tls: teach it to send AES256-encrypted data

>> CLIENT_HELLO
wrote 50 bytes
insize:0 tail:0
got block len:74
got HANDSHAKE
<< SERVER_HELLO
insize:79 tail:0
got block len:2397
got HANDSHAKE
<< CERTIFICATE
key bytes:271, first:0x00
server_rsa_pub_key.size:256
insize:2402 tail:0
got block len:4
got HANDSHAKE
<< SERVER_HELLO_DONE
>> CLIENT_KEY_EXCHANGE
wrote 267 bytes
master secret:c51df5b1e3b3f57373cdd8ea28e8ce562059636cf9f585d0b89c7f4bacec97e674d7b91f93e7b500cb64637f240c3b78
client_write_MAC_key:3b0b7e2bab241b629c37eb3a3824f09b39fe71a00876b0c8026dda16ef0d2f82
client_write_key:d36e801470ed2f0a8fc886ac25df57ffbe4265d06e3192122c4ef4df1e32fab2
>> CHANGE_CIPHER_SPEC
from secret: c51df5b1e3b3f57373cdd8ea28e8ce562059636cf9f585d0b89c7f4bacec97e674d7b91f93e7b500cb64637f240c3b78
from labelSeed: 636c69656e742066696e6973686564b22e0e6008b8ee218cc02e4a93e4a42b570535f9b57662e262d43b379d125b69
=> digest: a45bfee8ed6507a2a9920d0c
>> FINISHED
before crypt: 5 hdr + 16 data + 32 hash bytes
writing 5 + 16 IV + 64 encrypted bytes, padding_length:0x0f
wrote 85 bytes
insize:9 tail:0
got block len:1
<< CHANGE_CIPHER_SPEC
insize:6 tail:0
got block len:80
< hdr_type:22 ver:3.3 len:80 type:21 len24:9541723 |1591985b...a3da|

The last line is the server's FINISHED response, encrypted.

Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
This commit is contained in:
Denys Vlasenko 2017-01-18 20:37:24 +01:00
parent b7e9ae6e9f
commit b5dfc3dfd6

