 0xe9362689L, 0xedf73b3eL,
0xf3b06b3bL, 0xf771768cL, 0xfa325055L, 0xfef34de2L,
0xc6bcf05fL, 0xc27dede8L, 0xcf3ecb31L, 0xcbffd686L,
0xd5b88683L, 0xd1799b34L, 0xdc3abdedL, 0xd8fba05aL,
0x690ce0eeL, 0x6dcdfd59L, 0x608edb80L, 0x644fc637L,
0x7a089632L, 0x7ec98b85L, 0x738aad5cL, 0x774bb0ebL,
0x4f040d56L, 0x4bc510e1L, 0x46863638L, 0x42472b8fL,
0x5c007b8aL, 0x58c1663dL, 0x558240e4L, 0x51435d53L,
0x251d3b9eL, 0x21dc2629L, 0x2c9f00f0L, 0x285e1d47L,
0x36194d42L, 0x32d850f5L, 0x3f9b762cL, 0x3b5a6b9bL,
0x0315d626L, 0x07d4cb91L, 0x0a97ed48L, 0x0e56f0ffL,
0x1011a0faL, 0x14d0bd4dL, 0x19939b94L, 0x1d528623L,
0xf12f560eL, 0xf5ee4bb9L, 0xf8ad6d60L, 0xfc6c70d7L,
0xe22b20d2L, 0xe6ea3d65L, 0xeba91bbcL, 0xef68060bL,
0xd727bbb6L, 0xd3e6a601L, 0xdea580d8L, 0xda649d6fL,
0xc423cd6aL, 0xc0e2d0ddL, 0xcda1f604L, 0xc960ebb3L,
0xbd3e8d7eL, 0xb9ff90c9L, 0xb4bcb610L, 0xb07daba7L,
0xae3afba2L, 0xaafbe615L, 0xa7b8c0ccL, 0xa379dd7bL,
0x9b3660c6L, 0x9ff77d71L, 0x92b45ba8L, 0x9675461fL,
0x8832161aL, 0x8cf30badL, 0x81b02d74L, 0x857130c3L,
0x5d8a9099L, 0x594b8d2eL, 0x5408abf7L, 0x50c9b640L,
0x4e8ee645L, 0x4a4ffbf2L, 0x470cdd2bL, 0x43cdc09cL,
0x7b827d21L, 0x7f436096L, 0x7200464fL, 0x76c15bf8L,
0x68860bfdL, 0x6c47164aL, 0x61043093L, 0x65c52d24L,
0x119b4be9L, 0x155a565eL, 0x18197087L, 0x1cd86d30L,
0x029f3d35L, 0x065e2082L, 0x0b1d065bL, 0x0fdc1becL,
0x3793a651L, 0x3352bbe6L, 0x3e119d3fL, 0x3ad08088L,
0x2497d08dL, 0x2056cd3aL, 0x2d15ebe3L, 0x29d4f654L,
0xc5a92679L, 0xc1683bceL, 0xcc2b1d17L, 0xc8ea00a0L,
0xd6ad50a5L, 0xd26c4d12L, 0xdf2f6bcbL, 0xdbee767cL,
0xe3a1cbc1L, 0xe760d676L, 0xea23f0afL, 0xeee2ed18L,
0xf0a5bd1dL, 0xf464a0aaL, 0xf9278673L, 0xfde69bc4L,
0x89b8fd09L, 0x8d79e0beL, 0x803ac667L, 0x84fbdbd0L,
0x9abc8bd5L, 0x9e7d9662L, 0x933eb0bbL, 0x97ffad0cL,
0xafb010b1L, 0xab710d06L, 0xa6322bdfL, 0xa2f33668L,
0xbcb4666dL, 0xb8757bdaL, 0xb5365d03L, 0xb1f740b4L
};
void bz_rand_udp_mask(DState *s)
{
if (s->rNToGo == 0) {
s->rNToGo = BZ2_rNums[s->rTPos];
s->rTPos++;
if (s->rTPos == 512) {
s->rTPos = 0;
}
}
s->rNToGo--;
}
static unsigned char myfeof(FILE *f)
{
int c = fgetc(f);
if (c == EOF) {
return(TRUE);
}
ungetc(c, f);
return(FALSE);
}
static void cleanUpAndFail(int ec)
{
int retVal;
if ((srcMode == SM_F2F) && (opMode != OM_TEST) && deleteOutputOnInterrupt) {
if (noisy) {
error_msg("%s: Deleting output file %s, if it exists.\n", progName, outName);
}
if (outputHandleJustInCase != NULL) {
fclose(outputHandleJustInCase);
}
retVal = remove(outName);
if (retVal != 0) {
error_msg("%s: WARNING: deletion of output file (apparently) failed.\n", progName);
}
}
if (noisy && (numFileNames > 0) && (numFilesProcessed < numFileNames)) {
error_msg("%s: WARNING: some files have not been processed:\n"
"\t%d specified on command line, %d not processed yet.\n\n",
progName, numFileNames, numFileNames - numFilesProcessed );
}
exit(ec);
}
void panic(char *s)
{
error_msg("\n%s: PANIC -- internal consistency error:\n"
"\t%s\n"
"\tThis is a BUG. Please report it to me at:\n"
"\tjseward@acm.org\n",
progName, s);
cleanUpAndFail( 3 );
}
void BZ2_hbCreateDecodeTables(int *limit, int *base, int *perm, unsigned char *length, int minLen, int maxLen, int alphaSize )
{
int pp, i, j, vec;
pp = 0;
for (i = minLen; i <= maxLen; i++) {
for (j = 0; j < alphaSize; j++) {
if (length[j] == i) {
perm[pp] = j;
pp++;
}
}
}
for (i = 0; i < BZ_MAX_CODE_LEN; i++) {
base[i] = 0;
}
for (i = 0; i < alphaSize; i++) {
base[length[i]+1]++;
}
for (i = 1; i < BZ_MAX_CODE_LEN; i++) {
base[i] += base[i-1];
}
for (i = 0; i < BZ_MAX_CODE_LEN; i++) {
limit[i] = 0;
}
vec = 0;
for (i = minLen; i <= maxLen; i++) {
vec += (base[i+1] - base[i]);
limit[i] = vec-1;
vec <<= 1;
}
for (i = minLen + 1; i <= maxLen; i++) {
base[i] = ((limit[i-1] + 1) << 1) - base[i];
}
}
int bz_get_small(DState *s)
{
int cccc;
int nb, na, mid;
nb = 0;
na = 256;
do {
mid = (nb + na) >> 1;
if (s->tPos >= s->cftab[mid]) {
nb = mid;
} else {
na = mid;
}
}
while (na - nb != 1);
cccc = nb;
s->tPos = (((unsigned int)s->ll16[s->tPos]) |
(((((unsigned int)(s->ll4[(s->tPos) >> 1])) >>
(((s->tPos) << 2) & 0x4)) & 0xF) << 16));
return(cccc);
}
void assert_h(int errcode)
{
error_msg_and_die("\n\nbzip2/libbzip2: internal error number %d.\n"
"This is a bug in bzip2/libbzip2, %s.\n"
"Please report it to me at: jseward@acm.org. If this happened\n"
"when you were using some program which uses libbzip2 as a\n"
"component, you should also report this bug to the author(s)\n"
"of that program. Please make an effort to report this bug;\n"
"timely and accurate bug reports eventually lead to higher\n"
"quality software. Thanks. Julian Seward, 21 March 2000.\n\n",
errcode, BZ_VERSION);
}
static int get_bits(DState *s, int *vvv, char nnn)
{
while (1) {
if (s->bsLive >= nnn) {
*vvv = (s->bsBuff >> (s->bsLive-nnn)) & ((1 << nnn)-1);
s->bsLive -= nnn;
break;
}
if (s->strm->avail_in == 0) {
return(FALSE);
}
s->bsBuff = (s->bsBuff << 8) | ((unsigned int) (*((unsigned char*)(s->strm->next_in))));
