sha256/512: code shrink. Run-tested.

function                                             old     new   delta
sha512_process_block128                                -    1444   +1444
sha1_process_block64                                   -     542    +542
sha256_process_block64                                 -     529    +529
K512_lo                                                -     320    +320
K256                                                   -     320    +320
init512_lo                                             -      32     +32
init256                                                -      32     +32
sha1_hash                                             99     128     +29
sha256_end                                           160     135     -25
sha1_end                                             189     160     -29
sha512_end                                           237     204     -33
sha256_begin                                          77      44     -33
sha512_begin                                         154      88     -66
sha256_hash                                          338     259     -79
sha512_hash                                          358     262     -96
sha1_compile                                         542       -    -542
sha256_process_block                                 594       -    -594
static.K                                             896       -    -896
sha512_process_block                                1861       -   -1861
------------------------------------------------------------------------------
(add/remove: 7/4 grow/shrink: 1/7 up/down: 3248/-4254)      Total: -1006 bytes
   text    data     bss     dec     hex filename
 808013     468    7856  816337   c74d1 busybox_old
 807007     468    7856  815331   c70e3 busybox_unstripped
This commit is contained in:
Denis Vlasenko 2009-03-11 21:15:51 +00:00
parent 54ac03a618
commit 98c87f7575
2 changed files with 255 additions and 286 deletions

View File

@ -1321,27 +1321,27 @@ extern const char bb_uuenc_tbl_std[];
void bb_uuencode(char *store, const void *s, int length, const char *tbl) FAST_FUNC;
typedef struct sha1_ctx_t {
uint32_t count[2];
uint64_t total64;
uint32_t wbuffer[16]; /* NB: always correctly aligned for uint64_t */
uint32_t hash[5];
uint32_t wbuf[16];
} sha1_ctx_t;
void sha1_begin(sha1_ctx_t *ctx) FAST_FUNC;
void sha1_hash(const void *data, size_t length, sha1_ctx_t *ctx) FAST_FUNC;
void sha1_end(void *resbuf, sha1_ctx_t *ctx) FAST_FUNC;
typedef struct sha256_ctx_t {
unsigned wbuflen;
uint32_t H[8];
uint32_t total[2]; /* rename to "count"? */
uint32_t buflen;
char buffer[128]; /* NB: always correctly aligned for uint32_t */
uint64_t total64;
char wbuffer[64*2]; /* NB: always correctly aligned for uint64_t */
} sha256_ctx_t;
void sha256_begin(sha256_ctx_t *ctx) FAST_FUNC;
void sha256_hash(const void *buffer, size_t len, sha256_ctx_t *ctx) FAST_FUNC;
void sha256_end(void *resbuf, sha256_ctx_t *ctx) FAST_FUNC;
typedef struct sha512_ctx_t {
unsigned wbuflen;
uint64_t H[8];
uint64_t total[2];
uint64_t buflen;
char buffer[256]; /* NB: always correctly aligned for uint64_t */
uint64_t total64[2];
char wbuffer[128*2]; /* NB: always correctly aligned for uint64_t */
} sha512_ctx_t;
void sha512_begin(sha512_ctx_t *ctx) FAST_FUNC;
void sha512_hash(const void *buffer, size_t len, sha512_ctx_t *ctx) FAST_FUNC;

View File

@ -52,7 +52,7 @@ static inline uint64_t hton64(uint64_t v)
#define SHA1_HASH_SIZE SHA1_DIGEST_SIZE
#define SHA1_MASK (SHA1_BLOCK_SIZE - 1)
static void sha1_compile(sha1_ctx_t *ctx)
static void sha1_process_block64(sha1_ctx_t *ctx)
{