View File

@ -143,14 +143,25 @@
//#define CIPHER_ID TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 // SSL_ALERT_HANDSHAKE_FAILURE
//#define CIPHER_ID TLS_RSA_WITH_AES_256_GCM_SHA384 // ok, no SERVER_KEY_EXCHANGE
//#define CIPHER_ID TLS_RSA_WITH_AES_128_GCM_SHA256 // ok, no SERVER_KEY_EXCHANGE *** select this?
#define CIPHER_ID TLS_RSA_WITH_NULL_SHA256 // for testing (does everything except encrypting)
//#define CIPHER_ID TLS_DH_anon_WITH_AES_256_CBC_SHA // SSL_ALERT_HANDSHAKE_FAILURE
//^^^^^^^^^^^^^^^^^^^^^^^ (tested b/c this one doesn't req server certs... no luck)
//test TLS_RSA_WITH_AES_128_CBC_SHA, in tls 1.2 it's mandated to be always supported
//test TLS_RSA_WITH_AES_128_CBC_SHA, in TLS 1.2 it's mandated to be always supported
// works against "openssl s_server -cipher NULL"
// and against wolfssl-3.9.10-stable/examples/server/server.c:
//#define CIPHER_ID TLS_RSA_WITH_NULL_SHA256 // for testing (does everything except encrypting)
// "works", meaning
// "can send encrypted FINISHED to wolfssl-3.9.10-stable/examples/server/server.c",
// don't yet read its encrypted answers:
#define CIPHER_ID TLS_RSA_WITH_AES_256_CBC_SHA256 // ok, no SERVER_KEY_EXCHANGE
enum {
SHA256_INSIZE = 64,
SHA256_OUTSIZE = 32,
AES_BLOCKSIZE = 16,
AES128_KEYSIZE = 16,
AES256_KEYSIZE = 32,
};
struct record_hdr {
@ -172,6 +183,9 @@ typedef struct tls_state {
uint8_t encrypt_on_write;
uint8_t decrypt_on_read;
uint8_t client_write_MAC_key[SHA256_OUTSIZE];
uint8_t server_write_MAC_key[SHA256_OUTSIZE];
uint8_t client_write_key[AES256_KEYSIZE];
uint8_t server_write_key[AES256_KEYSIZE];
// RFC 5246
// sequence number
// Each connection state contains a sequence number, which is
@ -208,7 +222,10 @@ typedef struct tls_state {
// Since our buffer also contains 5-byte headers, make it a bit bigger:
int insize;
int tail;
uint8_t inbuf[18*1024];
//needed?
uint64_t align____;
uint8_t inbuf[20*1024];
uint8_t outbuf[20*1024];
} tls_state_t;
@ -512,13 +529,114 @@ static void xwrite_and_hash(tls_state_t *tls, /*const*/ void *buf, unsigned size
NULL);
tls->write_seq64_be = SWAP_BE64(1 + SWAP_BE64(tls->write_seq64_be));
xhdr->len16_lo += SHA256_OUTSIZE;
xwrite(tls->fd, buf, size);
xhdr->len16_lo -= SHA256_OUTSIZE;
dbg("wrote %u bytes\n", size);
if (CIPHER_ID == TLS_RSA_WITH_NULL_SHA256) {
/* No encryption, only signing */
xhdr->len16_lo += SHA256_OUTSIZE;
//FIXME: overflow into len16_hi?
xwrite(tls->fd, buf, size);
xhdr->len16_lo -= SHA256_OUTSIZE;
dbg("wrote %u bytes\n", size);
xwrite(tls->fd, mac_hash, sizeof(mac_hash));
dbg("wrote %u bytes of hash\n", (int)sizeof(mac_hash));
xwrite(tls->fd, mac_hash, sizeof(mac_hash));
dbg("wrote %u bytes of hash\n", (int)sizeof(mac_hash));
return;
}
// RFC 5246
// 6.2.3.2. CBC Block Cipher
// For block ciphers (such as 3DES or AES), the encryption and MAC
// functions convert TLSCompressed.fragment structures to and from block
// TLSCiphertext.fragment structures.
// struct {
// opaque IV[SecurityParameters.record_iv_length];
// block-ciphered struct {
// opaque content[TLSCompressed.length];
// opaque MAC[SecurityParameters.mac_length];
// uint8 padding[GenericBlockCipher.padding_length];
// uint8 padding_length;
// };
// } GenericBlockCipher;
//...
// IV
// The Initialization Vector (IV) SHOULD be chosen at random, and
// MUST be unpredictable. Note that in versions of TLS prior to 1.1,
// there was no IV field (...). For block ciphers, the IV length is
// of length SecurityParameters.record_iv_length, which is equal to the
// SecurityParameters.block_size.
// padding
// Padding that is added to force the length of the plaintext to be
// an integral multiple of the block cipher's block length.
// padding_length
// The padding length MUST be such that the total size of the
