unxz: new applet, complete with xzcat and xz -d aliases

function                                             old     new   delta
unpack_xz_stream_stdin                                 -    3953   +3953
lzma_main                                              -    2601   +2601
lzma_len                                               -     516    +516
dec_vli                                                -     165    +165
dict_repeat                                            -     103    +103
lzma_reset                                             -      98     +98
fill_temp                                              -      98     +98
crc32_validate                                         -      93     +93
xz_dec_reset                                           -      77     +77
unxz_main                                              -      77     +77
index_update                                           -      47     +47
xz_crc32                                               -      40     +40
packed_usage                                       27044   27060     +16
make_new_name_unxz                                     -      14     +14
applet_names                                        2240    2254     +14
applet_main                                         1312    1324     +12
applet_nameofs                                       656     662      +6
unpack_unxz                                            -       5      +5
send_tree                                            355     360      +5
applet_install_loc                                   164     166      +2
------------------------------------------------------------------------------
(add/remove: 15/0 grow/shrink: 6/0 up/down: 7942/0)          Total: 7942 bytes
   text    data     bss     dec     hex filename
 844032     453    6812  851297   cfd61 busybox_old
 852063     453    6812  859328   d1cc0 busybox_unstripped

Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
This commit is contained in:
Denys Vlasenko 2010-05-30 03:35:18 +02:00
parent e04c867a21
commit 602ce69afb
16 changed files with 3433 additions and 9 deletions

View File

@ -5,6 +5,12 @@
menu "Archival Utilities"
config FEATURE_SEAMLESS_XZ
bool "Make tar, rpm, modprobe etc understand .xz data"
default n
help
Make tar, rpm, modprobe etc understand .xz data.
config FEATURE_SEAMLESS_LZMA
bool "Make tar, rpm, modprobe etc understand .lzma data"
default n
@ -225,7 +231,7 @@ config FEATURE_TAR_CREATE
config FEATURE_TAR_AUTODETECT
bool "Autodetect compressed tarballs"
default n
depends on TAR && (FEATURE_SEAMLESS_Z || FEATURE_SEAMLESS_GZ || FEATURE_SEAMLESS_BZ2 || FEATURE_SEAMLESS_LZMA)
depends on TAR && (FEATURE_SEAMLESS_Z || FEATURE_SEAMLESS_GZ || FEATURE_SEAMLESS_BZ2 || FEATURE_SEAMLESS_LZMA || FEATURE_SEAMLESS_XZ)
help
With this option tar can automatically detect compressed
tarballs. Currently it works only on files (not pipes etc).
@ -335,6 +341,20 @@ config LZMA
Enable this option if you want commands like "lzma -d" to work.
IOW: you'll get lzma applet, but it will always require -d option.
config UNXZ
bool "unxz"
default n
help
unxz is a unlzma successor.
config XZ
bool "Provide xz alias which supports only unpacking"
default n
depends on UNXZ
help
Enable this option if you want commands like "xz -d" to work.
IOW: you'll get xz applet, but it will always require -d option.
config UNZIP
bool "unzip"
default n

View File

@ -8,18 +8,21 @@ libs-y += libunarchive/
lib-y:=
lib-$(CONFIG_AR) += ar.o
lib-$(CONFIG_BUNZIP2) += bbunzip.o
lib-$(CONFIG_BZIP2) += bzip2.o bbunzip.o
lib-$(CONFIG_UNLZMA) += bbunzip.o
lib-$(CONFIG_CPIO) += cpio.o
lib-$(CONFIG_DPKG) += dpkg.o
lib-$(CONFIG_DPKG_DEB) += dpkg_deb.o
lib-$(CONFIG_GUNZIP) += bbunzip.o
lib-$(CONFIG_GZIP) += gzip.o bbunzip.o
lib-$(CONFIG_LZOP) += lzop.o lzo1x_1.o lzo1x_1o.o lzo1x_d.o bbunzip.o
lib-$(CONFIG_LZOP_COMPR_HIGH) += lzo1x_9x.o
lib-$(CONFIG_RPM2CPIO) += rpm2cpio.o
lib-$(CONFIG_RPM) += rpm.o
lib-$(CONFIG_TAR) += tar.o
lib-$(CONFIG_UNCOMPRESS) += bbunzip.o
lib-$(CONFIG_UNZIP) += unzip.o
lib-$(CONFIG_LZOP) += lzop.o lzo1x_1.o lzo1x_1o.o lzo1x_d.o bbunzip.o
lib-$(CONFIG_LZOP_COMPR_HIGH) += lzo1x_9x.o
lib-$(CONFIG_GZIP) += gzip.o bbunzip.o
lib-$(CONFIG_BZIP2) += bzip2.o bbunzip.o
lib-$(CONFIG_UNXZ) += bbunzip.o
lib-$(CONFIG_UNLZMA) += bbunzip.o
lib-$(CONFIG_BUNZIP2) += bbunzip.o
lib-$(CONFIG_GUNZIP) += bbunzip.o
lib-$(CONFIG_UNCOMPRESS) += bbunzip.o

View File

@ -387,3 +387,36 @@ int uncompress_main(int argc UNUSED_PARAM, char **argv)
}
#endif
#if ENABLE_UNXZ
static
char* make_new_name_unxz(char *filename)
{
return make_new_name_generic(filename, "xz");
}
static
IF_DESKTOP(long long) int unpack_unxz(unpack_info_t *info UNUSED_PARAM)
{
return unpack_xz_stream_stdin();
}
int unxz_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
int unxz_main(int argc UNUSED_PARAM, char **argv)
{
int opts = getopt32(argv, "cfvdt");
# if ENABLE_XZ
/* xz without -d or -t? */
if (applet_name[2] == '\0' && !(opts & (OPT_DECOMPRESS|OPT_TEST)))
bb_show_usage();
# endif
/* xzcat? */
if (applet_name[2] == 'c')
option_mask32 |= OPT_STDOUT;
argv += optind;
return bbunpack(argv, make_new_name_unxz, unpack_unxz);
}
#endif

View File

@ -49,6 +49,7 @@ lib-$(CONFIG_FEATURE_SEAMLESS_Z) += open_transformer.o decompress_uncompr
lib-$(CONFIG_FEATURE_SEAMLESS_GZ) += open_transformer.o decompress_unzip.o get_header_tar_gz.o
lib-$(CONFIG_FEATURE_SEAMLESS_BZ2) += open_transformer.o decompress_bunzip2.o get_header_tar_bz2.o
lib-$(CONFIG_FEATURE_SEAMLESS_LZMA) += open_transformer.o decompress_unlzma.o get_header_tar_lzma.o
lib-$(CONFIG_FEATURE_SEAMLESS_XZ) += open_transformer.o decompress_unxz.o
lib-$(CONFIG_FEATURE_COMPRESS_USAGE) += decompress_bunzip2.o
ifneq ($(lib-y),)

View File

@ -0,0 +1,136 @@
XZ Embedded
===========
XZ Embedded is a relatively small, limited implementation of the .xz
file format. Currently only decoding is implemented.
XZ Embedded was written for use in the Linux kernel, but the code can
be easily used in other environments too, including regular userspace
applications.
This README contains information that is useful only when the copy
of XZ Embedded isn't part of the Linux kernel tree. You should also
read linux/Documentation/xz.txt even if you aren't using XZ Embedded
as part of Linux; information in that file is not repeated in this
README.
Compiling the Linux kernel module
The xz_dec module depends on crc32 module, so make sure that you have
it enabled (CONFIG_CRC32).
Building the xz_dec and xz_dec_test modules without support for BCJ
filters:
cd linux/lib/xz
make -C /path/to/kernel/source \
KCPPFLAGS=-I"$(pwd)/../../include" M="$(pwd)" \
CONFIG_XZ_DEC=m CONFIG_XZ_DEC_TEST=m
Building the xz_dec and xz_dec_test modules with support for BCJ
filters:
cd linux/lib/xz
make -C /path/to/kernel/source \
KCPPFLAGS=-I"$(pwd)/../../include" M="$(pwd)" \
CONFIG_XZ_DEC=m CONFIG_XZ_DEC_TEST=m CONFIG_XZ_DEC_BCJ=y \
CONFIG_XZ_DEC_X86=y CONFIG_XZ_DEC_POWERPC=y \
CONFIG_XZ_DEC_IA64=y CONFIG_XZ_DEC_ARM=y \
CONFIG_XZ_DEC_ARMTHUMB=y CONFIG_XZ_DEC_SPARC=y
If you want only one or a few of the BCJ filters, omit the appropriate
variables. CONFIG_XZ_DEC_BCJ=y is always required to build the support
code shared between all BCJ filters.
Most people don't need the xz_dec_test module. You can skip building
it by omitting CONFIG_XZ_DEC_TEST=m from the make command line.
Compiler requirements
XZ Embedded should compile as either GNU-C89 (used in the Linux
kernel) or with any C99 compiler. Getting the code to compile with
non-GNU C89 compiler or a C++ compiler should be quite easy as
long as there is a data type for unsigned 64-bit integer (or the
code is modified not to support large files, which needs some more
care than just using 32-bit integer instead of 64-bit).
If you use GCC, try to use a recent version. For example, on x86,
xz_dec_lzma2.c compiled with GCC 3.3.6 is 15-25 % slower than when
compiled with GCC 4.3.3.
Embedding into userspace applications
To embed the XZ decoder, copy the following files into a single
directory in your source code tree:
linux/include/linux/xz.h
linux/lib/xz/xz_crc32.c
linux/lib/xz/xz_dec_lzma2.c
linux/lib/xz/xz_dec_stream.c
linux/lib/xz/xz_lzma2.h
linux/lib/xz/xz_private.h
linux/lib/xz/xz_stream.h
userspace/xz_config.h
Alternatively, xz.h may be placed into a different directory but then
that directory must be in the compiler include path when compiling
the .c files.
Your code should use only the functions declared in xz.h. The rest of
the .h files are meant only for internal use in XZ Embedded.
You may want to modify xz_config.h to be more suitable for your build
environment. Probably you should at least skim through it even if the
default file works as is.
BCJ filter support
If you want support for one or more BCJ filters, you need to copy also
linux/lib/xz/xz_dec_bcj.c into your application, and use appropriate
#defines in xz_config.h or in compiler flags. You don't need these
#defines in the code that just uses XZ Embedded via xz.h, but having
them always #defined doesn't hurt either.
#define Instruction set BCJ filter endianness
XZ_DEC_X86 x86 or x86-64 Little endian only
XZ_DEC_POWERPC PowerPC Big endian only
XZ_DEC_IA64 Itanium (IA-64) Big or little endian
XZ_DEC_ARM ARM Little endian only
XZ_DEC_ARMTHUMB ARM-Thumb Little endian only
XZ_DEC_SPARC SPARC Big or little endian
While some architectures are (partially) bi-endian, the endianness
setting doesn't change the endianness of the instructions on all
architectures. That's why Itanium and SPARC filters work for both big
and little endian executables (Itanium has little endian instructions
and SPARC has big endian instructions).
There currently is no filter for little endian PowerPC or big endian
ARM or ARM-Thumb. Implementing filters for them can be considered if
there is a need for such filters in real-world applications.
Notes about shared libraries
If you are including XZ Embedded into a shared library, you very
probably should rename the xz_* functions to prevent symbol
conflicts in case your library is linked against some other library
or application that also has XZ Embedded in it (which may even be
a different version of XZ Embedded). TODO: Provide an easy way
to do this.
Please don't create a shared library of XZ Embedded itself unless
it is fine to rebuild everything depending on that shared library
everytime you upgrade to a newer version of XZ Embedded. There are
no API or ABI stability guarantees between different versions of
XZ Embedded.
Specifying the calling convention
XZ_FUNC macro was included to support declaring functions with __init
in Linux. Outside Linux, it can be used to specify the calling
convention on systems that support multiple calling conventions.
For example, on Windows, you may make all functions use the stdcall
calling convention by defining XZ_FUNC=__stdcall when building and
using the functions from XZ Embedded.