uint32_t w[80], i, a, b, c, d, e, t;
@ -60,7 +60,7 @@ static void sha1_compile(sha1_ctx_t *ctx)
/* words in big-endian order so an order reversal is needed */
/* here on little endian machines */
for (i = 0; i < SHA1_BLOCK_SIZE / 4; ++i)
w[i] = ntohl(ctx->wbuf[i]);
w[i] = ntohl(ctx->wbuffer[i]);
for (/*i = SHA1_BLOCK_SIZE / 4*/; i < 80; ++i) {
t = w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16];
@ -108,31 +108,98 @@ static void sha1_compile(sha1_ctx_t *ctx)
ctx->hash[4] += e;
}
/* Constants for SHA256 from FIPS 180-2:4.2.2. */
static const uint32_t K256[80] = {
0x428a2f98, 0x71374491,
0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1,
0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01,
0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe,
0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786,
0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa,
0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d,
0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138,
0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb,
0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624,
0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08,
0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a,
0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f,
0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb,
0xbef9a3f7, 0xc67178f2,
0xca273ece, 0xd186b8c7, /* [64]+ are used for sha512 only */
0xeada7dd6, 0xf57d4f7f,
0x06f067aa, 0x0a637dc5,
0x113f9804, 0x1b710b35,
0x28db77f5, 0x32caab7b,
0x3c9ebe0a, 0x431d67c4,
0x4cc5d4be, 0x597f299c,
0x5fcb6fab, 0x6c44198c
};
/* Constants for SHA512 from FIPS 180-2:4.2.3. */
static const uint32_t K512_lo[80] = {
0xd728ae22, 0x23ef65cd,
0xec4d3b2f, 0x8189dbbc,
0xf348b538, 0xb605d019,
0xaf194f9b, 0xda6d8118,
0xa3030242, 0x45706fbe,
0x4ee4b28c, 0xd5ffb4e2,
0xf27b896f, 0x3b1696b1,
0x25c71235, 0xcf692694,
0x9ef14ad2, 0x384f25e3,
0x8b8cd5b5, 0x77ac9c65,
0x592b0275, 0x6ea6e483,
0xbd41fbd4, 0x831153b5,
0xee66dfab, 0x2db43210,
0x98fb213f, 0xbeef0ee4,
0x3da88fc2, 0x930aa725,
0xe003826f, 0x0a0e6e70,
0x46d22ffc, 0x5c26c926,
0x5ac42aed, 0x9d95b3df,
0x8baf63de, 0x3c77b2a8,
0x47edaee6, 0x1482353b,
0x4cf10364, 0xbc423001,
0xd0f89791, 0x0654be30,
0xd6ef5218, 0x5565a910,
0x5771202a, 0x32bbd1b8,
0xb8d2d0c8, 0x5141ab53,
0xdf8eeb99, 0xe19b48a8,
0xc5c95a63, 0xe3418acb,
0x7763e373, 0xd6b2b8a3,
0x5defb2fc, 0x43172f60,
0xa1f0ab72, 0x1a6439ec,
0x23631e28, 0xde82bde9,
0xb2c67915, 0xe372532b,
0xea26619c, 0x21c0c207,
0xcde0eb1e, 0xee6ed178,
0x72176fba, 0xa2c898a6,
0xbef90dae, 0x131c471b,
0x23047d84, 0x40c72493,
0x15c9bebc, 0x9c100d4c,
0xcb3e42b6, 0xfc657e2a,
0x3ad6faec, 0x4a475817
};
/* Process LEN bytes of BUFFER, accumulating context into CTX.
It is assumed that LEN % 64 == 0. */
static void sha256_process_block(const void *buffer, size_t len, sha256_ctx_t *ctx)
LEN is rounded _down_ to 64. */
static void sha256_process_block64(const void *buffer, size_t len, sha256_ctx_t *ctx)
{
/* Constants for SHA256 from FIPS 180-2:4.2.2. */
static const uint32_t K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
const uint32_t *words = buffer;
size_t nwords = len / sizeof(uint32_t);
uint32_t a = ctx->H[0];
uint32_t b = ctx->H[1];
uint32_t c = ctx->H[2];
@ -143,24 +210,17 @@ static void sha256_process_block(const void *buffer, size_t len, sha256_ctx_t *c
uint32_t h = ctx->H[7];
/* First increment the byte count. FIPS 180-2 specifies the possible
length of the file up to 2^64 bits. Here we only compute the
number of bytes. Do a double word increment. */
ctx->total[0] += len;
if (ctx->total[0] < len)
ctx->total[1]++;
length of the file up to 2^64 _bits_.