s->bsLive += 8;
s->strm->next_in++;
s->strm->avail_in--;
s->strm->total_in_lo32++;
if (s->strm->total_in_lo32 == 0) {
s->strm->total_in_hi32++;
}
}
return(TRUE);
}
int bz_get_fast(DState *s)
{
int cccc;
s->tPos = s->tt[s->tPos];
cccc = (unsigned char)(s->tPos & 0xff);
s->tPos >>= 8;
return(cccc);
}
/*---------------------------------------------------*/
int BZ2_decompress(DState *s)
{
int uc = 0;
int retVal;
int minLen, maxLen;
bz_stream *strm = s->strm;
/* stuff that needs to be saved/restored */
int i;
int j;
int t;
int alphaSize;
int nGroups;
int nSelectors;
int EOB;
int groupNo;
int groupPos;
int nextSym;
int nblockMAX;
int nblock;
int es;
int N;
int curr;
int zt;
int zn;
int zvec;
int zj;
int gSel;
int gMinlen;
int *gLimit;
int *gBase;
int *gPerm;
int switch_val;
int get_mtf_val_init(void)
{
if (groupPos == 0) {
groupNo++;
if (groupNo >= nSelectors) {
retVal = BZ_DATA_ERROR;
return(FALSE);
}
groupPos = BZ_G_SIZE;
gSel = s->selector[groupNo];
gMinlen = s->minLens[gSel];
gLimit = &(s->limit[gSel][0]);
gPerm = &(s->perm[gSel][0]);
gBase = &(s->base[gSel][0]);
}
groupPos--;
zn = gMinlen;
return(TRUE);
}
if (s->state == BZ_X_MAGIC_1) {
/*initialise the save area*/
s->save_i = 0;
s->save_j = 0;
s->save_t = 0;
s->save_alphaSize = 0;
s->save_nGroups = 0;
s->save_nSelectors = 0;
s->save_EOB = 0;
s->save_groupNo = 0;
s->save_groupPos = 0;
s->save_nextSym = 0;
s->save_nblockMAX = 0;
s->save_nblock = 0;
s->save_es = 0;
s->save_N = 0;
s->save_curr = 0;
s->save_zt = 0;
s->save_zn = 0;
s->save_zvec = 0;
s->save_zj = 0;
s->save_gSel = 0;
s->save_gMinlen = 0;
s->save_gLimit = NULL;
s->save_gBase = NULL;
s->save_gPerm = NULL;
}
/*restore from the save area*/
i = s->save_i;
j = s->save_j;
t = s->save_t;
alphaSize = s->save_alphaSize;
nGroups = s->save_nGroups;
nSelectors = s->save_nSelectors;
EOB = s->save_EOB;
groupNo = s->save_groupNo;
groupPos = s->save_groupPos;
nextSym = s->save_nextSym;
nblockMAX = s->save_nblockMAX;
nblock = s->save_nblock;
es = s->save_es;
N = s->save_N;
curr = s->save_curr;
zt = s->save_zt;
zn = s->save_zn;
zvec = s->save_zvec;
zj = s->save_zj;
gSel = s->save_gSel;
gMinlen = s->save_gMinlen;
gLimit = s->save_gLimit;
gBase = s->save_gBase;
gPerm = s->save_gPerm;
retVal = BZ_OK;
switch_val = s->state;
switch (switch_val) {
case BZ_X_MAGIC_1:
s->state = BZ_X_MAGIC_1;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 'B') {
retVal = BZ_DATA_ERROR_MAGIC;
goto save_state_and_return;
}
case BZ_X_MAGIC_2:
s->state = BZ_X_MAGIC_2;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 'Z') {
retVal = BZ_DATA_ERROR_MAGIC;
goto save_state_and_return;
}
case BZ_X_MAGIC_3:
s->state = BZ_X_MAGIC_3;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 'h') {
retVal = BZ_DATA_ERROR_MAGIC;
goto save_state_and_return;
}
case BZ_X_MAGIC_4:
s->state = BZ_X_MAGIC_4;
if (get_bits(s, &s->blockSize100k, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if ((s->blockSize100k < '1') || (s->blockSize100k > '9')) {
retVal = BZ_DATA_ERROR_MAGIC;
goto save_state_and_return;
}
s->blockSize100k -= '0';
if (s->smallDecompress) {
s->ll16 = (strm->bzalloc)(strm->opaque, s->blockSize100k * 100000 * sizeof(unsigned short), 1);
s->ll4 = (strm->bzalloc)(strm->opaque, ((1 + s->blockSize100k * 100000) >> 1) * sizeof(unsigned char), 1);
if (s->ll16 == NULL || s->ll4 == NULL) {
retVal = BZ_MEM_ERROR;
goto save_state_and_return;
}
} else {
s->tt = (strm->bzalloc)(strm->opaque, s->blockSize100k * 100000 * sizeof(int), 1);
if (s->tt == NULL) {
retVal = BZ_MEM_ERROR;
goto save_state_and_return;
}
}
case BZ_X_BLKHDR_1:
s->state = BZ_X_BLKHDR_1;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc == 0x17) {
goto endhdr_2;
}
if (uc != 0x31) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_BLKHDR_2:
s->state = BZ_X_BLKHDR_2;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 0x41) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_BLKHDR_3:
s->state = BZ_X_BLKHDR_3;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 0x59) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_BLKHDR_4:
s->state = BZ_X_BLKHDR_4;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 0x26) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_BLKHDR_5:
s->state = BZ_X_BLKHDR_5;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 0x53) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_BLKHDR_6:
s->state = BZ_X_BLKHDR_6;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 0x59) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
s->currBlockNo++;
if (s->verbosity >= 2) {
error_msg("\n [%d: huff+mtf ", s->currBlockNo);
}
s->storedBlockCRC = 0;
case BZ_X_BCRC_1:
s->state = BZ_X_BCRC_1;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((unsigned int)uc);
case BZ_X_BCRC_2:
s->state = BZ_X_BCRC_2;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((unsigned int)uc);
case BZ_X_BCRC_3:
s->state = BZ_X_BCRC_3;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((unsigned int)uc);
case BZ_X_BCRC_4:
s->state = BZ_X_BCRC_4;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((unsigned int)uc);
case BZ_X_RANDBIT:
s->state = BZ_X_RANDBIT;
{
int tmp = s->blockRandomised;
const int ret = get_bits(s, &tmp, 1);
s->blockRandomised = tmp;
if (ret == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
}
s->origPtr = 0;
case BZ_X_ORIGPTR_1:
s->state = BZ_X_ORIGPTR_1;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->origPtr = (s->origPtr << 8) | ((int)uc);
case BZ_X_ORIGPTR_2:
s->state = BZ_X_ORIGPTR_2;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->origPtr = (s->origPtr << 8) | ((int)uc);
case BZ_X_ORIGPTR_3:
s->state = BZ_X_ORIGPTR_3;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->origPtr = (s->origPtr << 8) | ((int)uc);
if (s->origPtr < 0) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
if (s->origPtr > 10 + 100000*s->blockSize100k) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
/*--- Receive the mapping table ---*/
case BZ_X_MAPPING_1:
for (i = 0; i < 16; i++) {
s->state = BZ_X_MAPPING_1;
if (get_bits(s, &uc, 1) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc == 1) {
s->inUse16[i] = TRUE;
} else {
s->inUse16[i] = FALSE;
}
}
for (i = 0; i < 256; i++) {
s->inUse[i] = FALSE;
}
for (i = 0; i < 16; i++) {
if (s->inUse16[i]) {
for (j = 0; j < 16; j++) {
case BZ_X_MAPPING_2:
s->state = BZ_X_MAPPING_2;
if (get_bits(s, &uc, 1) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc == 1) {
s->inUse[i * 16 + j] = TRUE;
}
}
}
}
s->nInUse = 0;
for (i = 0; i < 256; i++) {
if (s->inUse[i]) {
s->seqToUnseq[s->nInUse] = i;
s->nInUse++;
}
}
if (s->nInUse == 0) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
alphaSize = s->nInUse+2;
/*--- Now the selectors ---*/
case BZ_X_SELECTOR_1:
s->state = BZ_X_SELECTOR_1;
if (get_bits(s, &nGroups, 3) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (nGroups < 2 || nGroups > 6) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_SELECTOR_2:
s->state = BZ_X_SELECTOR_2;
if (get_bits(s, &nSelectors, 15) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (nSelectors < 1) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
for (i = 0; i < nSelectors; i++) {
j = 0;
while (1) {
case BZ_X_SELECTOR_3:
s->state = BZ_X_SELECTOR_3;
if (get_bits(s, &uc, 1) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc == 0) {
break;
}
j++;
if (j >= nGroups) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
}
s->selectorMtf[i] = j;
}
/*--- Undo the MTF values for the selectors. ---*/
{
unsigned char pos[BZ_N_GROUPS], tmp, v;
for (v = 0; v < nGroups; v++) {
pos[v] = v;
}
for (i = 0; i < nSelectors; i++) {
v = s->selectorMtf[i];
tmp = pos[v];
while (v > 0) {
pos[v] = pos[v-1];
v--;
}
pos[0] = tmp;
s->selector[i] = tmp;
}
}
/*--- Now the coding tables ---*/
for (t = 0; t < nGroups; t++) {
case BZ_X_CODING_1:
s->state = BZ_X_CODING_1;
if (get_bits(s, &curr, 5) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
for (i = 0; i < alphaSize; i++) {
while (TRUE) {
if (curr < 1 || curr > 20) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_CODING_2:
s->state = BZ_X_CODING_2;
if (get_bits(s, &uc, 1) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc == 0) {
break;
}
case BZ_X_CODING_3:
s->state = BZ_X_CODING_3;
if (get_bits(s, &uc, 1) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc == 0) {
curr++;
} else {
curr--;
}
}
s->len[t][i] = curr;
}
}
/*--- Create the Huffman decoding tables ---*/
for (t = 0; t < nGroups; t++) {
minLen = 32;
maxLen = 0;
for (i = 0; i < alphaSize; i++) {
if (s->len[t][i] > maxLen) {
maxLen = s->len[t][i];
}
if (s->len[t][i] < minLen) {
minLen = s->len[t][i];
}
}
BZ2_hbCreateDecodeTables (
&(s->limit[t][0]),
&(s->base[t][0]),
&(s->perm[t][0]),
&(s->len[t][0]),
minLen, maxLen, alphaSize
);
s->minLens[t] = minLen;
}
/*--- Now the MTF values ---*/
EOB = s->nInUse+1;
nblockMAX = 100000 * s->blockSize100k;
groupNo = -1;
groupPos = 0;
for (i = 0; i <= 255; i++) {
s->unzftab[i] = 0;
}
/*-- MTF init --*/
{
int ii, jj, kk;
kk = MTFA_SIZE-1;
for (ii = 256 / MTFL_SIZE - 1; ii >= 0; ii--) {
for (jj = MTFL_SIZE-1; jj >= 0; jj--) {
s->mtfa[kk] = (unsigned char)(ii * MTFL_SIZE + jj);
kk--;
}
s->mtfbase[ii] = kk + 1;
}
}
/*-- end MTF init --*/
nblock = 0;
if (get_mtf_val_init() == FALSE) {
goto save_state_and_return;
}
case BZ_X_MTF_1:
s->state = BZ_X_MTF_1;
if (get_bits(s, &zvec, zn) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
while (1) {
if (zn > 20 /* the longest code */) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
if (zvec <= gLimit[zn]) {
break;
}
zn++;
case BZ_X_MTF_2:
s->state = BZ_X_MTF_2;
if (get_bits(s, &zj, 1) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
zvec = (zvec << 1) | zj;
}
if (zvec - gBase[zn] < 0 || zvec - gBase[zn] >= BZ_MAX_ALPHA_SIZE) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
nextSym = gPerm[zvec - gBase[zn]];