View File

@ -0,0 +1,212 @@
/*
* XZ decompressor
*
* Authors: Lasse Collin <lasse.collin@tukaani.org>
* Igor Pavlov <http://7-zip.org/>
*
* This file has been put into the public domain.
* You can do whatever you want with this file.
*/
#ifndef XZ_H
#define XZ_H
#ifdef __KERNEL__
# include <linux/stddef.h>
# include <linux/types.h>
#else
# include <stddef.h>
# include <stdint.h>
#endif
#ifndef XZ_DEBUG_MSG
# define XZ_DEBUG_MSG(...) ((void)0)
#endif
/* In Linux, this is used to make extern functions static when needed. */
#ifndef XZ_EXTERN
# define XZ_EXTERN extern
#endif
/* In Linux, this is used to mark the functions with __init when needed. */
#ifndef XZ_FUNC
# define XZ_FUNC
#endif
/**
* enum xz_ret - Return codes
* @XZ_OK: Everything is OK so far. More input or more output
* space is required to continue.
* @XZ_STREAM_END: Operation finished successfully.
* @XZ_MEMLIMIT_ERROR: Not enough memory was preallocated at decoder
* initialization time.
* @XZ_FORMAT_ERROR: File format was not recognized (wrong magic bytes).
* @XZ_OPTIONS_ERROR: This implementation doesn't support the requested
* compression options. In the decoder this means that
* the header CRC32 matches, but the header itself
* specifies something that we don't support.
* @XZ_DATA_ERROR: Compressed data is corrupt.
* @XZ_BUF_ERROR: Cannot make any progress. Details are slightly
* different between multi-call and single-call mode;
* more information below.
*
* In multi-call mode, XZ_BUF_ERROR is returned when two consecutive calls
* to XZ code cannot consume any input and cannot produce any new output.
* This happens when there is no new input available, or the output buffer
* is full while at least one output byte is still pending. Assuming your
* code is not buggy, you can get this error only when decoding a compressed
* stream that is truncated or otherwise corrupt.
*
* In single-call mode, XZ_BUF_ERROR is returned only when the output buffer
* is too small, or the compressed input is corrupt in a way that makes the
* decoder produce more output than the caller expected. When it is
* (relatively) clear that the compressed input is truncated, XZ_DATA_ERROR
* is used instead of XZ_BUF_ERROR.
*/
enum xz_ret {
XZ_OK,
XZ_STREAM_END,
XZ_MEMLIMIT_ERROR,
XZ_FORMAT_ERROR,
XZ_OPTIONS_ERROR,
XZ_DATA_ERROR,
XZ_BUF_ERROR
};
/**
* struct xz_buf - Passing input and output buffers to XZ code
* @in: Beginning of the input buffer. This may be NULL if and only
* if in_pos is equal to in_size.
* @in_pos: Current position in the input buffer. This must not exceed
* in_size.
* @in_size: Size of the input buffer
* @out: Beginning of the output buffer. This may be NULL if and only
* if out_pos is equal to out_size.
* @out_pos: Current position in the output buffer. This must not exceed
* out_size.
* @out_size: Size of the output buffer
*
* Only the contents of the output buffer from out[out_pos] onward, and
* the variables in_pos and out_pos are modified by the XZ code.
*/
struct xz_buf {
const uint8_t *in;
size_t in_pos;
size_t in_size;
uint8_t *out;
size_t out_pos;
size_t out_size;
};
/**
* struct xz_dec - Opaque type to hold the XZ decoder state
*/
struct xz_dec;
/**
* xz_dec_init() - Allocate and initialize a XZ decoder state
* @dict_max: Maximum size of the LZMA2 dictionary (history buffer) for
* multi-call decoding, or special value of zero to indicate
* single-call decoding mode.
*
* If dict_max > 0, the decoder is initialized to work in multi-call mode.
* dict_max number of bytes of memory is preallocated for the LZMA2
* dictionary. This way there is no risk that xz_dec_run() could run out
* of memory, since xz_dec_run() will never allocate any memory. Instead,
* if the preallocated dictionary is too small for decoding the given input
* stream, xz_dec_run() will return XZ_MEMLIMIT_ERROR. Thus, it is important
* to know what kind of data will be decoded to avoid allocating excessive
* amount of memory for the dictionary.
*
* LZMA2 dictionary is always 2^n bytes or 2^n + 2^(n-1) bytes (the latter
* sizes are less common in practice). In the kernel, dictionary sizes of
* 64 KiB, 128 KiB, 256 KiB, 512 KiB, and 1 MiB are probably the only
* reasonable values.
*
* If dict_max == 0, the decoder is initialized to work in single-call mode.
* In single-call mode, xz_dec_run() decodes the whole stream at once. The
* caller must provide enough output space or the decoding will fail. The
* output space is used as the dictionary buffer, which is why there is
* no need to allocate the dictionary as part of the decoder's internal
* state.
*
* Because the output buffer is used as the workspace, streams encoded using
* a big dictionary are not a problem in single-call. It is enough that the
* output buffer is is big enough to hold the actual uncompressed data; it
* can be smaller than the dictionary size stored in the stream headers.
*
* On success, xz_dec_init() returns a pointer to struct xz_dec, which is
* ready to be used with xz_dec_run(). On error, xz_dec_init() returns NULL.
*/
XZ_EXTERN struct xz_dec * XZ_FUNC xz_dec_init(uint32_t dict_max);
/**
* xz_dec_run() - Run the XZ decoder
* @s: Decoder state allocated using xz_dec_init()
* @b: Input and output buffers
*
* In multi-call mode, this function may return any of the values listed in
* enum xz_ret.
*
* In single-call mode, this function never returns XZ_OK. If an error occurs
* in single-call mode (return value is not XZ_STREAM_END), b->in_pos and
* b->out_pos are not modified, and the contents of the output buffer from
* b->out[b->out_pos] onward are undefined.
*
* NOTE: In single-call mode, the contents of the output buffer are undefined
* also after XZ_BUF_ERROR. This is because with some filter chains, there
* may be a second pass over the output buffer, and this pass cannot be
* properly done if the output buffer is truncated. Thus, you cannot give
* the single-call decoder a too small buffer and then expect to get that
* amount valid data from the beginning of the stream. You must use the
* multi-call decoder if you don't want to uncompress the whole stream.
*/
XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_run(struct xz_dec *s, struct xz_buf *b);
/**
* xz_dec_reset() - Reset an already allocated decoder state
* @s: Decoder state allocated using xz_dec_init()
*
* This function can be used to reset the multi-call decoder state without
* freeing and reallocating memory with xz_dec_end() and xz_dec_init().
*
* In single-call mode, xz_dec_reset() is always called in the beginning of
* xz_dec_run(). Thus, explicit call to xz_dec_reset() is useful only in
* multi-call mode.
*/
XZ_EXTERN void XZ_FUNC xz_dec_reset(struct xz_dec *s);
/**
* xz_dec_end() - Free the memory allocated for the decoder state
* @s: Decoder state allocated using xz_dec_init(). If s is NULL,
* this function does nothing.
*/
XZ_EXTERN void XZ_FUNC xz_dec_end(struct xz_dec *s);
/*
* Standalone build (userspace build or in-kernel build for boot time use)
* needs a CRC32 implementation. For normal in-kernel use, kernel's own
* CRC32 module is used instead, and users of this module don't need to
* care about the functions below.
*/
#if !defined(__KERNEL__) || defined(XZ_INTERNAL_CRC32)
/*
* This must be called before any other xz_* function to initialize
* the CRC32 lookup table.
*/
#ifndef xz_crc32_init
XZ_EXTERN void XZ_FUNC xz_crc32_init(uint32_t *crc32_table);
#endif
/*
* Update CRC32 value using the polynomial from IEEE-802.3. To start a new
* calculation, the third argument must be zero. To continue the calculation,
* the previously returned value is passed as the third argument.
*/
#ifndef xz_crc32
XZ_EXTERN uint32_t XZ_FUNC xz_crc32(uint32_t *crc32_table,
const uint8_t *buf, size_t size, uint32_t crc);
#endif
#endif
#endif