We compute the number of _bytes_ and convert to bits later. */
len &= ~(size_t)(sizeof(uint32_t) * 16 - 1);
ctx->total64 += len;
/* Process all bytes in the buffer with 64 bytes in each round of
the loop. */
while (nwords > 0) {
len /= (sizeof(uint32_t) * 16);
while (len) {
unsigned t;
uint32_t W[64];
uint32_t a_save = a;
uint32_t b_save = b;
uint32_t c_save = c;
uint32_t d_save = d;
uint32_t e_save = e;
uint32_t f_save = f;
uint32_t g_save = g;
uint32_t h_save = h;
/* Operators defined in FIPS 180-2:4.1.2. */
#define Ch(x, y, z) ((x & y) ^ (~x & z))
@ -171,16 +231,17 @@ static void sha256_process_block(const void *buffer, size_t len, sha256_ctx_t *c
#define R1(x) (rotr32(x, 17) ^ rotr32(x, 19) ^ (x >> 10))
/* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */
for (unsigned t = 0; t < 16; ++t) {
for (t = 0; t < 16; ++t) {
W[t] = ntohl(*words);
++words;
}
for (unsigned t = 16; t < 64; ++t)
for (/*t = 16*/; t < 64; ++t)
W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
/* The actual computation according to FIPS 180-2:6.2.2 step 3. */
for (unsigned t = 0; t < 64; ++t) {
uint32_t T1 = h + S1(e) + Ch(e, f, g) + K[t] + W[t];
for (t = 0; t < 64; ++t) {
uint32_t T1 = h + S1(e) + Ch(e, f, g) + K256[t] + W[t];
uint32_t T2 = S0(a) + Maj(a, b, c);
h = g;
g = f;
@ -199,79 +260,24 @@ static void sha256_process_block(const void *buffer, size_t len, sha256_ctx_t *c
#undef R1
/* Add the starting values of the context according to FIPS 180-2:6.2.2
step 4. */
a += a_save;
b += b_save;
c += c_save;
d += d_save;
e += e_save;
f += f_save;
g += g_save;
h += h_save;
ctx->H[0] = a += ctx->H[0];
ctx->H[1] = b += ctx->H[1];
ctx->H[2] = c += ctx->H[2];
ctx->H[3] = d += ctx->H[3];
ctx->H[4] = e += ctx->H[4];
ctx->H[5] = f += ctx->H[5];
ctx->H[6] = g += ctx->H[6];
ctx->H[7] = h += ctx->H[7];
/* Prepare for the next round. */
nwords -= 16;
len--;
}
/* Put checksum in context given as argument. */
ctx->H[0] = a;
ctx->H[1] = b;
ctx->H[2] = c;
ctx->H[3] = d;
ctx->H[4] = e;
ctx->H[5] = f;
ctx->H[6] = g;
ctx->H[7] = h;
}
/* Process LEN bytes of BUFFER, accumulating context into CTX.