while (1) {
if (nextSym == EOB) {
break;
}
if (nextSym == BZ_RUNA || nextSym == BZ_RUNB) {
es = -1;
N = 1;
do {
if (nextSym == BZ_RUNA) {
es = es + (0+1) * N;
} else {
if (nextSym == BZ_RUNB) {
es = es + (1+1) * N;
}
}
N = N * 2;
if (get_mtf_val_init() == FALSE) {
goto save_state_and_return;
}
case BZ_X_MTF_3:
s->state = BZ_X_MTF_3;
if (get_bits(s, &zvec, zn) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
while (1) {
if (zn > 20 /* the longest code */) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
if (zvec <= gLimit[zn]) {
break;
}
zn++;
case BZ_X_MTF_4:
s->state = BZ_X_MTF_4;
if (get_bits(s, &zj, 1) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
zvec = (zvec << 1) | zj;
}
if (zvec - gBase[zn] < 0 || zvec - gBase[zn] >= BZ_MAX_ALPHA_SIZE) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
nextSym = gPerm[zvec - gBase[zn]];
}
while (nextSym == BZ_RUNA || nextSym == BZ_RUNB);
es++;
uc = s->seqToUnseq[ s->mtfa[s->mtfbase[0]] ];
s->unzftab[uc] += es;
if (s->smallDecompress) {
while (es > 0) {
if (nblock >= nblockMAX) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
s->ll16[nblock] = (unsigned short)uc;
nblock++;
es--;
}
} else {
while (es > 0) {
if (nblock >= nblockMAX) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
s->tt[nblock] = (unsigned int)uc;
nblock++;
es--;
}
}
continue;
} else {
if (nblock >= nblockMAX) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
/*-- uc = MTF ( nextSym-1 ) --*/
{
int ii, jj, kk, pp, lno, off;
unsigned int nn;
nn = (unsigned int)(nextSym - 1);
if (nn < MTFL_SIZE) {
/* avoid general-case expense */
pp = s->mtfbase[0];
uc = s->mtfa[pp+nn];
while (nn > 3) {
int z = pp+nn;
s->mtfa[(z) ] = s->mtfa[(z)-1];
s->mtfa[(z)-1] = s->mtfa[(z)-2];
s->mtfa[(z)-2] = s->mtfa[(z)-3];
s->mtfa[(z)-3] = s->mtfa[(z)-4];
nn -= 4;
}
while (nn > 0) {
s->mtfa[(pp+nn)] = s->mtfa[(pp+nn)-1]; nn--;
}
s->mtfa[pp] = uc;
} else {
/* general case */
lno = nn / MTFL_SIZE;
off = nn % MTFL_SIZE;
pp = s->mtfbase[lno] + off;
uc = s->mtfa[pp];
while (pp > s->mtfbase[lno]) {
s->mtfa[pp] = s->mtfa[pp-1];
pp--;
}
s->mtfbase[lno]++;
while (lno > 0) {
s->mtfbase[lno]--;
s->mtfa[s->mtfbase[lno]] = s->mtfa[s->mtfbase[lno-1] + MTFL_SIZE - 1];
lno--;
}
s->mtfbase[0]--;
s->mtfa[s->mtfbase[0]] = uc;
if (s->mtfbase[0] == 0) {
kk = MTFA_SIZE-1;
for (ii = 256 / MTFL_SIZE-1; ii >= 0; ii--) {
for (jj = MTFL_SIZE-1; jj >= 0; jj--) {
s->mtfa[kk] = s->mtfa[s->mtfbase[ii] + jj];
kk--;
}
s->mtfbase[ii] = kk + 1;
}
}
}
}
/*-- end uc = MTF ( nextSym-1 ) --*/
s->unzftab[s->seqToUnseq[uc]]++;
if (s->smallDecompress) {
s->ll16[nblock] = (unsigned short)(s->seqToUnseq[uc]);
} else {
s->tt[nblock] = (unsigned int)(s->seqToUnseq[uc]);
}
nblock++;
if (get_mtf_val_init() == FALSE) {
goto save_state_and_return;
}
case BZ_X_MTF_5:
s->state = BZ_X_MTF_5;
if (get_bits(s, &zvec, zn) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
while (1) {
if (zn > 20 /* the longest code */) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
if (zvec <= gLimit[zn]) {
break;
}
zn++;
case BZ_X_MTF_6:
s->state = BZ_X_MTF_6;
if (get_bits(s, &zj, 1) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
zvec = (zvec << 1) | zj;
}
if (zvec - gBase[zn] < 0 || zvec - gBase[zn] >= BZ_MAX_ALPHA_SIZE) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
nextSym = gPerm[zvec - gBase[zn]];
continue;
}
}
/* Now we know what nblock is, we can do a better sanity
check on s->origPtr.
*/
if (s->origPtr < 0 || s->origPtr >= nblock) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
s->state_out_len = 0;
s->state_out_ch = 0;
s->calculatedBlockCRC = 0xffffffffL;
s->state = BZ_X_OUTPUT;
if (s->verbosity >= 2) {
error_msg("rt+rld");
}
/*-- Set up cftab to facilitate generation of T^(-1) --*/
s->cftab[0] = 0;
for (i = 1; i <= 256; i++) {
s->cftab[i] = s->unzftab[i-1];
}
for (i = 1; i <= 256; i++) {
s->cftab[i] += s->cftab[i-1];
}
if (s->smallDecompress) {
/*-- Make a copy of cftab, used in generation of T --*/
for (i = 0; i <= 256; i++) {
s->cftabCopy[i] = s->cftab[i];
}
/*-- compute the T vector --*/
for (i = 0; i < nblock; i++) {
uc = (unsigned char)(s->ll16[i]);
s->ll16[i] = (unsigned short)(s->cftabCopy[uc] & 0x0000ffff);
if (((i) & 0x1) == 0) {
s->ll4[(i) >> 1] = (s->ll4[(i) >> 1] & 0xf0) | (s->cftabCopy[uc] >> 16);
} else {
s->ll4[(i) >> 1] = (s->ll4[(i) >> 1] & 0x0f) | ((s->cftabCopy[uc] >> 16) << 4);
}
s->cftabCopy[uc]++;
}
/*-- Compute T^(-1) by pointer reversal on T --*/
i = s->origPtr;
j = (((unsigned int)s->ll16[i]) |
(((((unsigned int)(s->ll4[(i) >> 1])) >>
(((i) << 2) & 0x4)) & 0xF) << 16));
do {
const int tmp = (((unsigned int)s->ll16[j]) |
(((((unsigned int)(s->ll4[(j) >> 1])) >>
(((j) << 2) & 0x4)) & 0xF) << 16));
s->ll16[j] = (unsigned short)(i & 0x0000ffff);
if (((j) & 0x1) == 0) {
s->ll4[(j) >> 1] = (s->ll4[(j) >> 1] & 0xf0) | (i >> 16);
} else {
s->ll4[(j) >> 1] = (s->ll4[(j) >> 1] & 0x0f) | ((i >> 16) << 4);
}
