sha512: inline rotr64

function                                             old     new   delta
sha1_process_block64                                 461     446     -15

Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
This commit is contained in:
Denys Vlasenko 2010-10-16 23:31:15 +02:00
parent 273abcbf66
commit 4bc3b85894

View File

@ -30,11 +30,29 @@
#include "libbb.h"
#define rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
#define rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n))))
/* for sha512: */
#define rotr64(x,n) (((x) >> (n)) | ((x) << (64 - (n))))
/* gcc 4.2.1 optimizes rotr64 better with inline than with macro
* (for rotX32, there is no difference). Why? My guess is that
* macro requires clever common subexpression elimination heuristics
* in gcc, while inline basically forces it to happen.
*/
//#define rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
static ALWAYS_INLINE uint32_t rotl32(uint32_t x, unsigned n)
{
return (x << n) | (x >> (32 - n));
}
//#define rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n))))
static ALWAYS_INLINE uint32_t rotr32(uint32_t x, unsigned n)
{
return (x >> n) | (x << (32 - n));
}
/* rotr64 in needed for sha512 only: */
//#define rotr64(x,n) (((x) >> (n)) | ((x) << (64 - (n))))
static ALWAYS_INLINE uint64_t rotr64(uint64_t x, unsigned n)
{
return (x >> n) | (x << (64 - n));
}
#if BB_LITTLE_ENDIAN
/* ALWAYS_INLINE below would hurt code size, using plain inline: */
static inline uint64_t hton64(uint64_t v)
{
return (((uint64_t)htonl(v)) << 32) | htonl(v >> 32);
@ -44,14 +62,6 @@ static inline uint64_t hton64(uint64_t v)
#endif
#define ntoh64(v) hton64(v)
/* To check alignment gcc has an appropriate operator. Other
compilers don't. */
#if defined(__GNUC__) && __GNUC__ >= 2
# define UNALIGNED_P(p,type) (((uintptr_t) p) % __alignof__(type) != 0)
#else
# define UNALIGNED_P(p,type) (((uintptr_t) p) % sizeof(type) != 0)
#endif
/* Some arch headers have conflicting defines */
#undef ch
@ -65,11 +75,8 @@ static void FAST_FUNC sha1_process_block64(sha1_ctx_t *ctx)
uint32_t W[80], a, b, c, d, e;
const uint32_t *words = (uint32_t*) ctx->wbuffer;
for (t = 0; t < 16; ++t) {
W[t] = ntohl(*words);
words++;
}
for (t = 0; t < 16; ++t)
W[t] = ntohl(words[t]);
for (/*t = 16*/; t < 80; ++t) {
uint32_t T = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16];
W[t] = rotl32(T, 1);
@ -190,11 +197,8 @@ static void FAST_FUNC sha256_process_block64(sha256_ctx_t *ctx)
#define R1(x) (rotr32(x, 17) ^ rotr32(x, 19) ^ (x >> 10))
/* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */
for (t = 0; t < 16; ++t) {
W[t] = ntohl(*words);
words++;
}
for (t = 0; t < 16; ++t)
W[t] = ntohl(words[t]);
for (/*t = 16*/; t < 64; ++t)
W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
@ -269,10 +273,8 @@ static void FAST_FUNC sha512_process_block128(sha512_ctx_t *ctx)
#define R1(x) (rotr64(x, 19) ^ rotr64(x, 61) ^ (x >> 6))
/* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */
for (t = 0; t < 16; ++t) {
W[t] = ntoh64(*words);
words++;
}
for (t = 0; t < 16; ++t)
W[t] = ntoh64(words[t]);
for (/*t = 16*/; t < 80; ++t)
W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
@ -363,18 +365,19 @@ void FAST_FUNC sha512_begin(sha512_ctx_t *ctx)
/* Used also for sha256 */
void FAST_FUNC sha1_hash(sha1_ctx_t *ctx, const void *buffer, size_t len)
{
#if 0
unsigned bufpos = ctx->total64 & 63;
unsigned add = 64 - bufpos;
unsigned remaining;
ctx->total64 += len;
#if 0
remaining = 64 - bufpos;
/* Hash whole blocks */
while (len >= add) {
memcpy(ctx->wbuffer + bufpos, buffer, add);
buffer = (const char *)buffer + add;
len -= add;
add = 64;
while (len >= remaining) {
memcpy(ctx->wbuffer + bufpos, buffer, remaining);
buffer = (const char *)buffer + remaining;
len -= remaining;
remaining = 64;
bufpos = 0;
ctx->process_block(ctx);
}
@ -383,12 +386,8 @@ void FAST_FUNC sha1_hash(sha1_ctx_t *ctx, const void *buffer, size_t len)
memcpy(ctx->wbuffer + bufpos, buffer, len);
#else
/* Tiny bit smaller code */
unsigned bufpos = ctx->total64 & 63;
ctx->total64 += len;
while (1) {
unsigned remaining = 64 - bufpos;
remaining = 64 - bufpos;
if (remaining > len)
remaining = len;
/* Copy data into aligned buffer */
@ -409,28 +408,8 @@ void FAST_FUNC sha1_hash(sha1_ctx_t *ctx, const void *buffer, size_t len)
void FAST_FUNC sha512_hash(sha512_ctx_t *ctx, const void *buffer, size_t len)
{
#if 0
unsigned bufpos = ctx->total64[0] & 127;
unsigned add = 128 - bufpos;
ctx->total64[0] += len;
if (ctx->total64[0] < len)
ctx->total64[1]++;
/* Hash whole blocks */
while (len >= add) {
memcpy(ctx->wbuffer + bufpos, buffer, add);
buffer = (const char *)buffer + add;
len -= add;
add = 128;
bufpos = 0;
sha512_process_block128(ctx);
}
/* Save last, partial blosk */
memcpy(ctx->wbuffer + bufpos, buffer, len);
#else
unsigned bufpos = ctx->total64[0] & 127;
unsigned remaining;
/* First increment the byte count. FIPS 180-2 specifies the possible
length of the file up to 2^128 _bits_.
@ -438,12 +417,27 @@ void FAST_FUNC sha512_hash(sha512_ctx_t *ctx, const void *buffer, size_t len)
ctx->total64[0] += len;
if (ctx->total64[0] < len)
ctx->total64[1]++;
#if 0
remaining = 128 - bufpos;
/* Hash whole blocks */
while (len >= remaining) {
memcpy(ctx->wbuffer + bufpos, buffer, remaining);
buffer = (const char *)buffer + remaining;
len -= remaining;
remaining = 128;
bufpos = 0;
sha512_process_block128(ctx);
}
/* Save last, partial blosk */
memcpy(ctx->wbuffer + bufpos, buffer, len);
#else
while (1) {
unsigned remaining = 128 - bufpos;
remaining = 128 - bufpos;
if (remaining > len)
remaining = len;
/* Copy data into aligned buffer. */
/* Copy data into aligned buffer */
memcpy(ctx->wbuffer + bufpos, buffer, remaining);
len -= remaining;
buffer = (const char *)buffer + remaining;
@ -452,7 +446,7 @@ void FAST_FUNC sha512_hash(sha512_ctx_t *ctx, const void *buffer, size_t len)
bufpos -= 128;
if (bufpos != 0)
break;
/* Buffer is filled up, process it. */
/* Buffer is filled up, process it */
sha512_process_block128(ctx);
/*bufpos = 0; - already is */
}