View File

@ -0,0 +1,119 @@
/*
* Private includes and definitions for userspace use of XZ Embedded
*
* Author: Lasse Collin <lasse.collin@tukaani.org>
*
* This file has been put into the public domain.
* You can do whatever you want with this file.
*/
#ifndef XZ_CONFIG_H
#define XZ_CONFIG_H
/* Uncomment as needed to enable BCJ filter decoders. */
/* #define XZ_DEC_X86 */
/* #define XZ_DEC_POWERPC */
/* #define XZ_DEC_IA64 */
/* #define XZ_DEC_ARM */
/* #define XZ_DEC_ARMTHUMB */
/* #define XZ_DEC_SPARC */
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include "xz.h"
#define kmalloc(size, flags) malloc(size)
#define kfree(ptr) free(ptr)
#define vmalloc(size) malloc(size)
#define vfree(ptr) free(ptr)
#define memeq(a, b, size) (memcmp(a, b, size) == 0)
#define memzero(buf, size) memset(buf, 0, size)
#define min(x, y) ((x) < (y) ? (x) : (y))
#define min_t(type, x, y) min(x, y)
/*
* Some functions have been marked with __always_inline to keep the
* performance reasonable even when the compiler is optimizing for
* small code size. You may be able to save a few bytes by #defining
* __always_inline to plain inline, but don't complain if the code
* becomes slow.
*
* NOTE: System headers on GNU/Linux may #define this macro already,
* so if you want to change it, it you need to #undef it first.
*/
#ifndef __always_inline
# ifdef __GNUC__
# define __always_inline \
inline __attribute__((__always_inline__))
# else
# define __always_inline inline
# endif
#endif
/*
* Some functions are marked to never be inlined to reduce stack usage.
* If you don't care about stack usage, you may want to modify this so
* that noinline_for_stack is #defined to be empty even when using GCC.
* Doing so may save a few bytes in binary size.
*/
#ifndef noinline_for_stack
# ifdef __GNUC__
# define noinline_for_stack __attribute__((__noinline__))
# else
# define noinline_for_stack
# endif
#endif
/* Inline functions to access unaligned unsigned 32-bit integers */
#ifndef get_unaligned_le32
static inline uint32_t XZ_FUNC get_unaligned_le32(const uint8_t *buf)
{
return (uint32_t)buf[0]
| ((uint32_t)buf[1] << 8)
| ((uint32_t)buf[2] << 16)
| ((uint32_t)buf[3] << 24);
}
#endif
#ifndef get_unaligned_be32
static inline uint32_t XZ_FUNC get_unaligned_be32(const uint8_t *buf)
{
return (uint32_t)(buf[0] << 24)
| ((uint32_t)buf[1] << 16)
| ((uint32_t)buf[2] << 8)
| (uint32_t)buf[3];
}
#endif
#ifndef put_unaligned_le32
static inline void XZ_FUNC put_unaligned_le32(uint32_t val, uint8_t *buf)
{
buf[0] = (uint8_t)val;
buf[1] = (uint8_t)(val >> 8);
buf[2] = (uint8_t)(val >> 16);
buf[3] = (uint8_t)(val >> 24);
}
#endif
#ifndef put_unaligned_be32
static inline void XZ_FUNC put_unaligned_be32(uint32_t val, uint8_t *buf)
{
buf[0] = (uint8_t)(val >> 24);
buf[1] = (uint8_t)(val >> 16);
buf[2] = (uint8_t)(val >> 8);
buf[3] = (uint8_t)val;
}
#endif
/*
* Use get_unaligned_le32() also for aligned access for simplicity. On
* little endian systems, #define get_le32(ptr) (*(const uint32_t *)(ptr))
* could save a few bytes in code size.
*/
#define get_le32 get_unaligned_le32
#endif