// GenericBlockCipher structure is a multiple of the cipher's block
// length. Legal values range from zero to 255, inclusive.
//...
// Appendix C. Cipher Suite Definitions
//...
// Key IV Block
// Cipher Type Material Size Size
// ------------ ------ -------- ---- -----
// NULL Stream 0 0 N/A
// RC4_128 Stream 16 0 N/A
// 3DES_EDE_CBC Block 24 8 8
// AES_128_CBC Block 16 16 16
// AES_256_CBC Block 32 16 16
{
psCipherContext_t ctx;
uint8_t *p;
uint8_t padding_length;
/* Build IV+content+MAC+padding in outbuf */
tls_get_random(tls->outbuf, AES_BLOCKSIZE); /* IV */
p = tls->outbuf + AES_BLOCKSIZE;
size -= sizeof(*xhdr);
dbg("before crypt: 5 hdr + %u data + %u hash bytes\n", size, sizeof(mac_hash));
p = mempcpy(p, buf + sizeof(*xhdr), size); /* content */
p = mempcpy(p, mac_hash, sizeof(mac_hash)); /* MAC */
size += sizeof(mac_hash);
// RFC is talking nonsense:
// Padding that is added to force the length of the plaintext to be
// an integral multiple of the block cipher's block length.
// WRONG. _padding+padding_length_, not just _padding_,
// pads the data.
// IOW: padding_length is the last byte of padding[] array,
// contrary to what RFC depicts.
//
// What actually happens is that there is always padding.
// If you need one byte to reach BLOCKSIZE, this byte is 0x00.
// If you need two bytes, they are both 0x01.
// If you need three, they are 0x02,0x02,0x02. And so on.
// If you need no bytes to reach BLOCKSIZE, you have to pad a full
// BLOCKSIZE with bytes of value (BLOCKSIZE-1).
// It's ok to have more than minimum padding, but we do minimum.
padding_length = (~size) & (AES_BLOCKSIZE - 1);
do {
*p++ = padding_length; /* padding */
size++;
} while ((size & (AES_BLOCKSIZE - 1)) != 0);
/* Encrypt content+MAC+padding in place */
psAesInit(&ctx, tls->outbuf, /* IV */
tls->client_write_key, sizeof(tls->client_write_key)
);
psAesEncrypt(&ctx,
tls->outbuf + AES_BLOCKSIZE, /* plaintext */
tls->outbuf + AES_BLOCKSIZE, /* ciphertext */
size
);
/* Write out */
dbg("writing 5 + %u IV + %u encrypted bytes, padding_length:0x%02x\n",
AES_BLOCKSIZE, size, padding_length);
size += AES_BLOCKSIZE; /* + IV */
xhdr->len16_hi = size >> 8;
xhdr->len16_lo = size & 0xff;
xwrite(tls->fd, xhdr, sizeof(*xhdr));
xwrite(tls->fd, tls->outbuf, size);
dbg("wrote %u bytes\n", sizeof(*xhdr) + size);
//restore xhdr->len16_hi = ;
//restore xhdr->len16_lo = ;
}
}
static int xread_tls_block(tls_state_t *tls)
@ -1048,14 +1166,30 @@ static void send_client_key_exchange(tls_state_t *tls)
// server_write_key[SecurityParameters.enc_key_length]
// client_write_IV[SecurityParameters.fixed_iv_length]
// server_write_IV[SecurityParameters.fixed_iv_length]
// Key IV Block
// Cipher Type Material Size Size
// ------------ ------ -------- ---- -----
// NULL Stream 0 0 N/A
// RC4_128 Stream 16 0 N/A
// 3DES_EDE_CBC Block 24 8 8
// AES_128_CBC Block 16 16 16
// AES_256_CBC Block 32 16 16
{
uint8_t tmp64[64];
/* make server_rand32 + client_rand32 */
/* make "server_rand32 + client_rand32" */
memcpy(&tmp64[0] , &tls->client_and_server_rand32[32], 32);
memcpy(&tmp64[32], &tls->client_and_server_rand32[0] , 32);
prf_hmac_sha256(
tls->client_write_MAC_key, sizeof(tls->client_write_MAC_key),
tls->client_write_MAC_key, 2 * (SHA256_OUTSIZE + AES256_KEYSIZE),
// also fills:
// server_write_MAC_key[SHA256_OUTSIZE]
// client_write_key[AES256_KEYSIZE]
// server_write_key[AES256_KEYSIZE]
tls->master_secret, sizeof(tls->master_secret),
"key expansion",
tmp64, 64
@ -1063,6 +1197,9 @@ static void send_client_key_exchange(tls_state_t *tls)
dump_hex("client_write_MAC_key:%s\n",
tls->client_write_MAC_key, sizeof(tls->client_write_MAC_key)
);
dump_hex("client_write_key:%s\n",
tls->client_write_key, sizeof(tls->client_write_key)
);
}
}