mirror of
https://github.com/sheumann/hush.git
synced 2025-01-24 16:30:54 +00:00
ab801874f8
-mkfs_minix_main [busybox_unstripped]: 4288 -mkfs_minix_main [busybox_unstripped]: 4276 -grave [busybox_unstripped]: 4260 (bzip2 users too - not listed) price we pay in code size increase: mainSort 2458 2515 +57 grave 1005 1058 +53 sendMTFValues 2177 2195 +18 BZ2_blockSort 122 125 +3 mkfs_minix_main 3070 3022 -48 ------------------------------------------------------------------------------ (add/remove: 0/0 grow/shrink: 4/1 up/down: 131/-48) Total: 83 bytes
688 lines
18 KiB
C
688 lines
18 KiB
C
/*
|
|
* bzip2 is written by Julian Seward <jseward@bzip.org>.
|
|
* Adapted for busybox by Denys Vlasenko <vda.linux@googlemail.com>.
|
|
* See README and LICENSE files in this directory for more information.
|
|
*/
|
|
|
|
/*-------------------------------------------------------------*/
|
|
/*--- Compression machinery (not incl block sorting) ---*/
|
|
/*--- compress.c ---*/
|
|
/*-------------------------------------------------------------*/
|
|
|
|
/* ------------------------------------------------------------------
|
|
This file is part of bzip2/libbzip2, a program and library for
|
|
lossless, block-sorting data compression.
|
|
|
|
bzip2/libbzip2 version 1.0.4 of 20 December 2006
|
|
Copyright (C) 1996-2006 Julian Seward <jseward@bzip.org>
|
|
|
|
Please read the WARNING, DISCLAIMER and PATENTS sections in the
|
|
README file.
|
|
|
|
This program is released under the terms of the license contained
|
|
in the file LICENSE.
|
|
------------------------------------------------------------------ */
|
|
|
|
/* CHANGES
|
|
* 0.9.0 -- original version.
|
|
* 0.9.0a/b -- no changes in this file.
|
|
* 0.9.0c -- changed setting of nGroups in sendMTFValues()
|
|
* so as to do a bit better on small files
|
|
*/
|
|
|
|
/* #include "bzlib_private.h" */
|
|
|
|
/*---------------------------------------------------*/
|
|
/*--- Bit stream I/O ---*/
|
|
/*---------------------------------------------------*/
|
|
|
|
/*---------------------------------------------------*/
|
|
static
|
|
void BZ2_bsInitWrite(EState* s)
|
|
{
|
|
s->bsLive = 0;
|
|
s->bsBuff = 0;
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------*/
|
|
static NOINLINE
|
|
void bsFinishWrite(EState* s)
|
|
{
|
|
while (s->bsLive > 0) {
|
|
s->zbits[s->numZ] = (uint8_t)(s->bsBuff >> 24);
|
|
s->numZ++;
|
|
s->bsBuff <<= 8;
|
|
s->bsLive -= 8;
|
|
}
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------*/
|
|
static
|
|
/* Helps only on level 5, on other levels hurts. ? */
|
|
#if CONFIG_BZIP2_FEATURE_SPEED >= 5
|
|
ALWAYS_INLINE
|
|
#endif
|
|
void bsW(EState* s, int32_t n, uint32_t v)
|
|
{
|
|
while (s->bsLive >= 8) {
|
|
s->zbits[s->numZ] = (uint8_t)(s->bsBuff >> 24);
|
|
s->numZ++;
|
|
s->bsBuff <<= 8;
|
|
s->bsLive -= 8;
|
|
}
|
|
s->bsBuff |= (v << (32 - s->bsLive - n));
|
|
s->bsLive += n;
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------*/
|
|
static
|
|
void bsPutU32(EState* s, unsigned u)
|
|
{
|
|
bsW(s, 8, (u >> 24) & 0xff);
|
|
bsW(s, 8, (u >> 16) & 0xff);
|
|
bsW(s, 8, (u >> 8) & 0xff);
|
|
bsW(s, 8, u & 0xff);
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------*/
|
|
static
|
|
void bsPutU16(EState* s, unsigned u)
|
|
{
|
|
bsW(s, 8, (u >> 8) & 0xff);
|
|
bsW(s, 8, u & 0xff);
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------*/
|
|
/*--- The back end proper ---*/
|
|
/*---------------------------------------------------*/
|
|
|
|
/*---------------------------------------------------*/
|
|
static
|
|
void makeMaps_e(EState* s)
|
|
{
|
|
int i;
|
|
s->nInUse = 0;
|
|
for (i = 0; i < 256; i++) {
|
|
if (s->inUse[i]) {
|
|
s->unseqToSeq[i] = s->nInUse;
|
|
s->nInUse++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------*/
|
|
static NOINLINE
|
|
void generateMTFValues(EState* s)
|
|
{
|
|
uint8_t yy[256];
|
|
int32_t i, j;
|
|
int32_t zPend;
|
|
int32_t wr;
|
|
int32_t EOB;
|
|
|
|
/*
|
|
* After sorting (eg, here),
|
|
* s->arr1[0 .. s->nblock-1] holds sorted order,
|
|
* and
|
|
* ((uint8_t*)s->arr2)[0 .. s->nblock-1]
|
|
* holds the original block data.
|
|
*
|
|
* The first thing to do is generate the MTF values,
|
|
* and put them in
|
|
* ((uint16_t*)s->arr1)[0 .. s->nblock-1].