View File

@ -0,0 +1,560 @@
/*
* Branch/Call/Jump (BCJ) filter decoders
*
* Authors: Lasse Collin <lasse.collin@tukaani.org>
* Igor Pavlov <http://7-zip.org/>
*
* This file has been put into the public domain.
* You can do whatever you want with this file.
*/
#include "xz_private.h"
struct xz_dec_bcj {
/* Type of the BCJ filter being used */
enum {
BCJ_X86 = 4, /* x86 or x86-64 */
BCJ_POWERPC = 5, /* Big endian only */
BCJ_IA64 = 6, /* Big or little endian */
BCJ_ARM = 7, /* Little endian only */
BCJ_ARMTHUMB = 8, /* Little endian only */
BCJ_SPARC = 9 /* Big or little endian */
} type;
/*
* Return value of the next filter in the chain. We need to preserve
* this information across calls, because we must not call the next
* filter anymore once it has returned XZ_STREAM_END.
*/
enum xz_ret ret;
/* True if we are operating in single-call mode. */
bool single_call;
/*
* Absolute position relative to the beginning of the uncompressed
* data (in a single .xz Block). We care only about the lowest 32
* bits so this doesn't need to be uint64_t even with big files.
*/
uint32_t pos;
/* x86 filter state */
uint32_t x86_prev_mask;
/* Temporary space to hold the variables from struct xz_buf */
uint8_t *out;
size_t out_pos;
size_t out_size;
struct {
/* Amount of already filtered data in the beginning of buf */
size_t filtered;
/* Total amount of data currently stored in buf */
size_t size;
/*
* Buffer to hold a mix of filtered and unfiltered data. This
* needs to be big enough to hold Alignment + 2 * Look-ahead:
*
* Type Alignment Look-ahead
* x86 1 4
* PowerPC 4 0
* IA-64 16 0
* ARM 4 0
* ARM-Thumb 2 2
* SPARC 4 0
*/
uint8_t buf[16];
} temp;
};
#ifdef XZ_DEC_X86
/*
* This is macro used to test the most significant byte of a memory address
* in an x86 instruction.
*/
#define bcj_x86_test_msbyte(b) ((b) == 0x00 || (b) == 0xFF)
static noinline_for_stack size_t XZ_FUNC bcj_x86(
struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
static const bool mask_to_allowed_status[8]
= { true, true, true, false, true, false, false, false };
static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 };
size_t i;
size_t prev_pos = (size_t)-1;
uint32_t prev_mask = s->x86_prev_mask;
uint32_t src;
uint32_t dest;
uint32_t j;
uint8_t b;
if (size <= 4)
return 0;
size -= 4;
for (i = 0; i < size; ++i) {
if ((buf[i] & 0xFE) != 0xE8)
continue;
prev_pos = i - prev_pos;
if (prev_pos > 3) {
prev_mask = 0;
} else {
prev_mask = (prev_mask << (prev_pos - 1)) & 7;
if (prev_mask != 0) {
b = buf[i + 4 - mask_to_bit_num[prev_mask]];
if (!mask_to_allowed_status[prev_mask]
|| bcj_x86_test_msbyte(b)) {
prev_pos = i;
prev_mask = (prev_mask << 1) | 1;
continue;
}
}
}
prev_pos = i;
if (bcj_x86_test_msbyte(buf[i + 4])) {
src = get_unaligned_le32(buf + i + 1);
while (true) {
dest = src - (s->pos + (uint32_t)i + 5);
if (prev_mask == 0)
break;
j = mask_to_bit_num[prev_mask] * 8;
b = (uint8_t)(dest >> (24 - j));
if (!bcj_x86_test_msbyte(b))
break;
src = dest ^ (((uint32_t)1 << (32 - j)) - 1);
}
dest &= 0x01FFFFFF;
dest |= (uint32_t)0 - (dest & 0x01000000);
put_unaligned_le32(dest, buf + i + 1);
i += 4;
} else {
prev_mask = (prev_mask << 1) | 1;
}
}
prev_pos = i - prev_pos;
s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1);
return i;
}
#endif
#ifdef XZ_DEC_POWERPC
static noinline_for_stack size_t XZ_FUNC bcj_powerpc(
struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
size_t i;
uint32_t instr;
for (i = 0; i + 4 <= size; i += 4) {
instr = get_unaligned_be32(buf + i);
if ((instr & 0xFC000003) == 0x48000001) {
instr &= 0x03FFFFFC;
instr -= s->pos + (uint32_t)i;
instr &= 0x03FFFFFC;
instr |= 0x48000001;
put_unaligned_be32(instr, buf + i);
}
}
return i;
}
#endif
#ifdef XZ_DEC_IA64
static noinline_for_stack size_t XZ_FUNC bcj_ia64(
struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
static const uint8_t branch_table[32] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
4, 4, 6, 6, 0, 0, 7, 7,
4, 4, 0, 0, 4, 4, 0, 0
};
/*
* The local variables take a little bit stack space, but it's less
* than what LZMA2 decoder takes, so it doesn't make sense to reduce
* stack usage here without doing that for the LZMA2 decoder too.
*/
/* Loop counters */
size_t i;
size_t j;
/* Instruction slot (0, 1, or 2) in the 128-bit instruction word */
uint32_t slot;
/* Bitwise offset of the instruction indicated by slot */
uint32_t bit_pos;
/* bit_pos split into byte and bit parts */
uint32_t byte_pos;
uint32_t bit_res;
/* Address part of an instruction */
uint32_t addr;
/* Mask used to detect which instructions to convert */
uint32_t mask;
/* 41-bit instruction stored somewhere in the lowest 48 bits */
uint64_t instr;
/* Instruction normalized with bit_res for easier manipulation */
uint64_t norm;
for (i = 0; i + 16 <= size; i += 16) {
mask = branch_table[buf[i] & 0x1F];
for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) {
if (((mask >> slot) & 1) == 0)
continue;
byte_pos = bit_pos >> 3;
bit_res = bit_pos & 7;
instr = 0;
for (j = 0; j < 6; ++j)
instr |= (uint64_t)(buf[i + j + byte_pos])
<< (8 * j);
norm = instr >> bit_res;
if (((norm >> 37) & 0x0F) == 0x05
&& ((norm >> 9) & 0x07) == 0) {
addr = (norm >> 13) & 0x0FFFFF;
addr |= ((uint32_t)(norm >> 36) & 1) << 20;
addr <<= 4;
addr -= s->pos + (uint32_t)i;
addr >>= 4;
norm &= ~((uint64_t)0x8FFFFF << 13);
norm |= (uint64_t)(addr & 0x0FFFFF) << 13;
norm |= (uint64_t)(addr & 0x100000)
<< (36 - 20);
instr &= (1 << bit_res) - 1;
instr |= norm << bit_res;
for (j = 0; j < 6; j++)
buf[i + j + byte_pos]
= (uint8_t)(instr >> (8 * j));
}
}
}
return i;
}
#endif
#ifdef XZ_DEC_ARM
static noinline_for_stack size_t XZ_FUNC bcj_arm(
struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
size_t i;
uint32_t addr;
for (i = 0; i + 4 <= size; i += 4) {
if (buf[i + 3] == 0xEB) {
addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8)
| ((uint32_t)buf[i + 2] << 16);
addr <<= 2;
addr -= s->pos + (uint32_t)i + 8;
addr >>= 2;
buf[i] = (uint8_t)addr;
buf[i + 1] = (uint8_t)(addr >> 8);
buf[i + 2] = (uint8_t)(addr >> 16);
}
}
return i;
}
#endif
#ifdef XZ_DEC_ARMTHUMB
static noinline_for_stack size_t XZ_FUNC bcj_armthumb(
struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
size_t i;
uint32_t addr;
for (i = 0; i + 4 <= size; i += 2) {
if ((buf[i + 1] & 0xF8) == 0xF0
&& (buf[i + 3] & 0xF8) == 0xF8) {
addr = (((uint32_t)buf[i + 1] & 0x07) << 19)
| ((uint32_t)buf[i] << 11)
| (((uint32_t)buf[i + 3] & 0x07) << 8)
| (uint32_t)buf[i + 2];
addr <<= 1;
addr -= s->pos + (uint32_t)i + 4;
addr >>= 1;
buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07));
buf[i] = (uint8_t)(addr >> 11);
buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07));
buf[i + 2] = (uint8_t)addr;
i += 2;
}
}
return i;
}
#endif
#ifdef XZ_DEC_SPARC
static noinline_for_stack size_t XZ_FUNC bcj_sparc(
struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
size_t i;
uint32_t instr;
for (i = 0; i + 4 <= size; i += 4) {
instr = get_unaligned_be32(buf + i);
if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) {
instr <<= 2;
instr -= s->pos + (uint32_t)i;
instr >>= 2;
instr = ((uint32_t)0x40000000 - (instr & 0x400000))
| 0x40000000 | (instr & 0x3FFFFF);
put_unaligned_be32(instr, buf + i);
}
}
return i;
}
#endif
#ifdef XZ_DEC_BCJ
/*
* Apply the selected BCJ filter. Update *pos and s->pos to match the amount
* of data that got filtered.
*
* NOTE: This is implemented as a switch statement to avoid using function
* pointers, which could be problematic in the kernel boot code, which must
* avoid pointers to static data (at least on x86).
*/
static void XZ_FUNC bcj_apply(struct xz_dec_bcj *s,
uint8_t *buf, size_t *pos, size_t size)
{
size_t filtered;
buf += *pos;
size -= *pos;
switch (s->type) {
#ifdef XZ_DEC_X86
case BCJ_X86:
filtered = bcj_x86(s, buf, size);
break;
#endif
#ifdef XZ_DEC_POWERPC
case BCJ_POWERPC:
filtered = bcj_powerpc(s, buf, size);
break;
#endif
#ifdef XZ_DEC_IA64
case BCJ_IA64:
filtered = bcj_ia64(s, buf, size);
break;
#endif
#ifdef XZ_DEC_ARM
case BCJ_ARM:
filtered = bcj_arm(s, buf, size);
break;
#endif
#ifdef XZ_DEC_ARMTHUMB
case BCJ_ARMTHUMB:
filtered = bcj_armthumb(s, buf, size);
break;
#endif
#ifdef XZ_DEC_SPARC
case BCJ_SPARC:
filtered = bcj_sparc(s, buf, size);
break;
#endif
default:
/* Never reached but silence compiler warnings. */
filtered = 0;
break;
}
*pos += filtered;
s->pos += filtered;
}
#endif
#ifdef XZ_DEC_BCJ
/*
* Flush pending filtered data from temp to the output buffer.
* Move the remaining mixture of possibly filtered and unfiltered
* data to the beginning of temp.
*/
static void XZ_FUNC bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b)
{
size_t copy_size;
copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos);
memcpy(b->out + b->out_pos, s->temp.buf, copy_size);
b->out_pos += copy_size;
s->temp.filtered -= copy_size;
s->temp.size -= copy_size;
memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size);
}
/*
* The BCJ filter functions are primitive in sense that they process the
* data in chunks of 1-16 bytes. To hide this issue, this function does
* some buffering.
*/
XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_bcj_run(struct xz_dec_bcj *s,
struct xz_dec_lzma2 *lzma2, struct xz_buf *b)
{
size_t out_start;
/*
* Flush pending already filtered data to the output buffer. Return
* immediatelly if we couldn't flush everything, or if the next
* filter in the chain had already returned XZ_STREAM_END.
*/
if (s->temp.filtered > 0) {
bcj_flush(s, b);
if (s->temp.filtered > 0)
return XZ_OK;
if (s->ret == XZ_STREAM_END)
return XZ_STREAM_END;
}
/*
* If we have more output space than what is currently pending in
* temp, copy the unfiltered data from temp to the output buffer
* and try to fill the output buffer by decoding more data from the
* next filter in the chain. Apply the BCJ filter on the new data
* in the output buffer. If everything cannot be filtered, copy it
* to temp and rewind the output buffer position accordingly.
*/
if (s->temp.size < b->out_size - b->out_pos) {
out_start = b->out_pos;
memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size);
b->out_pos += s->temp.size;
s->ret = xz_dec_lzma2_run(lzma2, b);
if (s->ret != XZ_STREAM_END
&& (s->ret != XZ_OK || s->single_call))