It is assumed that LEN % 128 == 0. */
static void sha512_process_block(const void *buffer, size_t len, sha512_ctx_t *ctx)
LEN is rounded _down_ to 128. */
static void sha512_process_block128(const void *buffer, size_t len, sha512_ctx_t *ctx)
{
/* Constants for SHA512 from FIPS 180-2:4.2.3. */
static const uint64_t K[80] = {
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL,
};
const uint64_t *words = buffer;
size_t nwords = len / sizeof(uint64_t);
uint64_t a = ctx->H[0];
uint64_t b = ctx->H[1];
uint64_t c = ctx->H[2];
@ -282,24 +288,17 @@ static void sha512_process_block(const void *buffer, size_t len, sha512_ctx_t *c
uint64_t h = ctx->H[7];
/* First increment the byte count. FIPS 180-2 specifies the possible
length of the file up to 2^128 bits. Here we only compute the
number of bytes. Do a double word increment. */
ctx->total[0] += len;
if (ctx->total[0] < len)
ctx->total[1]++;
length of the file up to 2^128 _bits_.
We compute the number of _bytes_ and convert to bits later. */
len &= ~(size_t)(sizeof(uint64_t) * 16 - 1);
ctx->total64[0] += len;
if (ctx->total64[0] < len)
ctx->total64[1]++;
/* Process all bytes in the buffer with 128 bytes in each round of
the loop. */
while (nwords > 0) {
len /= (sizeof(uint64_t) * 16);
while (len) {
unsigned t;
uint64_t W[80];
uint64_t a_save = a;
uint64_t b_save = b;
uint64_t c_save = c;
uint64_t d_save = d;
uint64_t e_save = e;
uint64_t f_save = f;
uint64_t g_save = g;
uint64_t h_save = h;
/* Operators defined in FIPS 180-2:4.1.2. */
#define Ch(x, y, z) ((x & y) ^ (~x & z))
@ -310,16 +309,17 @@ static void sha512_process_block(const void *buffer, size_t len, sha512_ctx_t *c
#define R1(x) (rotr64(x, 19) ^ rotr64(x, 61) ^ (x >> 6))
/* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */
for (unsigned t = 0; t < 16; ++t) {
for (t = 0; t < 16; ++t) {
W[t] = ntoh64(*words);
++words;
}
for (unsigned t = 16; t < 80; ++t)
for (/*t = 16*/; t < 80; ++t)
W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
/* The actual computation according to FIPS 180-2:6.3.2 step 3. */
for (unsigned t = 0; t < 80; ++t) {
uint64_t T1 = h + S1(e) + Ch(e, f, g) + K[t] + W[t];
for (t = 0; t < 80; ++t) {
uint64_t K512_t = ((uint64_t)(K256[t]) << 32) + K512_lo[t];
uint64_t T1 = h + S1(e) + Ch(e, f, g) + K512_t + W[t];
uint64_t T2 = S0(a) + Maj(a, b, c);
h = g;
g = f;
@ -338,34 +338,23 @@ static void sha512_process_block(const void *buffer, size_t len, sha512_ctx_t *c
#undef R1
/* Add the starting values of the context according to FIPS 180-2:6.3.2
step 4. */
a += a_save;
b += b_save;
c += c_save;
d += d_save;
e += e_save;
f += f_save;
g += g_save;
h += h_save;
ctx->H[0] = a += ctx->H[0];
ctx->H[1] = b += ctx->H[1];
ctx->H[2] = c += ctx->H[2];
ctx->H[3] = d += ctx->H[3];
ctx->H[4] = e += ctx->H[4];
ctx->H[5] = f += ctx->H[5];
ctx->H[6] = g += ctx->H[6];
ctx->H[7] = h += ctx->H[7];
/* Prepare for the next round. */
nwords -= 16;
len--;
}
/* Put checksum in context given as argument. */
ctx->H[0] = a;
ctx->H[1] = b;
ctx->H[2] = c;
ctx->H[3] = d;
ctx->H[4] = e;
ctx->H[5] = f;
ctx->H[6] = g;
ctx->H[7] = h;
}
void FAST_FUNC sha1_begin(sha1_ctx_t *ctx)
{
ctx->count[0] = ctx->count[1] = 0;
ctx->total64 = 0;
ctx->hash[0] = 0x67452301;
ctx->hash[1] = 0xefcdab89;
ctx->hash[2] = 0x98badcfe;
@ -373,84 +362,92 @@ void FAST_FUNC sha1_begin(sha1_ctx_t *ctx)
ctx->hash[4] = 0xc3d2e1f0;
}
static const uint32_t init256[] = {
0x6a09e667,
0xbb67ae85,
0x3c6ef372,
0xa54ff53a,
0x510e527f,
0x9b05688c,
0x1f83d9ab,
0x5be0cd19
};
static const uint32_t init512_lo[] = {
0xf3bcc908,
0x84caa73b,
0xfe94f82b,
0x5f1d36f1,
0xade682d1,
0x2b3e6c1f,
0xfb41bd6b,
0x137e2179
};
/* Initialize structure containing state of computation.