i = j;
j = tmp;
}
while (i != s->origPtr);
s->tPos = s->origPtr;
s->nblock_used = 0;
if (s->blockRandomised) {
s->rNToGo = 0;
s->rTPos = 0;
s->k0 = bz_get_small(s);
s->nblock_used++;
bz_rand_udp_mask(s);
s->k0 ^= ((s->rNToGo == 1) ? 1 : 0);
} else {
s->k0 = bz_get_small(s);
s->nblock_used++;
}
} else {
/*-- compute the T^(-1) vector --*/
for (i = 0; i < nblock; i++) {
uc = (unsigned char)(s->tt[i] & 0xff);
s->tt[s->cftab[uc]] |= (i << 8);
s->cftab[uc]++;
}
s->tPos = s->tt[s->origPtr] >> 8;
s->nblock_used = 0;
if (s->blockRandomised) {
s->rNToGo = 0;
s->rTPos = 0;
s->k0 = bz_get_fast(s);
s->nblock_used++;
bz_rand_udp_mask(s);
s->k0 ^= ((s->rNToGo == 1) ? 1 : 0);
} else {
s->k0 = bz_get_fast(s);
s->nblock_used++;
}
}
retVal = BZ_OK;
goto save_state_and_return;
endhdr_2:
case BZ_X_ENDHDR_2:
s->state = BZ_X_ENDHDR_2;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 0x72) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_ENDHDR_3:
s->state = BZ_X_ENDHDR_3;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 0x45) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_ENDHDR_4:
s->state = BZ_X_ENDHDR_4;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 0x38) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_ENDHDR_5:
s->state = BZ_X_ENDHDR_5;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 0x50) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_ENDHDR_6:
s->state = BZ_X_ENDHDR_6;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 0x90) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
s->storedCombinedCRC = 0;
case BZ_X_CCRC_1:
s->state = BZ_X_CCRC_1;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((unsigned int)uc);
case BZ_X_CCRC_2:
s->state = BZ_X_CCRC_2;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((unsigned int)uc);
case BZ_X_CCRC_3:
s->state = BZ_X_CCRC_3;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((unsigned int)uc);
case BZ_X_CCRC_4:
s->state = BZ_X_CCRC_4;
if (get_bits(s, &uc, 8) == FALSE) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((unsigned int)uc);
s->state = BZ_X_IDLE;
retVal = BZ_STREAM_END;
goto save_state_and_return;
default:
printf("switch val is %d\n", switch_val);
assert_h(4001);
}
assert_h(4002);
save_state_and_return:
s->save_i = i;
s->save_j = j;
s->save_t = t;
s->save_alphaSize = alphaSize;
s->save_nGroups = nGroups;
s->save_nSelectors = nSelectors;
s->save_EOB = EOB;
s->save_groupNo = groupNo;
s->save_groupPos = groupPos;
s->save_nextSym = nextSym;
s->save_nblockMAX = nblockMAX;
s->save_nblock = nblock;
s->save_es = es;
s->save_N = N;
s->save_curr = curr;
s->save_zt = zt;
s->save_zn = zn;
s->save_zvec = zvec;
s->save_zj = zj;
s->save_gSel = gSel;
s->save_gMinlen = gMinlen;
s->save_gLimit = gLimit;
s->save_gBase = gBase;
s->save_gPerm = gPerm;
return retVal;
}
static void *default_bzalloc(void *opaque, int items, int size)
{
void *v = xmalloc(items *size);
return v;
}
static void default_bzfree(void *opaque, void *addr)
{
if (addr != NULL) {
free(addr);
}
}
//int BZ2_bzDecompressInit(bz_stream* strm, int verbosity_level, int small)
int BZ2_bzDecompressInit(bz_stream* strm, int small)
{
DState* s;
if (sizeof(int) != 4) {
return BZ_CONFIG_ERROR;
}
if (sizeof(short) != 2) {
return BZ_CONFIG_ERROR;
}
if (sizeof(char) != 1) {
return BZ_CONFIG_ERROR;
}
if (strm == NULL) {
return BZ_PARAM_ERROR;
}
if (small != 0 && small != 1) {
return BZ_PARAM_ERROR;
}
// if (verbosity_level < 0 || verbosity_level > 4) {
// return BZ_PARAM_ERROR;
// }
if (strm->bzalloc == NULL) {
strm->bzalloc = default_bzalloc;
}
if (strm->bzfree == NULL) {
strm->bzfree = default_bzfree;
}
s = (strm->bzalloc)(strm->opaque, sizeof(DState), 1);
if (s == NULL) {
return BZ_MEM_ERROR;
}
s->strm = strm;
strm->state = s;
s->state = BZ_X_MAGIC_1;
s->bsLive = 0;
s->bsBuff = 0;
s->calculatedCombinedCRC = 0;
strm->total_in_lo32 = 0;
strm->total_in_hi32 = 0;
strm->total_out_lo32 = 0;
strm->total_out_hi32 = 0;
s->smallDecompress = (unsigned char)small;
s->ll4 = NULL;
s->ll16 = NULL;
s->tt = NULL;
s->currBlockNo = 0;
// s->verbosity = verbosity_level;
return BZ_OK;
}
void bz_seterr(int eee, int *bzerror, bzFile **bzf)
{
if (bzerror != NULL) {
*bzerror = eee;
}
if (*bzf != NULL) {
(*bzf)->lastErr = eee;
}
}
void BZ2_bzReadClose(int *bzerror, void *b)
{
bzFile* bzf = (bzFile*)b;
bz_seterr(BZ_OK, bzerror, &bzf);
if (bzf == NULL) {
bz_seterr(BZ_OK, bzerror, &bzf);
return;
}
if (bzf->writing) {
bz_seterr(BZ_SEQUENCE_ERROR, bzerror, &bzf);
return;
}
if (bzf->initialisedOk) {
bz_stream *strm = &(bzf->strm);
DState *s;
if (strm == NULL) {
return;
}
s = strm->state;
if ((s == NULL) || (s->strm != strm)) {
return;
}
if (s->tt != NULL) {
(strm->bzfree)(strm->opaque,(s->tt));
}
if (s->ll16 != NULL) {
(strm->bzfree)(strm->opaque,(s->ll16));
}
if (s->ll4 != NULL) {
(strm->bzfree)(strm->opaque,(s->ll4));
}
(strm->bzfree)(strm->opaque,(strm->state));
strm->state = NULL;
return;
}
free(bzf);
}