return s->ret;
bcj_apply(s, b->out, &out_start, b->out_pos);
/*
* As an exception, if the next filter returned XZ_STREAM_END,
* we can do that too, since the last few bytes that remain
* unfiltered are meant to remain unfiltered.
*/
if (s->ret == XZ_STREAM_END)
return XZ_STREAM_END;
s->temp.size = b->out_pos - out_start;
b->out_pos -= s->temp.size;
memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size);
}
/*
* If we have unfiltered data in temp, try to fill by decoding more
* data from the next filter. Apply the BCJ filter on temp. Then we
* hopefully can fill the actual output buffer by copying filtered
* data from temp. A mix of filtered and unfiltered data may be left
* in temp; it will be taken care on the next call to this function.
*/
if (s->temp.size > 0) {
/* Make b->out{,_pos,_size} temporarily point to s->temp. */
s->out = b->out;
s->out_pos = b->out_pos;
s->out_size = b->out_size;
b->out = s->temp.buf;
b->out_pos = s->temp.size;
b->out_size = sizeof(s->temp.buf);
s->ret = xz_dec_lzma2_run(lzma2, b);
s->temp.size = b->out_pos;
b->out = s->out;
b->out_pos = s->out_pos;
b->out_size = s->out_size;
if (s->ret != XZ_OK && s->ret != XZ_STREAM_END)
return s->ret;
bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size);
/*
* If the next filter returned XZ_STREAM_END, we mark that
* everything is filtered, since the last unfiltered bytes
* of the stream are meant to be left as is.
*/
if (s->ret == XZ_STREAM_END)
s->temp.filtered = s->temp.size;
bcj_flush(s, b);
if (s->temp.filtered > 0)
return XZ_OK;
}
return s->ret;
}
XZ_EXTERN struct xz_dec_bcj * XZ_FUNC xz_dec_bcj_create(bool single_call)
{
struct xz_dec_bcj *s = kmalloc(sizeof(*s), GFP_KERNEL);
if (s != NULL)
s->single_call = single_call;
return s;
}
XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_bcj_reset(
struct xz_dec_bcj *s, uint8_t id)
{
switch (id) {
#ifdef XZ_DEC_X86
case BCJ_X86:
#endif
#ifdef XZ_DEC_POWERPC
case BCJ_POWERPC:
#endif
#ifdef XZ_DEC_IA64
case BCJ_IA64:
#endif
#ifdef XZ_DEC_ARM
case BCJ_ARM:
#endif
#ifdef XZ_DEC_ARMTHUMB
case BCJ_ARMTHUMB:
#endif
#ifdef XZ_DEC_SPARC
case BCJ_SPARC:
#endif
break;
default:
/* Unsupported Filter ID */
return XZ_OPTIONS_ERROR;
}
s->type = id;
s->ret = XZ_OK;
s->pos = 0;
s->x86_prev_mask = 0;
s->temp.filtered = 0;
s->temp.size = 0;
return XZ_OK;
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,787 @@
/*
* .xz Stream decoder
*
* Author: Lasse Collin <lasse.collin@tukaani.org>
*
* This file has been put into the public domain.
* You can do whatever you want with this file.
*/
#include "xz_private.h"
#include "xz_stream.h"
/* Hash used to validate the Index field */
struct xz_dec_hash {
vli_type unpadded;
vli_type uncompressed;
uint32_t crc32;
};
struct xz_dec {
/* Position in dec_main() */
enum {
SEQ_STREAM_HEADER,
SEQ_BLOCK_START,
SEQ_BLOCK_HEADER,
SEQ_BLOCK_UNCOMPRESS,
SEQ_BLOCK_PADDING,
SEQ_BLOCK_CHECK,
SEQ_INDEX,
SEQ_INDEX_PADDING,
SEQ_INDEX_CRC32,
SEQ_STREAM_FOOTER
} sequence;
/* Position in variable-length integers and Check fields */
uint32_t pos;
/* Variable-length integer decoded by dec_vli() */
vli_type vli;
/* Saved in_pos and out_pos */
size_t in_start;
size_t out_start;
/* CRC32 value in Block or Index */
uint32_t crc32;
/* True if CRC32 is calculated from uncompressed data */
uint8_t crc_type;
/* True if we are operating in single-call mode. */
bool single_call;
/*
* True if the next call to xz_dec_run() is allowed to return
* XZ_BUF_ERROR.
*/
bool allow_buf_error;
/* Information stored in Block Header */
struct {
/*
* Value stored in the Compressed Size field, or
* VLI_UNKNOWN if Compressed Size is not present.
*/
vli_type compressed;
/*
* Value stored in the Uncompressed Size field, or
* VLI_UNKNOWN if Uncompressed Size is not present.
*/
vli_type uncompressed;
/* Size of the Block Header field */
uint32_t size;
} block_header;
/* Information collected when decoding Blocks */
struct {
/* Observed compressed size of the current Block */
vli_type compressed;
/* Observed uncompressed size of the current Block */
vli_type uncompressed;
/* Number of Blocks decoded so far */
vli_type count;
/*
* Hash calculated from the Block sizes. This is used to
* validate the Index field.
*/
struct xz_dec_hash hash;
} block;
/* Variables needed when verifying the Index field */
struct {
/* Position in dec_index() */
enum {
SEQ_INDEX_COUNT,
SEQ_INDEX_UNPADDED,
SEQ_INDEX_UNCOMPRESSED
} sequence;
/* Size of the Index in bytes */
vli_type size;
/* Number of Records (matches block.count in valid files) */
vli_type count;
/*
* Hash calculated from the Records (matches block.hash in
* valid files).
*/
struct xz_dec_hash hash;
} index;
/*
* Temporary buffer needed to hold Stream Header, Block Header,
* and Stream Footer. The Block Header is the biggest (1 KiB)
* so we reserve space according to that. buf[] has to be aligned
* to a multiple of four bytes; the size_t variables before it
* should guarantee this.
*/
struct {
size_t pos;
size_t size;
uint8_t buf[1024];
} temp;
struct xz_dec_lzma2 *lzma2;
#ifdef XZ_DEC_BCJ
struct xz_dec_bcj *bcj;
bool bcj_active;
#endif
uint32_t crc32_table[256];
};
/*
* Fill s->temp by copying data starting from b->in[b->in_pos]. Caller
* must have set s->temp.pos to indicate how much data we are supposed
* to copy into s->temp.buf. Return true once s->temp.pos has reached
* s->temp.size.
*/
static bool XZ_FUNC fill_temp(struct xz_dec *s, struct xz_buf *b)
{
size_t copy_size = min_t(size_t,
b->in_size - b->in_pos, s->temp.size - s->temp.pos);
memcpy(s->temp.buf + s->temp.pos, b->in + b->in_pos, copy_size);
b->in_pos += copy_size;
s->temp.pos += copy_size;
if (s->temp.pos == s->temp.size) {
s->temp.pos = 0;
return true;
}
return false;
}
/* Decode a variable-length integer (little-endian base-128 encoding) */
static enum xz_ret XZ_FUNC dec_vli(struct xz_dec *s,
const uint8_t *in, size_t *in_pos, size_t in_size)
{
uint8_t byte;
if (s->pos == 0)
s->vli = 0;
while (*in_pos < in_size) {
byte = in[*in_pos];
++*in_pos;
s->vli |= (vli_type)(byte & 0x7F) << s->pos;
if ((byte & 0x80) == 0) {
/* Don't allow non-minimal encodings. */
if (byte == 0 && s->pos != 0)
return XZ_DATA_ERROR;
s->pos = 0;
return XZ_STREAM_END;
}
s->pos += 7;
if (s->pos == 7 * VLI_BYTES_MAX)
return XZ_DATA_ERROR;
}
return XZ_OK;
}
/*
* Decode the Compressed Data field from a Block. Update and validate
* the observed compressed and uncompressed sizes of the Block so that
* they don't exceed the values possibly stored in the Block Header
* (validation assumes that no integer overflow occurs, since vli_type
* is normally uint64_t). Update the CRC32 if presence of the CRC32
* field was indicated in Stream Header.
*
* Once the decoding is finished, validate that the observed sizes match
* the sizes possibly stored in the Block Header. Update the hash and
* Block count, which are later used to validate the Index field.
*/
static enum xz_ret XZ_FUNC dec_block(struct xz_dec *s, struct xz_buf *b)
{
enum xz_ret ret;
s->in_start = b->in_pos;
s->out_start = b->out_pos;
#ifdef XZ_DEC_BCJ
if (s->bcj_active)
ret = xz_dec_bcj_run(s->bcj, s->lzma2, b);
else
#endif
ret = xz_dec_lzma2_run(s->lzma2, b);
s->block.compressed += b->in_pos - s->in_start;
s->block.uncompressed += b->out_pos - s->out_start;
/*
* There is no need to separately check for VLI_UNKNOWN, since
* the observed sizes are always smaller than VLI_UNKNOWN.
*/
if (s->block.compressed > s->block_header.compressed
|| s->block.uncompressed
> s->block_header.uncompressed)
return XZ_DATA_ERROR;
if (s->crc_type == 0x01)
s->crc32 = xz_crc32(s->crc32_table,
b->out + s->out_start,
b->out_pos - s->out_start, s->crc32);
if (ret == XZ_STREAM_END) {
if (s->block_header.compressed != VLI_UNKNOWN
&& s->block_header.compressed
!= s->block.compressed)
return XZ_DATA_ERROR;
if (s->block_header.uncompressed != VLI_UNKNOWN
&& s->block_header.uncompressed
!= s->block.uncompressed)
return XZ_DATA_ERROR;
s->block.hash.unpadded += s->block_header.size
+ s->block.compressed;
if (s->crc_type == 0x01)
s->block.hash.unpadded += 4;
if (s->crc_type == 0x04) /* CRC64 */
s->block.hash.unpadded += 8;
if (s->crc_type == 0x0A) /* SHA-256 */
s->block.hash.unpadded += 32;
s->block.hash.uncompressed += s->block.uncompressed;
s->block.hash.crc32 = xz_crc32(s->crc32_table,
(const uint8_t *)&s->block.hash,
sizeof(s->block.hash), s->block.hash.crc32);
++s->block.count;
}
return ret;
}
/* Update the Index size and the CRC32 value. */
static void XZ_FUNC index_update(struct xz_dec *s, const struct xz_buf *b)
{
size_t in_used = b->in_pos - s->in_start;
s->index.size += in_used;
s->crc32 = xz_crc32(s->crc32_table, b->in + s->in_start, in_used, s->crc32);
}
/*
* Decode the Number of Records, Unpadded Size, and Uncompressed Size
* fields from the Index field. That is, Index Padding and CRC32 are not
* decoded by this function.
*
* This can return XZ_OK (more input needed), XZ_STREAM_END (everything
* successfully decoded), or XZ_DATA_ERROR (input is corrupt).
*/
static enum xz_ret XZ_FUNC dec_index(struct xz_dec *s, struct xz_buf *b)
{
enum xz_ret ret;
do {
ret = dec_vli(s, b->in, &b->in_pos, b->in_size);
if (ret != XZ_STREAM_END) {
index_update(s, b);
return ret;
}
switch (s->index.sequence) {
case SEQ_INDEX_COUNT:
s->index.count = s->vli;
/*
* Validate that the Number of Records field
* indicates the same number of Records as
* there were Blocks in the Stream.
*/
if (s->index.count != s->block.count)
return XZ_DATA_ERROR;
s->index.sequence = SEQ_INDEX_UNPADDED;
break;
case SEQ_INDEX_UNPADDED:
s->index.hash.unpadded += s->vli;
s->index.sequence = SEQ_INDEX_UNCOMPRESSED;
break;
case SEQ_INDEX_UNCOMPRESSED:
s->index.hash.uncompressed += s->vli;
s->index.hash.crc32 = xz_crc32(s->crc32_table,
(const uint8_t *)&s->index.hash,
sizeof(s->index.hash),
s->index.hash.crc32);
--s->index.count;
s->index.sequence = SEQ_INDEX_UNPADDED;
break;
}
} while (s->index.count > 0);
return XZ_STREAM_END;
}
/*
* Validate that the next four input bytes match the value of s->crc32.
* s->pos must be zero when starting to validate the first byte.
*/
static enum xz_ret XZ_FUNC crc32_validate(struct xz_dec *s, struct xz_buf *b)
{
do {
if (b->in_pos == b->in_size)
return XZ_OK;