(FIPS 180-2:5.3.2) */
void FAST_FUNC sha256_begin(sha256_ctx_t *ctx)
{
ctx->H[0] = 0x6a09e667;
ctx->H[1] = 0xbb67ae85;
ctx->H[2] = 0x3c6ef372;
ctx->H[3] = 0xa54ff53a;
ctx->H[4] = 0x510e527f;
ctx->H[5] = 0x9b05688c;
ctx->H[6] = 0x1f83d9ab;
ctx->H[7] = 0x5be0cd19;
ctx->total[0] = ctx->total[1] = 0;
ctx->buflen = 0;
memcpy(ctx->H, init256, sizeof(init256));
ctx->total64 = 0;
ctx->wbuflen = 0;
}
/* Initialize structure containing state of computation.
(FIPS 180-2:5.3.3) */
void FAST_FUNC sha512_begin(sha512_ctx_t *ctx)
{
ctx->H[0] = 0x6a09e667f3bcc908ULL;
ctx->H[1] = 0xbb67ae8584caa73bULL;
ctx->H[2] = 0x3c6ef372fe94f82bULL;
ctx->H[3] = 0xa54ff53a5f1d36f1ULL;
ctx->H[4] = 0x510e527fade682d1ULL;
ctx->H[5] = 0x9b05688c2b3e6c1fULL;
ctx->H[6] = 0x1f83d9abfb41bd6bULL;
ctx->H[7] = 0x5be0cd19137e2179ULL;
ctx->total[0] = ctx->total[1] = 0;
ctx->buflen = 0;
int i;
for (i = 0; i < 8; i++)
ctx->H[i] = ((uint64_t)(init256[i]) << 32) + init512_lo[i];
ctx->total64[0] = ctx->total64[1] = 0;
ctx->wbuflen = 0;
}
/* SHA1 hash data in an array of bytes into hash buffer and call the */
/* hash_compile function as required. */
void FAST_FUNC sha1_hash(const void *data, size_t length, sha1_ctx_t *ctx)
void FAST_FUNC sha1_hash(const void *buffer, size_t len, sha1_ctx_t *ctx)
{
uint32_t pos = (uint32_t) (ctx->count[0] & SHA1_MASK);
uint32_t pos = (uint32_t) (ctx->total64 & SHA1_MASK);
uint32_t freeb = SHA1_BLOCK_SIZE - pos;
const unsigned char *sp = data;
const unsigned char *sp = buffer;
ctx->count[0] += length;
if (ctx->count[0] < length)
ctx->count[1]++;
ctx->total64 += len;
while (length >= freeb) { /* transfer whole blocks while possible */
memcpy(((unsigned char *) ctx->wbuf) + pos, sp, freeb);
while (len >= freeb) { /* transfer whole blocks while possible */
memcpy(((unsigned char *) ctx->wbuffer) + pos, sp, freeb);
sp += freeb;
length -= freeb;
len -= freeb;
freeb = SHA1_BLOCK_SIZE;
pos = 0;
sha1_compile(ctx);
sha1_process_block64(ctx);
}
memcpy(((unsigned char *) ctx->wbuf) + pos, sp, length);
memcpy(((unsigned char *) ctx->wbuffer) + pos, sp, len);
}
void FAST_FUNC sha256_hash(const void *buffer, size_t len, sha256_ctx_t *ctx)
{
/* When we already have some bits in our internal buffer concatenate
both inputs first. */
if (ctx->buflen != 0) {
size_t left_over = ctx->buflen;
size_t add = 128 - left_over > len ? len : 128 - left_over;
if (ctx->wbuflen != 0) {
unsigned add;
memcpy(&ctx->buffer[left_over], buffer, add);
ctx->buflen += add;
/* NB: 1/2 of wbuffer is used only in sha256_end
* when length field is added and hashed.