static void unRLE_obuf_to_output_FAST(DState *s)
{
unsigned char k1;
if (s->blockRandomised) {
while (1) {
/* try to finish existing run */
while (1) {
if (s->strm->avail_out == 0) {
return;
}
if (s->state_out_len == 0) {
break;
}
*((unsigned char *)(s->strm->next_out)) = s->state_out_ch;
s->calculatedBlockCRC = (s->calculatedBlockCRC << 8) ^
BZ2_crc32Table[(s->calculatedBlockCRC >> 24) ^
((unsigned char)s->state_out_ch)];
s->state_out_len--;
s->strm->next_out++;
s->strm->avail_out--;
s->strm->total_out_lo32++;
if (s->strm->total_out_lo32 == 0) {
s->strm->total_out_hi32++;
}
}
/* can a new run be started? */
if (s->nblock_used == s->save_nblock+1) {
return;
}
s->state_out_len = 1;
s->state_out_ch = s->k0;
k1 = bz_get_fast(s);
bz_rand_udp_mask(s);
k1 ^= ((s->rNToGo == 1) ? 1 : 0);
s->nblock_used++;
if (s->nblock_used == s->save_nblock+1) {
continue;
}
if (k1 != s->k0) {
s->k0 = k1;
continue;
}
s->state_out_len = 2;
k1 = bz_get_fast(s);
bz_rand_udp_mask(s);
k1 ^= ((s->rNToGo == 1) ? 1 : 0);
s->nblock_used++;
if (s->nblock_used == s->save_nblock+1) {
continue;
}
if (k1 != s->k0) {
s->k0 = k1;
continue;
}
s->state_out_len = 3;
k1 = bz_get_fast(s);
bz_rand_udp_mask(s);
k1 ^= ((s->rNToGo == 1) ? 1 : 0);
s->nblock_used++;
if (s->nblock_used == s->save_nblock+1) {
continue;
}
if (k1 != s->k0) {
s->k0 = k1;
continue;
}
k1 = bz_get_fast(s);
bz_rand_udp_mask(s);
k1 ^= ((s->rNToGo == 1) ? 1 : 0);
s->nblock_used++;
s->state_out_len = ((int)k1) + 4;
s->k0 = bz_get_fast(s);
bz_rand_udp_mask(s);
s->k0 ^= ((s->rNToGo == 1) ? 1 : 0);
s->nblock_used++;
}
} else {
/* restore */
unsigned int c_calculatedBlockCRC = s->calculatedBlockCRC;
unsigned char c_state_out_ch = s->state_out_ch;
int c_state_out_len = s->state_out_len;
int c_nblock_used = s->nblock_used;
int c_k0 = s->k0;
unsigned int *c_tt = s->tt;
unsigned int c_tPos = s->tPos;
char *cs_next_out = s->strm->next_out;
unsigned int cs_avail_out = s->strm->avail_out;
/* end restore */
unsigned int avail_out_INIT = cs_avail_out;
int s_save_nblockPP = s->save_nblock+1;
unsigned int total_out_lo32_old;
while (1) {
/* try to finish existing run */
if (c_state_out_len > 0) {
while (TRUE) {
if (cs_avail_out == 0) {
goto return_notr;
}
if (c_state_out_len == 1) {
break;
}
*((unsigned char *)(cs_next_out)) = c_state_out_ch;
c_calculatedBlockCRC = (c_calculatedBlockCRC << 8) ^
BZ2_crc32Table[(c_calculatedBlockCRC >> 24) ^
((unsigned char)c_state_out_ch)];
c_state_out_len--;
cs_next_out++;
cs_avail_out--;
}
s_state_out_len_eq_one:
{
if (cs_avail_out == 0) {
c_state_out_len = 1;
goto return_notr;
}
*((unsigned char *)(cs_next_out)) = c_state_out_ch;
c_calculatedBlockCRC = (c_calculatedBlockCRC << 8) ^
BZ2_crc32Table[(c_calculatedBlockCRC >> 24) ^
((unsigned char)c_state_out_ch)];
cs_next_out++;
cs_avail_out--;
}
}
/* can a new run be started? */
if (c_nblock_used == s_save_nblockPP) {
c_state_out_len = 0; goto return_notr;
}
c_state_out_ch = c_k0;
c_tPos = c_tt[c_tPos];
k1 = (unsigned char)(c_tPos & 0xff);
c_tPos >>= 8;
c_nblock_used++;
if (k1 != c_k0) {
c_k0 = k1;
goto s_state_out_len_eq_one;
}
if (c_nblock_used == s_save_nblockPP) {
goto s_state_out_len_eq_one;
}
c_state_out_len = 2;
c_tPos = c_tt[c_tPos];
k1 = (unsigned char)(c_tPos & 0xff);
c_tPos >>= 8;
c_nblock_used++;
if (c_nblock_used == s_save_nblockPP) {
continue;
}
if (k1 != c_k0) {
c_k0 = k1;
continue;
}
c_state_out_len = 3;
c_tPos = c_tt[c_tPos];
k1 = (unsigned char)(c_tPos & 0xff);
c_tPos >>= 8;
c_nblock_used++;
if (c_nblock_used == s_save_nblockPP) {
continue;
}
if (k1 != c_k0) {
c_k0 = k1;
continue;
}
c_tPos = c_tt[c_tPos];
k1 = (unsigned char)(c_tPos & 0xff);
c_tPos >>= 8;
c_nblock_used++;
c_state_out_len = ((int)k1) + 4;
c_tPos = c_tt[c_tPos];
c_k0 = (unsigned char)(c_tPos & 0xff);
c_tPos >>= 8;
c_nblock_used++;
}
return_notr:
total_out_lo32_old = s->strm->total_out_lo32;
s->strm->total_out_lo32 += (avail_out_INIT - cs_avail_out);
if (s->strm->total_out_lo32 < total_out_lo32_old) {
s->strm->total_out_hi32++;
}
/* save */
s->calculatedBlockCRC = c_calculatedBlockCRC;
s->state_out_ch = c_state_out_ch;
s->state_out_len = c_state_out_len;
s->nblock_used = c_nblock_used;
s->k0 = c_k0;
s->tt = c_tt;
s->tPos = c_tPos;
s->strm->next_out = cs_next_out;
s->strm->avail_out = cs_avail_out;
/* end save */
}
}
static void unRLE_obuf_to_output_SMALL(DState *s)
{
unsigned char k1;
if (s->blockRandomised) {
while (1) {
/* try to finish existing run */
while (1) {
if (s->strm->avail_out == 0) {
return;
}
if (s->state_out_len == 0) {
break;
}
*((unsigned char *)(s->strm->next_out)) = s->state_out_ch;
s->calculatedBlockCRC = (s->calculatedBlockCRC << 8) ^
BZ2_crc32Table[(s->calculatedBlockCRC >> 24) ^
((unsigned char)s->state_out_ch)];
s->state_out_len--;
s->strm->next_out++;
s->strm->avail_out--;
s->strm->total_out_lo32++;
if (s->strm->total_out_lo32 == 0) {
s->strm->total_out_hi32++;
}
}
/* can a new run be started? */