if (((s->crc32 >> s->pos) & 0xFF) != b->in[b->in_pos++])
return XZ_DATA_ERROR;
s->pos += 8;
} while (s->pos < 32);
s->crc32 = 0;
s->pos = 0;
return XZ_STREAM_END;
}
/* Decode the Stream Header field (the first 12 bytes of the .xz Stream). */
static enum xz_ret XZ_FUNC dec_stream_header(struct xz_dec *s)
{
if (!memeq(s->temp.buf, HEADER_MAGIC, HEADER_MAGIC_SIZE))
return XZ_FORMAT_ERROR;
if (xz_crc32(s->crc32_table, s->temp.buf + HEADER_MAGIC_SIZE, 2, 0)
!= get_le32(s->temp.buf + HEADER_MAGIC_SIZE + 2))
return XZ_DATA_ERROR;
/*
* Decode the Stream Flags field. Of integrity checks, we support
* only none (Check ID = 0) and CRC32 (Check ID = 1).
*/
if (s->temp.buf[HEADER_MAGIC_SIZE] != 0
|| (s->temp.buf[HEADER_MAGIC_SIZE + 1] > 1
&& s->temp.buf[HEADER_MAGIC_SIZE + 1] != 0x04
&& s->temp.buf[HEADER_MAGIC_SIZE + 1] != 0x0A
)
) {
XZ_DEBUG_MSG("unsupported stream flags %x:%x",
s->temp.buf[HEADER_MAGIC_SIZE],
s->temp.buf[HEADER_MAGIC_SIZE+1]);
return XZ_OPTIONS_ERROR;
}
s->crc_type = s->temp.buf[HEADER_MAGIC_SIZE + 1];
return XZ_OK;
}
/* Decode the Stream Footer field (the last 12 bytes of the .xz Stream) */
static enum xz_ret XZ_FUNC dec_stream_footer(struct xz_dec *s)
{
if (!memeq(s->temp.buf + 10, FOOTER_MAGIC, FOOTER_MAGIC_SIZE))
return XZ_DATA_ERROR;
if (xz_crc32(s->crc32_table, s->temp.buf + 4, 6, 0) != get_le32(s->temp.buf))
return XZ_DATA_ERROR;
/*
* Validate Backward Size. Note that we never added the size of the
* Index CRC32 field to s->index.size, thus we use s->index.size / 4
* instead of s->index.size / 4 - 1.
*/
if ((s->index.size >> 2) != get_le32(s->temp.buf + 4))
return XZ_DATA_ERROR;
if (s->temp.buf[8] != 0 || s->temp.buf[9] != s->crc_type)
return XZ_DATA_ERROR;
/*
* Use XZ_STREAM_END instead of XZ_OK to be more convenient
* for the caller.
*/
return XZ_STREAM_END;
}
/* Decode the Block Header and initialize the filter chain. */
static enum xz_ret XZ_FUNC dec_block_header(struct xz_dec *s)
{
enum xz_ret ret;
/*
* Validate the CRC32. We know that the temp buffer is at least
* eight bytes so this is safe.
*/
s->temp.size -= 4;
if (xz_crc32(s->crc32_table, s->temp.buf, s->temp.size, 0)
!= get_le32(s->temp.buf + s->temp.size))
return XZ_DATA_ERROR;
s->temp.pos = 2;
/*
* Catch unsupported Block Flags. We support only one or two filters
* in the chain, so we catch that with the same test.
*/
#ifdef XZ_DEC_BCJ
if (s->temp.buf[1] & 0x3E)
#else
if (s->temp.buf[1] & 0x3F)
#endif
{
XZ_DEBUG_MSG("s->temp.buf[1] & 0x3E/3F != 0");
return XZ_OPTIONS_ERROR;
}
/* Compressed Size */
if (s->temp.buf[1] & 0x40) {
if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
!= XZ_STREAM_END)
return XZ_DATA_ERROR;
s->block_header.compressed = s->vli;
} else {
s->block_header.compressed = VLI_UNKNOWN;
}
/* Uncompressed Size */
if (s->temp.buf[1] & 0x80) {
if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
!= XZ_STREAM_END)
return XZ_DATA_ERROR;
s->block_header.uncompressed = s->vli;
} else {
s->block_header.uncompressed = VLI_UNKNOWN;
}
#ifdef XZ_DEC_BCJ
/* If there are two filters, the first one must be a BCJ filter. */
s->bcj_active = s->temp.buf[1] & 0x01;
if (s->bcj_active) {
if (s->temp.size - s->temp.pos < 2) {
XZ_DEBUG_MSG("temp.size - temp.pos < 2");
return XZ_OPTIONS_ERROR;
}
ret = xz_dec_bcj_reset(s->bcj, s->temp.buf[s->temp.pos++]);
if (ret != XZ_OK)
return ret;
/*
* We don't support custom start offset,
* so Size of Properties must be zero.
*/
if (s->temp.buf[s->temp.pos++] != 0x00) {
XZ_DEBUG_MSG("size of properties != 0");
return XZ_OPTIONS_ERROR;
}
}
#endif
/* Valid Filter Flags always take at least two bytes. */
if (s->temp.size - s->temp.pos < 2)
return XZ_DATA_ERROR;
/* Filter ID = LZMA2 */
if (s->temp.buf[s->temp.pos++] != 0x21) {
XZ_DEBUG_MSG("filter ID != 0x21");
return XZ_OPTIONS_ERROR;
}
/* Size of Properties = 1-byte Filter Properties */
if (s->temp.buf[s->temp.pos++] != 0x01) {
XZ_DEBUG_MSG("size of properties != 1");
return XZ_OPTIONS_ERROR;
}
/* Filter Properties contains LZMA2 dictionary size. */
if (s->temp.size - s->temp.pos < 1)
return XZ_DATA_ERROR;
ret = xz_dec_lzma2_reset(s->lzma2, s->temp.buf[s->temp.pos++]);
if (ret != XZ_OK)
return ret;
/* The rest must be Header Padding. */
while (s->temp.pos < s->temp.size)
if (s->temp.buf[s->temp.pos++] != 0x00) {
XZ_DEBUG_MSG("padding is not zero-filled");
return XZ_OPTIONS_ERROR;
}
s->temp.pos = 0;
s->block.compressed = 0;
s->block.uncompressed = 0;
return XZ_OK;
}
static enum xz_ret XZ_FUNC dec_main(struct xz_dec *s, struct xz_buf *b)
{
enum xz_ret ret;
/*
* Store the start position for the case when we are in the middle
* of the Index field.
*/
s->in_start = b->in_pos;
while (true) {
switch (s->sequence) {
case SEQ_STREAM_HEADER:
/*
* Stream Header is copied to s->temp, and then
* decoded from there. This way if the caller
* gives us only little input at a time, we can
* still keep the Stream Header decoding code
* simple. Similar approach is used in many places
* in this file.
*/
if (!fill_temp(s, b))
return XZ_OK;
ret = dec_stream_header(s);
if (ret != XZ_OK)
return ret;
s->sequence = SEQ_BLOCK_START;
case SEQ_BLOCK_START:
/* We need one byte of input to continue. */
if (b->in_pos == b->in_size)
return XZ_OK;
/* See if this is the beginning of the Index field. */
if (b->in[b->in_pos] == 0) {
s->in_start = b->in_pos++;
s->sequence = SEQ_INDEX;
break;
}
/*
* Calculate the size of the Block Header and
* prepare to decode it.
*/
s->block_header.size
= ((uint32_t)b->in[b->in_pos] + 1) * 4;
s->temp.size = s->block_header.size;
s->temp.pos = 0;
s->sequence = SEQ_BLOCK_HEADER;
case SEQ_BLOCK_HEADER:
if (!fill_temp(s, b))
return XZ_OK;
ret = dec_block_header(s);
if (ret != XZ_OK)
return ret;
s->sequence = SEQ_BLOCK_UNCOMPRESS;
case SEQ_BLOCK_UNCOMPRESS:
ret = dec_block(s, b);
if (ret != XZ_STREAM_END)
return ret;
s->sequence = SEQ_BLOCK_PADDING;
case SEQ_BLOCK_PADDING:
/*
* Size of Compressed Data + Block Padding
* must be a multiple of four. We don't need
* s->block.compressed for anything else
* anymore, so we use it here to test the size
* of the Block Padding field.
*/
while (s->block.compressed & 3) {
if (b->in_pos == b->in_size)
return XZ_OK;
if (b->in[b->in_pos++] != 0)
return XZ_DATA_ERROR;
++s->block.compressed;
}
s->sequence = SEQ_BLOCK_CHECK;
case SEQ_BLOCK_CHECK:
if (s->crc_type == 0x01) {
ret = crc32_validate(s, b);
if (ret != XZ_STREAM_END)
return ret;
}
s->sequence = SEQ_BLOCK_START;
break;
case SEQ_INDEX:
ret = dec_index(s, b);
if (ret != XZ_STREAM_END)
return ret;
s->sequence = SEQ_INDEX_PADDING;
case SEQ_INDEX_PADDING:
while ((s->index.size + (b->in_pos - s->in_start))
& 3) {
if (b->in_pos == b->in_size) {
index_update(s, b);
return XZ_OK;
}
if (b->in[b->in_pos++] != 0)
return XZ_DATA_ERROR;
}
/* Finish the CRC32 value and Index size. */
index_update(s, b);
/* Compare the hashes to validate the Index field. */
if (!memeq(&s->block.hash, &s->index.hash,
sizeof(s->block.hash)))
return XZ_DATA_ERROR;
s->sequence = SEQ_INDEX_CRC32;
case SEQ_INDEX_CRC32:
ret = crc32_validate(s, b);
if (ret != XZ_STREAM_END)
return ret;
s->temp.size = STREAM_HEADER_SIZE;
s->sequence = SEQ_STREAM_FOOTER;
case SEQ_STREAM_FOOTER:
if (!fill_temp(s, b))
return XZ_OK;
return dec_stream_footer(s);
}
}
/* Never reached */
}
/*
* xz_dec_run() is a wrapper for dec_main() to handle some special cases in
* multi-call and single-call decoding.
*
* In multi-call mode, we must return XZ_BUF_ERROR when it seems clear that we
* are not going to make any progress anymore. This is to prevent the caller
* from calling us infinitely when the input file is truncated or otherwise
* corrupt. Since zlib-style API allows that the caller fills the input buffer
* only when the decoder doesn't produce any new output, we have to be careful
* to avoid returning XZ_BUF_ERROR too easily: XZ_BUF_ERROR is returned only
* after the second consecutive call to xz_dec_run() that makes no progress.
*
* In single-call mode, if we couldn't decode everything and no error
* occurred, either the input is truncated or the output buffer is too small.
* Since we know that the last input byte never produces any output, we know
* that if all the input was consumed and decoding wasn't finished, the file
* must be corrupt. Otherwise the output buffer has to be too small or the
* file is corrupt in a way that decoding it produces too big output.
*
* If single-call decoding fails, we reset b->in_pos and b->out_pos back to
* their original values. This is because with some filter chains there won't
* be any valid uncompressed data in the output buffer unless the decoding
* actually succeeds (that's the price to pay of using the output buffer as
* the workspace).
*/
XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_run(struct xz_dec *s, struct xz_buf *b)
{
size_t in_start;
size_t out_start;
enum xz_ret ret;
if (s->single_call)
xz_dec_reset(s);
in_start = b->in_pos;
out_start = b->out_pos;
ret = dec_main(s, b);
if (s->single_call) {
if (ret == XZ_OK)
ret = b->in_pos == b->in_size
? XZ_DATA_ERROR : XZ_BUF_ERROR;
if (ret != XZ_STREAM_END) {
b->in_pos = in_start;
b->out_pos = out_start;
}
} else if (ret == XZ_OK && in_start == b->in_pos
&& out_start == b->out_pos) {
if (s->allow_buf_error)
ret = XZ_BUF_ERROR;
s->allow_buf_error = true;
} else {
s->allow_buf_error = false;
}
return ret;
}
XZ_EXTERN struct xz_dec * XZ_FUNC xz_dec_init(uint32_t dict_max)
{
struct xz_dec *s = kmalloc(sizeof(*s), GFP_KERNEL);
if (s == NULL)
return NULL;
s->single_call = dict_max == 0;
#ifdef XZ_DEC_BCJ
s->bcj = xz_dec_bcj_create(s->single_call);
if (s->bcj == NULL)
goto error_bcj;
#endif
s->lzma2 = xz_dec_lzma2_create(dict_max);
if (s->lzma2 == NULL)
goto error_lzma2;
xz_dec_reset(s);
return s;
error_lzma2:
#ifdef XZ_DEC_BCJ
xz_dec_bcj_end(s->bcj);
error_bcj:
#endif
kfree(s);
return NULL;
}
XZ_EXTERN void XZ_FUNC xz_dec_reset(struct xz_dec *s)
{
s->sequence = SEQ_STREAM_HEADER;
s->allow_buf_error = false;
s->pos = 0;
s->crc32 = 0;
memzero(&s->block, sizeof(s->block));
memzero(&s->index, sizeof(s->index));
s->temp.pos = 0;
s->temp.size = STREAM_HEADER_SIZE;
}
XZ_EXTERN void XZ_FUNC xz_dec_end(struct xz_dec *s)
{
if (s != NULL) {
xz_dec_lzma2_end(s->lzma2);
#ifdef XZ_DEC_BCJ
xz_dec_bcj_end(s->bcj);
#endif
kfree(s);
}
}