* With buffer twice as small, it may happen that
* we have it almost full and can't add length field. */
if (ctx->buflen > 64) {
sha256_process_block(ctx->buffer, ctx->buflen & ~63, ctx);
add = sizeof(ctx->wbuffer)/2 - ctx->wbuflen;
if (add > len)
add = len;
memcpy(&ctx->wbuffer[ctx->wbuflen], buffer, add);
ctx->wbuflen += add;
ctx->buflen &= 63;
/* The regions in the following copy operation cannot overlap. */
memcpy(ctx->buffer,
&ctx->buffer[(left_over + add) & ~63],
ctx->buflen);
}
/* If we still didn't collect full wbuffer, bail out */
if (ctx->wbuflen < sizeof(ctx->wbuffer)/2)
return;
sha256_process_block64(ctx->wbuffer, 64, ctx);
ctx->wbuflen = 0;
buffer = (const char *)buffer + add;
len -= add;
}
@ -459,13 +456,12 @@ void FAST_FUNC sha256_hash(const void *buffer, size_t len, sha256_ctx_t *ctx)
if (len >= 64) {
if (UNALIGNED_P(buffer, uint32_t)) {
while (len > 64) {
sha256_process_block(memcpy(ctx->buffer, buffer, 64),
64, ctx);
sha256_process_block64(memcpy(ctx->wbuffer, buffer, 64), 64, ctx);
buffer = (const char *)buffer + 64;
len -= 64;
}
} else {
sha256_process_block(buffer, len & ~63, ctx);
sha256_process_block64(buffer, len /*& ~63*/, ctx);
buffer = (const char *)buffer + (len & ~63);
len &= 63;
}
@ -473,75 +469,48 @@ void FAST_FUNC sha256_hash(const void *buffer, size_t len, sha256_ctx_t *ctx)
/* Move remaining bytes into internal buffer. */
if (len > 0) {
size_t left_over = ctx->buflen;
memcpy(&ctx->buffer[left_over], buffer, len);
left_over += len;
if (left_over >= 64) {
sha256_process_block(ctx->buffer, 64, ctx);
left_over -= 64;
memcpy(ctx->buffer, &ctx->buffer[64], left_over);
}
ctx->buflen = left_over;
memcpy(ctx->wbuffer, buffer, len);
ctx->wbuflen = len;
}
}
void FAST_FUNC sha512_hash(const void *buffer, size_t len, sha512_ctx_t *ctx)
{
/* When we already have some bits in our internal buffer concatenate
both inputs first. */
if (ctx->buflen != 0) {
size_t left_over = ctx->buflen;
size_t add = 256 - left_over > len ? len : 256 - left_over;
if (ctx->wbuflen != 0) {
unsigned add;
memcpy(&ctx->buffer[left_over], buffer, add);
ctx->buflen += add;
add = sizeof(ctx->wbuffer)/2 - ctx->wbuflen;
if (add > len)
add = len;
memcpy(&ctx->wbuffer[ctx->wbuflen], buffer, add);
ctx->wbuflen += add;
if (ctx->buflen > 128) {
sha512_process_block(ctx->buffer, ctx->buflen & ~127, ctx);
ctx->buflen &= 127;
/* The regions in the following copy operation cannot overlap. */
memcpy(ctx->buffer,
&ctx->buffer[(left_over + add) & ~127],
ctx->buflen);
}
if (ctx->wbuflen < sizeof(ctx->wbuffer)/2)
return;
sha512_process_block128(ctx->wbuffer, 128, ctx);
ctx->wbuflen = 0;
buffer = (const char *)buffer + add;
len -= add;
}
/* Process available complete blocks. */
if (len >= 128) {
// #if BB_ARCH_REQUIRES_ALIGNMENT
if (UNALIGNED_P(buffer, uint64_t)) {
while (len > 128) {
sha512_process_block(memcpy(ctx->buffer, buffer, 128),
128, ctx);