if (s->nblock_used == s->save_nblock+1) {
return;
}
s->state_out_len = 1;
s->state_out_ch = s->k0;
k1 = bz_get_small(s);
bz_rand_udp_mask(s);
k1 ^= ((s->rNToGo == 1) ? 1 : 0);
s->nblock_used++;
if (s->nblock_used == s->save_nblock+1) {
continue;
}
if (k1 != s->k0) {
s->k0 = k1;
continue;
}
s->state_out_len = 2;
k1 = bz_get_small(s);
bz_rand_udp_mask(s);
k1 ^= ((s->rNToGo == 1) ? 1 : 0);
s->nblock_used++;
if (s->nblock_used == s->save_nblock+1) {
continue;
}
if (k1 != s->k0) {
s->k0 = k1;
continue;
}
s->state_out_len = 3;
k1 = bz_get_small(s);
bz_rand_udp_mask(s);
k1 ^= ((s->rNToGo == 1) ? 1 : 0);
s->nblock_used++;
if (s->nblock_used == s->save_nblock+1) {
continue;
}
if (k1 != s->k0) {
s->k0 = k1;
continue;
}
k1 = bz_get_small(s);
bz_rand_udp_mask(s);
k1 ^= ((s->rNToGo == 1) ? 1 : 0);
s->nblock_used++;
s->state_out_len = ((int)k1) + 4;
s->k0 = bz_get_small(s);
bz_rand_udp_mask(s);
s->k0 ^= ((s->rNToGo == 1) ? 1 : 0);
s->nblock_used++;
}
} else {
while (1) {
/* try to finish existing run */
while (1) {
if (s->strm->avail_out == 0) {
return;
}
if (s->state_out_len == 0) {
break;
}
*((unsigned char *)(s->strm->next_out)) = s->state_out_ch;
s->calculatedBlockCRC = (s->calculatedBlockCRC << 8) ^
BZ2_crc32Table[(s->calculatedBlockCRC >> 24) ^
((unsigned char)s->state_out_ch)];
s->state_out_len--;
s->strm->next_out++;
s->strm->avail_out--;
s->strm->total_out_lo32++;
if (s->strm->total_out_lo32 == 0) {
s->strm->total_out_hi32++;
}
}
/* can a new run be started? */
if (s->nblock_used == s->save_nblock+1) {
return;
}
s->state_out_len = 1;
s->state_out_ch = s->k0;
k1 = bz_get_small(s);
s->nblock_used++;
if (s->nblock_used == s->save_nblock+1) {
continue;
}
if (k1 != s->k0) {
s->k0 = k1;
continue;
}
s->state_out_len = 2;
k1 = bz_get_small(s);
s->nblock_used++;
if (s->nblock_used == s->save_nblock+1) {
continue;
}
if (k1 != s->k0) {
s->k0 = k1;
continue;
}
s->state_out_len = 3;
k1 = bz_get_small(s);
s->nblock_used++;
if (s->nblock_used == s->save_nblock+1) {
continue;
}
if (k1 != s->k0) {
s->k0 = k1;
continue;
}
k1 = bz_get_small(s);
s->nblock_used++;
s->state_out_len = ((int)k1) + 4;
s->k0 = bz_get_small(s);
s->nblock_used++;
}
}
}
int BZ2_bzDecompress(bz_stream *strm)
{
DState* s;
if (strm == NULL) {
return BZ_PARAM_ERROR;
}
s = strm->state;
if (s == NULL) {
return BZ_PARAM_ERROR;
}
if (s->strm != strm) {
return BZ_PARAM_ERROR;
}
while (1) {
if (s->state == BZ_X_IDLE) {
return BZ_SEQUENCE_ERROR;
}
if (s->state == BZ_X_OUTPUT) {
if (s->smallDecompress) {
unRLE_obuf_to_output_SMALL(s);
} else {
unRLE_obuf_to_output_FAST(s);
}
if (s->nblock_used == s->save_nblock+1 && s->state_out_len == 0) {
s->calculatedBlockCRC = ~(s->calculatedBlockCRC);
if (s->verbosity >= 3) {
error_msg("{0x%x, 0x%x}", s->storedBlockCRC, s->calculatedBlockCRC);
}
if (s->verbosity >= 2) {
error_msg("]");
}
if (s->calculatedBlockCRC != s->storedBlockCRC) {
return BZ_DATA_ERROR;
}
s->calculatedCombinedCRC = (s->calculatedCombinedCRC << 1) | (s->calculatedCombinedCRC >> 31);
s->calculatedCombinedCRC ^= s->calculatedBlockCRC;
s->state = BZ_X_BLKHDR_1;
} else {
return BZ_OK;
}
}
if (s->state >= BZ_X_MAGIC_1) {
int r = BZ2_decompress(s);
if (r == BZ_STREAM_END) {
if (s->verbosity >= 3) {
error_msg("\n combined CRCs: stored = 0x%x, computed = 0x%x",
s->storedCombinedCRC, s->calculatedCombinedCRC );
}
if (s->calculatedCombinedCRC != s->storedCombinedCRC) {
return BZ_DATA_ERROR;
}
return r;
}
if (s->state != BZ_X_OUTPUT) {
return r;
}
}
}
assert_h(6001);
return(0); /*NOTREACHED*/
}
int BZ2_bzRead(int *bzerror, void *b, void *buf, int len)
{
int n, ret;
bzFile *bzf = (bzFile*)b;
bz_seterr(BZ_OK, bzerror, &bzf);
if (bzf == NULL || buf == NULL || len < 0) {
bz_seterr(BZ_PARAM_ERROR, bzerror, &bzf);
return 0;
}
if (bzf->writing) {
bz_seterr(BZ_SEQUENCE_ERROR, bzerror, &bzf);
return 0;
}
if (len == 0) {
bz_seterr(BZ_OK, bzerror, &bzf);
return 0;
}
bzf->strm.avail_out = len;
bzf->strm.next_out = buf;
while (1) {
if (ferror(bzf->handle)) {
bz_seterr(BZ_IO_ERROR, bzerror, &bzf);
return 0;
}
if ((bzf->strm.avail_in == 0) && !myfeof(bzf->handle)) {
n = fread(bzf->buf, sizeof(unsigned char), BZ_MAX_UNUSED, bzf->handle);
if (ferror(bzf->handle)) {
bz_seterr(BZ_IO_ERROR, bzerror, &bzf);
return 0;
}
bzf->bufN = n;
bzf->strm.avail_in = bzf->bufN;
bzf->strm.next_in = bzf->buf;
}
ret = BZ2_bzDecompress(&(bzf->strm));
if ((ret != BZ_OK) && (ret != BZ_STREAM_END)) {
bz_seterr(ret, bzerror, &bzf);
return 0;
}
if ((ret == BZ_OK) && myfeof(bzf->handle) &&
(bzf->strm.avail_in == 0) && (bzf->strm.avail_out > 0)) {
bz_seterr(BZ_UNEXPECTED_EOF, bzerror, &bzf);
return(0);
}
if (ret == BZ_STREAM_END) {
bz_seterr(BZ_STREAM_END, bzerror, &bzf);
return(len - bzf->strm.avail_out);
}
if (bzf->strm.avail_out == 0) {
bz_seterr(BZ_OK, bzerror, &bzf);
return(len);
}
}
return(0); /*not reached*/
}
void BZ2_bzReadGetUnused(int *bzerror, void *b, void **unused, int *nUnused)
{
bzFile *bzf = (bzFile*)b;