View File

@ -0,0 +1,204 @@
/*
* LZMA2 definitions
*
* Authors: Lasse Collin <lasse.collin@tukaani.org>
* Igor Pavlov <http://7-zip.org/>
*
* This file has been put into the public domain.
* You can do whatever you want with this file.
*/
#ifndef XZ_LZMA2_H
#define XZ_LZMA2_H
/* Range coder constants */
#define RC_SHIFT_BITS 8
#define RC_TOP_BITS 24
#define RC_TOP_VALUE (1 << RC_TOP_BITS)
#define RC_BIT_MODEL_TOTAL_BITS 11
#define RC_BIT_MODEL_TOTAL (1 << RC_BIT_MODEL_TOTAL_BITS)
#define RC_MOVE_BITS 5
/*
* Maximum number of position states. A position state is the lowest pb
* number of bits of the current uncompressed offset. In some places there
* are different sets of probabilities for different position states.
*/
#define POS_STATES_MAX (1 << 4)
/*
* This enum is used to track which LZMA symbols have occurred most recently
* and in which order. This information is used to predict the next symbol.
*
* Symbols:
* - Literal: One 8-bit byte
* - Match: Repeat a chunk of data at some distance
* - Long repeat: Multi-byte match at a recently seen distance
* - Short repeat: One-byte repeat at a recently seen distance
*
* The symbol names are in from STATE_oldest_older_previous. REP means
* either short or long repeated match, and NONLIT means any non-literal.
*/
enum lzma_state {
STATE_LIT_LIT,
STATE_MATCH_LIT_LIT,
STATE_REP_LIT_LIT,
STATE_SHORTREP_LIT_LIT,
STATE_MATCH_LIT,
STATE_REP_LIT,
STATE_SHORTREP_LIT,
STATE_LIT_MATCH,
STATE_LIT_LONGREP,
STATE_LIT_SHORTREP,
STATE_NONLIT_MATCH,
STATE_NONLIT_REP
};
/* Total number of states */
#define STATES 12
/* The lowest 7 states indicate that the previous state was a literal. */
#define LIT_STATES 7
/* Indicate that the latest symbol was a literal. */
static inline void XZ_FUNC lzma_state_literal(enum lzma_state *state)
{
if (*state <= STATE_SHORTREP_LIT_LIT)
*state = STATE_LIT_LIT;
else if (*state <= STATE_LIT_SHORTREP)
*state -= 3;
else
*state -= 6;
}
/* Indicate that the latest symbol was a match. */
static inline void XZ_FUNC lzma_state_match(enum lzma_state *state)
{
*state = *state < LIT_STATES ? STATE_LIT_MATCH : STATE_NONLIT_MATCH;
}
/* Indicate that the latest state was a long repeated match. */
static inline void XZ_FUNC lzma_state_long_rep(enum lzma_state *state)
{
*state = *state < LIT_STATES ? STATE_LIT_LONGREP : STATE_NONLIT_REP;
}
/* Indicate that the latest symbol was a short match. */
static inline void XZ_FUNC lzma_state_short_rep(enum lzma_state *state)
{
*state = *state < LIT_STATES ? STATE_LIT_SHORTREP : STATE_NONLIT_REP;
}
/* Test if the previous symbol was a literal. */
static inline bool XZ_FUNC lzma_state_is_literal(enum lzma_state state)
{
return state < LIT_STATES;
}
/* Each literal coder is divided in three sections:
* - 0x001-0x0FF: Without match byte
* - 0x101-0x1FF: With match byte; match bit is 0
* - 0x201-0x2FF: With match byte; match bit is 1
*
* Match byte is used when the previous LZMA symbol was something else than
* a literal (that is, it was some kind of match).
*/
#define LITERAL_CODER_SIZE 0x300
/* Maximum number of literal coders */
#define LITERAL_CODERS_MAX (1 << 4)
/* Minimum length of a match is two bytes. */
#define MATCH_LEN_MIN 2
/* Match length is encoded with 4, 5, or 10 bits.
*
* Length Bits
* 2-9 4 = Choice=0 + 3 bits
* 10-17 5 = Choice=1 + Choice2=0 + 3 bits
* 18-273 10 = Choice=1 + Choice2=1 + 8 bits
*/
#define LEN_LOW_BITS 3
#define LEN_LOW_SYMBOLS (1 << LEN_LOW_BITS)
#define LEN_MID_BITS 3
#define LEN_MID_SYMBOLS (1 << LEN_MID_BITS)
#define LEN_HIGH_BITS 8
#define LEN_HIGH_SYMBOLS (1 << LEN_HIGH_BITS)
#define LEN_SYMBOLS (LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS + LEN_HIGH_SYMBOLS)
/*
* Maximum length of a match is 273 which is a result of the encoding
* described above.
*/
#define MATCH_LEN_MAX (MATCH_LEN_MIN + LEN_SYMBOLS - 1)
/*
* Different sets of probabilities are used for match distances that have
* very short match length: Lengths of 2, 3, and 4 bytes have a separate
* set of probabilities for each length. The matches with longer length
* use a shared set of probabilities.
*/
#define DIST_STATES 4
/*
* Get the index of the appropriate probability array for decoding
* the distance slot.
*/
static inline uint32_t XZ_FUNC lzma_get_dist_state(uint32_t len)
{
return len < DIST_STATES + MATCH_LEN_MIN
? len - MATCH_LEN_MIN : DIST_STATES - 1;
}
/*
* The highest two bits of a 32-bit match distance are encoded using six bits.
* This six-bit value is called a distance slot. This way encoding a 32-bit
* value takes 6-36 bits, larger values taking more bits.
*/
#define DIST_SLOT_BITS 6
#define DIST_SLOTS (1 << DIST_SLOT_BITS)
/* Match distances up to 127 are fully encoded using probabilities. Since
* the highest two bits (distance slot) are always encoded using six bits,
* the distances 0-3 don't need any additional bits to encode, since the
* distance slot itself is the same as the actual distance. DIST_MODEL_START
* indicates the first distance slot where at least one additional bit is
* needed.
*/
#define DIST_MODEL_START 4
/*
* Match distances greater than 127 are encoded in three pieces:
* - distance slot: the highest two bits
* - direct bits: 2-26 bits below the highest two bits
* - alignment bits: four lowest bits
*
* Direct bits don't use any probabilities.
*
* The distance slot value of 14 is for distances 128-191.
*/
#define DIST_MODEL_END 14
/* Distance slots that indicate a distance <= 127. */
#define FULL_DISTANCES_BITS (DIST_MODEL_END / 2)
#define FULL_DISTANCES (1 << FULL_DISTANCES_BITS)
/*
* For match distances greater than 127, only the highest two bits and the
* lowest four bits (alignment) is encoded using probabilities.
*/
#define ALIGN_BITS 4
#define ALIGN_SIZE (1 << ALIGN_BITS)
#define ALIGN_MASK (ALIGN_SIZE - 1)
/* Total number of all probability variables */
#define PROBS_TOTAL (1846 + LITERAL_CODERS_MAX * LITERAL_CODER_SIZE)
/*
* LZMA remembers the four most recent match distances. Reusing these
* distances tends to take less space than re-encoding the actual
* distance value.
*/
#define REPS 4
#endif