sha512_process_block128(memcpy(ctx->wbuffer, buffer, 128), 128, ctx);
buffer = (const char *)buffer + 128;
len -= 128;
}
} else
// #endif
{
sha512_process_block(buffer, len & ~127, ctx);
} else {
sha512_process_block128(buffer, len /*& ~127*/, ctx);
buffer = (const char *)buffer + (len & ~127);
len &= 127;
}
}
/* Move remaining bytes into internal buffer. */
if (len > 0) {
size_t left_over = ctx->buflen;
memcpy(&ctx->buffer[left_over], buffer, len);
left_over += len;
if (left_over >= 128) {
sha512_process_block(ctx->buffer, 128, ctx);
left_over -= 128;
memcpy(ctx->buffer, &ctx->buffer[128], left_over);
}
ctx->buflen = left_over;
memcpy(ctx->wbuffer, buffer, len);
ctx->wbuflen = len;
}
}
@ -558,36 +527,40 @@ void FAST_FUNC sha1_end(void *resbuf, sha1_ctx_t *ctx)
#endif
uint8_t *hval = resbuf;
uint32_t i, cnt = (uint32_t) (ctx->count[0] & SHA1_MASK);
uint32_t i, cnt = (uint32_t) (ctx->total64 & SHA1_MASK);
/* mask out the rest of any partial 32-bit word and then set */
/* the next byte to 0x80. On big-endian machines any bytes in */
/* the buffer will be at the top end of 32 bit words, on little */
/* endian machines they will be at the bottom. Hence the AND */
/* and OR masks above are reversed for little endian systems */
ctx->wbuf[cnt >> 2] =
(ctx->wbuf[cnt >> 2] & mask[cnt & 3]) | bits[cnt & 3];
ctx->wbuffer[cnt >> 2] =
(ctx->wbuffer[cnt >> 2] & mask[cnt & 3]) | bits[cnt & 3];
/* we need 9 or more empty positions, one for the padding byte */
/* (above) and eight for the length count. If there is not */
/* enough space pad and empty the buffer */
if (cnt > SHA1_BLOCK_SIZE - 9) {
if (cnt < 60)
ctx->wbuf[15] = 0;
sha1_compile(ctx);
ctx->wbuffer[15] = 0;
sha1_process_block64(ctx);
cnt = 0;
} else /* compute a word index for the empty buffer positions */
cnt = (cnt >> 2) + 1;
while (cnt < 14) /* and zero pad all but last two positions */
ctx->wbuf[cnt++] = 0;
ctx->wbuffer[cnt++] = 0;
/* assemble the eight byte counter in the buffer in big-endian */
/* assemble the 64-bit counter of bits in the buffer in BE */
/* format */
ctx->wbuf[14] = htonl((ctx->count[1] << 3) | (ctx->count[0] >> 29));
ctx->wbuf[15] = htonl(ctx->count[0] << 3);
{
uint64_t t = ctx->total64 << 3;
t = hton64(t);
/* wbuffer is suitably aligned for this */
*(uint64_t *) &ctx->wbuffer[14] = t;
}
sha1_compile(ctx);
sha1_process_block64(ctx);
/* extract the hash value as bytes in case the hash buffer is */
/* misaligned for 32-bit words */
@ -604,28 +577,29 @@ void FAST_FUNC sha1_end(void *resbuf, sha1_ctx_t *ctx)
void FAST_FUNC sha256_end(void *resbuf, sha256_ctx_t *ctx)
{
/* Take yet unprocessed bytes into account. */
uint32_t bytes = ctx->buflen;
size_t pad;
unsigned bytes = ctx->wbuflen;
unsigned pad;
/* Now count remaining bytes. */
ctx->total[0] += bytes;
if (ctx->total[0] < bytes)
ctx->total[1]++;
ctx->total64 += bytes;
/* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0...