if (bzf == NULL) {
bz_seterr(BZ_PARAM_ERROR, bzerror, &bzf);
return;
}
if (bzf->lastErr != BZ_STREAM_END) {
bz_seterr(BZ_SEQUENCE_ERROR, bzerror, &bzf);
return;
}
if (unused == NULL || nUnused == NULL) {
bz_seterr(BZ_PARAM_ERROR, bzerror, &bzf);
return;
}
bz_seterr(BZ_OK, bzerror, &bzf);
*nUnused = bzf->strm.avail_in;
*unused = bzf->strm.next_in;
}
void *BZ2_bzReadOpen(int *bzerror, FILE *f, int small, void *unused, int nUnused)
{
bzFile *bzf = NULL;
int ret;
bz_seterr(BZ_OK, bzerror, &bzf);
if (f == NULL || (small != 0 && small != 1) ||
(unused != NULL && (nUnused < 0 || nUnused > BZ_MAX_UNUSED)) ||
// (verbosity_level < 0 || verbosity_level > 4) ||
(unused == NULL && nUnused != 0)) {
bz_seterr(BZ_PARAM_ERROR, bzerror, &bzf);
return NULL;
}
if (ferror(f)) {
bz_seterr(BZ_IO_ERROR, bzerror, &bzf);
return NULL;
}
bzf = xmalloc(sizeof(bzFile));
if (bzf == NULL) {
bz_seterr(BZ_MEM_ERROR, bzerror, &bzf);
return NULL;
}
bz_seterr(BZ_OK, bzerror, &bzf);
bzf->initialisedOk = FALSE;
bzf->handle = f;
bzf->bufN = 0;
bzf->writing = FALSE;
bzf->strm.bzalloc = NULL;
bzf->strm.bzfree = NULL;
bzf->strm.opaque = NULL;
while (nUnused > 0) {
bzf->buf[bzf->bufN] = *((unsigned char *)(unused)); bzf->bufN++;
unused = ((void *)( 1 + ((unsigned char *)(unused)) ));
nUnused--;
}
ret = BZ2_bzDecompressInit(&(bzf->strm), small);
if (ret != BZ_OK) {
bz_seterr(ret, bzerror, &bzf);
free(bzf);
return NULL;
}
bzf->strm.avail_in = bzf->bufN;
bzf->strm.next_in = bzf->buf;
bzf->initialisedOk = TRUE;
return bzf;
}
static unsigned char uncompressStream(FILE *zStream, FILE *stream)
{
unsigned char unused[BZ_MAX_UNUSED];
unsigned char *unusedTmp;
unsigned char obuf[5000];
void *bzf = NULL;
int bzerr_dummy;
int bzerr;
int nread;
int nUnused;
int streamNo;
int ret;
int i;
nUnused = 0;
streamNo = 0;
if (ferror(stream)) {
goto errhandler_io;
}
if (ferror(zStream)) {
goto errhandler_io;
}
while(1) {
bzf = BZ2_bzReadOpen(&bzerr, zStream, (int)smallMode, unused, nUnused);
if (bzf == NULL || bzerr != BZ_OK) {
goto errhandler;
}
streamNo++;
while (bzerr == BZ_OK) {
nread = BZ2_bzRead(&bzerr, bzf, obuf, 5000);
if (bzerr == BZ_DATA_ERROR_MAGIC) {
goto errhandler;
}
if ((bzerr == BZ_OK || bzerr == BZ_STREAM_END) && nread > 0) {
fwrite(obuf, sizeof(unsigned char), nread, stream);
}
if (ferror(stream)) {
goto errhandler_io;
}
}
if (bzerr != BZ_STREAM_END) {
goto errhandler;
}
BZ2_bzReadGetUnused(&bzerr, bzf, (void **)(&unusedTmp), &nUnused);
if (bzerr != BZ_OK) {
panic("decompress:bzReadGetUnused");
}
for (i = 0; i < nUnused; i++) {
unused[i] = unusedTmp[i];
}
BZ2_bzReadClose(&bzerr, bzf);
if (bzerr != BZ_OK) {
panic("decompress:bzReadGetUnused");
}
if ((nUnused == 0) && myfeof(zStream)) {
break;
}
}
if (ferror(zStream)) {
goto errhandler_io;
}
ret = fclose(zStream);
if (ret == EOF) {
goto errhandler_io;
}
if (ferror(stream)) {
goto errhandler_io;
}
ret = fflush(stream);
if (ret != 0) {
goto errhandler_io;
}
if (stream != stdout) {
ret = fclose(stream);
if (ret == EOF) {
goto errhandler_io;
}
}
// if (verbosity_level >= 2) {
// fprintf(stderr,"\n ");
// }
return TRUE;
errhandler:
BZ2_bzReadClose ( &bzerr_dummy, bzf );
switch (bzerr) {
case BZ_CONFIG_ERROR:
error_msg("bzip2: I'm not configured correctly for this platform!\n"
"\tI require Int32, Int16 and Char to have sizes\n"
"\tof 4, 2 and 1 bytes to run properly, and they don't.\n"
"\tProbably you can fix this by defining them correctly,\n"
"\tand recompiling. Bye!\n" );
exit(3);
case BZ_IO_ERROR:
errhandler_io:
error_msg("\n%s: I/O or other error, bailing out. "
"Possible reason follows.\n", progName);
perror(progName);
cleanUpAndFail(1);
case BZ_DATA_ERROR:
error_msg("\n%s: Data integrity error when decompressing.\n", progName);
cleanUpAndFail(2);
case BZ_MEM_ERROR:
error_msg("\n%s: couldn't allocate enough memory\n", progName);
cleanUpAndFail(1);
case BZ_UNEXPECTED_EOF:
error_msg("\n%s: Compressed file ends unexpectedly;\n\t"
"perhaps it is corrupted? *Possible* reason follows.\n", progName);
perror(progName);
cleanUpAndFail(2);
case BZ_DATA_ERROR_MAGIC:
if (zStream != stdin) {
fclose(zStream);
}
if (stream != stdout) {
fclose(stream);
}
if (streamNo == 1) {
return FALSE;
} else {
if (noisy) {
error_msg("\n%s: %s: trailing garbage after EOF ignored\n", progName, inName );
}
return TRUE;
}
default:
panic ( "decompress:unexpected error" );
}
panic("decompress:end");
return(TRUE); /*notreached*/
}
int bunzip2_main(int argc, char **argv)
{
FILE *src_stream;
FILE *dst_stream;
char *save_name;
char *save_name_ptr;
if (argc != 2) {
show_usage();
}
src_stream = xfopen(argv[1], "r");
save_name = strdup(argv[1]);
save_name_ptr = strrchr(save_name, '.');
if (save_name_ptr == NULL) {
return(FALSE);
}
if (strcmp(save_name_ptr, ".bz2") != 0) {
error_msg("Invalid extension, expected .bz2");
}
*save_name_ptr = '\0';
dst_stream = xfopen(save_name, "w");
uncompressStream(src_stream, dst_stream);
return(TRUE);
}