View File

@ -0,0 +1,120 @@
/*
* Private includes and definitions
*
* Author: Lasse Collin <lasse.collin@tukaani.org>
*
* This file has been put into the public domain.
* You can do whatever you want with this file.
*/
#ifndef XZ_PRIVATE_H
#define XZ_PRIVATE_H
#ifdef __KERNEL__
/* XZ_PREBOOT may be defined only via decompress_unxz.c. */
# ifndef XZ_PREBOOT
# include <linux/slab.h>
# include <linux/vmalloc.h>
# include <linux/string.h>
# define memeq(a, b, size) (memcmp(a, b, size) == 0)
# define memzero(buf, size) memset(buf, 0, size)
# endif
# include <asm/byteorder.h>
# include <asm/unaligned.h>
# define get_le32(p) le32_to_cpup((const uint32_t *)(p))
/* XZ_IGNORE_KCONFIG may be defined only via decompress_unxz.c. */
# ifndef XZ_IGNORE_KCONFIG
# ifdef CONFIG_XZ_DEC_X86
# define XZ_DEC_X86
# endif
# ifdef CONFIG_XZ_DEC_POWERPC
# define XZ_DEC_POWERPC
# endif
# ifdef CONFIG_XZ_DEC_IA64
# define XZ_DEC_IA64
# endif
# ifdef CONFIG_XZ_DEC_ARM
# define XZ_DEC_ARM
# endif
# ifdef CONFIG_XZ_DEC_ARMTHUMB
# define XZ_DEC_ARMTHUMB
# endif
# ifdef CONFIG_XZ_DEC_SPARC
# define XZ_DEC_SPARC
# endif
# endif
# include <linux/xz.h>
#else
/*
* For userspace builds, use a separate header to define the required
* macros and functions. This makes it easier to adapt the code into
* different environments and avoids clutter in the Linux kernel tree.
*/
# include "xz_config.h"
#endif
/*
* If any of the BCJ filter decoders are wanted, define XZ_DEC_BCJ.
* XZ_DEC_BCJ is used to enable generic support for BCJ decoders.
*/
#ifndef XZ_DEC_BCJ
# if defined(XZ_DEC_X86) || defined(XZ_DEC_POWERPC) \
|| defined(XZ_DEC_IA64) || defined(XZ_DEC_ARM) \
|| defined(XZ_DEC_ARM) || defined(XZ_DEC_ARMTHUMB) \
|| defined(XZ_DEC_SPARC)
# define XZ_DEC_BCJ
# endif
#endif
/*
* Allocate memory for LZMA2 decoder. xz_dec_lzma2_reset() must be used
* before calling xz_dec_lzma2_run().
*/
XZ_EXTERN struct xz_dec_lzma2 * XZ_FUNC xz_dec_lzma2_create(
uint32_t dict_max);
/*
* Decode the LZMA2 properties (one byte) and reset the decoder. Return
* XZ_OK on success, XZ_MEMLIMIT_ERROR if the preallocated dictionary is not
* big enough, and XZ_OPTIONS_ERROR if props indicates something that this
* decoder doesn't support.
*/
XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_lzma2_reset(
struct xz_dec_lzma2 *s, uint8_t props);
/* Decode raw LZMA2 stream from b->in to b->out. */
XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_lzma2_run(
struct xz_dec_lzma2 *s, struct xz_buf *b);
/* Free the memory allocated for the LZMA2 decoder. */
XZ_EXTERN void XZ_FUNC xz_dec_lzma2_end(struct xz_dec_lzma2 *s);
#ifdef XZ_DEC_BCJ
/*
* Allocate memory for BCJ decoders. xz_dec_bcj_reset() must be used before
* calling xz_dec_bcj_run().
*/
XZ_EXTERN struct xz_dec_bcj * XZ_FUNC xz_dec_bcj_create(bool single_call);
/*
* Decode the Filter ID of a BCJ filter. This implementation doesn't
* support custom start offsets, so no decoding of Filter Properties
* is needed. Returns XZ_OK if the given Filter ID is supported.
* Otherwise XZ_OPTIONS_ERROR is returned.
*/
XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_bcj_reset(
struct xz_dec_bcj *s, uint8_t id);
/*
* Decode raw BCJ + LZMA2 stream. This must be used only if there actually is
* a BCJ filter in the chain. If the chain has only LZMA2, xz_dec_lzma2_run()
* must be called directly.
*/
XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_bcj_run(struct xz_dec_bcj *s,
struct xz_dec_lzma2 *lzma2, struct xz_buf *b);
#endif
/* Free the memory allocated for the BCJ filters. */
#define xz_dec_bcj_end(s) kfree(s)
#endif

View File

@ -0,0 +1,46 @@
/*
* Definitions for handling the .xz file format
*
* Author: Lasse Collin <lasse.collin@tukaani.org>
*
* This file has been put into the public domain.
* You can do whatever you want with this file.
*/
#ifndef XZ_STREAM_H
#define XZ_STREAM_H
#if defined(__KERNEL__) && !defined(XZ_INTERNAL_CRC32)
# include <linux/crc32.h>
# undef crc32
# define xz_crc32(crc32_table, buf, size, crc) \
(~crc32_le(~(uint32_t)(crc), buf, size))
#endif
/*
* See the .xz file format specification at
* http://tukaani.org/xz/xz-file-format.txt
* to understand the container format.
*/
#define STREAM_HEADER_SIZE 12
#define HEADER_MAGIC "\3757zXZ\0"
#define HEADER_MAGIC_SIZE 6
#define FOOTER_MAGIC "YZ"
#define FOOTER_MAGIC_SIZE 2
/*
* Variable-length integer can hold a 63-bit unsigned integer, or a special
* value to indicate that the value is unknown.
*/
typedef uint64_t vli_type;
#define VLI_MAX ((vli_type)-1 / 2)
#define VLI_UNKNOWN ((vli_type)-1)
/* Maximum encoded size of a VLI */
#define VLI_BYTES_MAX (sizeof(vli_type) * 8 / 7)
#endif

View File

@ -419,6 +419,7 @@ IF_UNCOMPRESS(APPLET(uncompress, _BB_DIR_BIN, _BB_SUID_DROP))
IF_UNEXPAND(APPLET_ODDNAME(unexpand, expand, _BB_DIR_USR_BIN, _BB_SUID_DROP, unexpand))
IF_UNIQ(APPLET(uniq, _BB_DIR_USR_BIN, _BB_SUID_DROP))
IF_UNIX2DOS(APPLET_ODDNAME(unix2dos, dos2unix, _BB_DIR_USR_BIN, _BB_SUID_DROP, unix2dos))
IF_UNXZ(APPLET(unxz, _BB_DIR_USR_BIN, _BB_SUID_DROP))
IF_UNLZMA(APPLET(unlzma, _BB_DIR_USR_BIN, _BB_SUID_DROP))
IF_LZOP(APPLET_ODDNAME(unlzop, lzop, _BB_DIR_USR_BIN, _BB_SUID_DROP, unlzop))
IF_UNZIP(APPLET(unzip, _BB_DIR_USR_BIN, _BB_SUID_DROP))
@ -439,6 +440,8 @@ IF_WHICH(APPLET(which, _BB_DIR_USR_BIN, _BB_SUID_DROP))
IF_WHO(APPLET(who, _BB_DIR_USR_BIN, _BB_SUID_DROP))
IF_WHOAMI(APPLET_NOFORK(whoami, whoami, _BB_DIR_USR_BIN, _BB_SUID_DROP, whoami))
IF_XARGS(APPLET_NOEXEC(xargs, xargs, _BB_DIR_USR_BIN, _BB_SUID_DROP, xargs))
IF_UNXZ(APPLET_ODDNAME(xzcat, unxz, _BB_DIR_USR_BIN, _BB_SUID_DROP, xzcat))
IF_XZ(APPLET_ODDNAME(xz, unxz, _BB_DIR_USR_BIN, _BB_SUID_DROP, xz))
IF_YES(APPLET_NOFORK(yes, yes, _BB_DIR_USR_BIN, _BB_SUID_DROP, yes))
IF_GUNZIP(APPLET_ODDNAME(zcat, gunzip, _BB_DIR_BIN, _BB_SUID_DROP, zcat))
IF_ZCIP(APPLET(zcip, _BB_DIR_SBIN, _BB_SUID_DROP))

View File

@ -143,6 +143,7 @@ typedef struct inflate_unzip_result {
} inflate_unzip_result;
IF_DESKTOP(long long) int inflate_unzip(inflate_unzip_result *res, off_t compr_size, int src_fd, int dst_fd) FAST_FUNC;
IF_DESKTOP(long long) int unpack_xz_stream_stdin(void) FAST_FUNC;
/* lzma unpacker takes .lzma stream from offset 0 */
IF_DESKTOP(long long) int unpack_lzma_stream(int src_fd, int dst_fd) FAST_FUNC;
/* the rest wants 2 first bytes already skipped by the caller */

View File

@ -269,6 +269,28 @@
#define lzcat_full_usage "\n\n" \
"Decompress to stdout"
#define unxz_trivial_usage \
"[OPTIONS] [FILE]..."
#define unxz_full_usage "\n\n" \
"Decompress FILE (or stdin)\n" \
"\nOptions:" \
"\n -c Write to stdout" \
"\n -f Force" \
#define xz_trivial_usage \
"-d [OPTIONS] [FILE]..."
#define xz_full_usage "\n\n" \
"Decompress FILE (or stdin)\n" \
"\nOptions:" \
"\n -d Decompress" \
"\n -c Write to stdout" \
"\n -f Force" \
#define xzcat_trivial_usage \
"FILE"
#define xzcat_full_usage "\n\n" \
"Decompress to stdout"
#define cal_trivial_usage \
"[-jy] [[MONTH] YEAR]"
#define cal_full_usage "\n\n" \