(FIPS 180-2:5.1.1) */
pad = (bytes >= 56 ? 64 + 56 - bytes : 56 - bytes);
memset(&ctx->buffer[bytes], 0, pad);
ctx->buffer[bytes] = 0x80;
memset(&ctx->wbuffer[bytes], 0, pad);
ctx->wbuffer[bytes] = 0x80;
/* Put the 64-bit file length in *bits* at the end of the buffer. */
*(uint32_t *) &ctx->buffer[bytes + pad + 4] = ntohl(ctx->total[0] << 3);
*(uint32_t *) &ctx->buffer[bytes + pad] = ntohl((ctx->total[1] << 3) | (ctx->total[0] >> 29));
{
uint64_t t = ctx->total64 << 3;
t = hton64(t);
/* wbuffer is suitably aligned for this */
*(uint64_t *) &ctx->wbuffer[bytes + pad] = t;
}
/* Process last bytes. */
sha256_process_block(ctx->buffer, bytes + pad + 8, ctx);
sha256_process_block64(ctx->wbuffer, bytes + pad + 8, ctx);
/* Put result from CTX in first 32 bytes following RESBUF. */
for (unsigned i = 0; i < 8; ++i)
((uint32_t *) resbuf)[i] = ntohl(ctx->H[i]);
}
@ -637,29 +611,24 @@ void FAST_FUNC sha256_end(void *resbuf, sha256_ctx_t *ctx)
aligned for a 64 bits value. */
void FAST_FUNC sha512_end(void *resbuf, sha512_ctx_t *ctx)
{
/* Take yet unprocessed bytes into account. */
uint64_t bytes = ctx->buflen;
size_t pad;
unsigned bytes = ctx->wbuflen;
unsigned pad;
/* Now count remaining bytes. */
ctx->total[0] += bytes;
if (ctx->total[0] < bytes)
ctx->total[1]++;
ctx->total64[0] += bytes;
if (ctx->total64[0] < bytes)
ctx->total64[1]++;
/* Pad the buffer to the next 128-byte boundary with 0x80,0,0,0...
(FIPS 180-2:5.1.2) */
pad = bytes >= 112 ? 128 + 112 - bytes : 112 - bytes;
memset(&ctx->buffer[bytes], 0, pad);
ctx->buffer[bytes] = 0x80;
memset(&ctx->wbuffer[bytes], 0, pad);
ctx->wbuffer[bytes] = 0x80;
/* Put the 128-bit file length in *bits* at the end of the buffer. */
*(uint64_t *) &ctx->buffer[bytes + pad + 8] = hton64(ctx->total[0] << 3);
*(uint64_t *) &ctx->buffer[bytes + pad] = hton64((ctx->total[1] << 3) | (ctx->total[0] >> 61));
*(uint64_t *) &ctx->wbuffer[bytes + pad + 8] = hton64(ctx->total64[0] << 3);
*(uint64_t *) &ctx->wbuffer[bytes + pad] = hton64((ctx->total64[1] << 3) | (ctx->total64[0] >> 61));
/* Process last bytes. */
sha512_process_block(ctx->buffer, bytes + pad + 16, ctx);
sha512_process_block128(ctx->wbuffer, bytes + pad + 16, ctx);
/* Put result from CTX in first 64 bytes following RESBUF. */
for (unsigned i = 0; i < 8; ++i)
((uint64_t *) resbuf)[i] = hton64(ctx->H[i]);
}