|
|
* Because there are strictly fewer or equal MTF values
|
|
* than block values, ptr values in this area are overwritten
|
|
* with MTF values only when they are no longer needed.
|
|
*
|
|
* The final compressed bitstream is generated into the
|
|
* area starting at
|
|
* &((uint8_t*)s->arr2)[s->nblock]
|
|
*
|
|
* These storage aliases are set up in bzCompressInit(),
|
|
* except for the last one, which is arranged in
|
|
* compressBlock().
|
|
*/
|
|
uint32_t* ptr = s->ptr;
|
|
uint8_t* block = s->block;
|
|
uint16_t* mtfv = s->mtfv;
|
|
|
|
makeMaps_e(s);
|
|
EOB = s->nInUse+1;
|
|
|
|
for (i = 0; i <= EOB; i++)
|
|
s->mtfFreq[i] = 0;
|
|
|
|
wr = 0;
|
|
zPend = 0;
|
|
for (i = 0; i < s->nInUse; i++)
|
|
yy[i] = (uint8_t) i;
|
|
|
|
for (i = 0; i < s->nblock; i++) {
|
|
uint8_t ll_i;
|
|
AssertD(wr <= i, "generateMTFValues(1)");
|
|
j = ptr[i] - 1;
|
|
if (j < 0)
|
|
j += s->nblock;
|
|
ll_i = s->unseqToSeq[block[j]];
|
|
AssertD(ll_i < s->nInUse, "generateMTFValues(2a)");
|
|
|
|
if (yy[0] == ll_i) {
|
|
zPend++;
|
|
} else {
|
|
if (zPend > 0) {
|
|
zPend--;
|
|
while (1) {
|
|
if (zPend & 1) {
|
|
mtfv[wr] = BZ_RUNB; wr++;
|
|
s->mtfFreq[BZ_RUNB]++;
|
|
} else {
|
|
mtfv[wr] = BZ_RUNA; wr++;
|
|
s->mtfFreq[BZ_RUNA]++;
|
|
}
|
|
if (zPend < 2) break;
|
|
zPend = (uint32_t)(zPend - 2) / 2;
|
|
/* bbox: unsigned div is easier */
|
|
};
|
|
zPend = 0;
|
|
}
|
|
{
|
|
register uint8_t rtmp;
|
|
register uint8_t* ryy_j;
|
|
register uint8_t rll_i;
|
|
rtmp = yy[1];
|
|
yy[1] = yy[0];
|
|
ryy_j = &(yy[1]);
|
|
rll_i = ll_i;
|
|
while (rll_i != rtmp) {
|
|
register uint8_t rtmp2;
|
|
ryy_j++;
|
|
rtmp2 = rtmp;
|
|
rtmp = *ryy_j;
|
|
*ryy_j = rtmp2;
|
|
};
|
|
yy[0] = rtmp;
|
|
j = ryy_j - &(yy[0]);
|
|
mtfv[wr] = j+1;
|
|
wr++;
|
|
s->mtfFreq[j+1]++;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
if (zPend > 0) {
|
|
zPend--;
|
|
while (1) {
|
|
if (zPend & 1) {
|
|
mtfv[wr] = BZ_RUNB;
|
|
wr++;
|
|
s->mtfFreq[BZ_RUNB]++;
|
|
} else {
|
|
mtfv[wr] = BZ_RUNA;
|
|
wr++;
|
|
s->mtfFreq[BZ_RUNA]++;
|
|
}
|
|
if (zPend < 2)
|
|
break;
|
|
zPend = (uint32_t)(zPend - 2) / 2;
|
|
/* bbox: unsigned div is easier */
|
|
};
|
|
zPend = 0;
|
|
}
|
|
|
|
mtfv[wr] = EOB;
|
|
wr++;
|
|
s->mtfFreq[EOB]++;
|
|
|
|
s->nMTF = wr;
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------*/
|
|
#define BZ_LESSER_ICOST 0
|
|
#define BZ_GREATER_ICOST 15
|
|
|
|
static NOINLINE
|
|
void sendMTFValues(EState* s)
|
|
{
|
|
int32_t v, t, i, j, gs, ge, totc, bt, bc, iter;
|
|
int32_t nSelectors, alphaSize, minLen, maxLen, selCtr;
|
|
int32_t nGroups, nBytes;
|
|
|
|
/*
|
|
* uint8_t len[BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
|
|
* is a global since the decoder also needs it.
|
|
*
|
|
* int32_t code[BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
|
|
* int32_t rfreq[BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
|
|
* are also globals only used in this proc.
|
|
* Made global to keep stack frame size small.
|
|
*/
|
|
#define code sendMTFValues__code
|
|
#define rfreq sendMTFValues__rfreq
|
|
#define len_pack sendMTFValues__len_pack
|
|
|
|
uint16_t cost[BZ_N_GROUPS];
|
|
int32_t fave[BZ_N_GROUPS];
|
|
|
|
uint16_t* mtfv = s->mtfv;
|
|
|
|
alphaSize = s->nInUse + 2;
|
|
for (t = 0; t < BZ_N_GROUPS; t++)
|
|
for (v = 0; v < alphaSize; v++)
|
|
s->len[t][v] = BZ_GREATER_ICOST;
|
|
|
|
/*--- Decide how many coding tables to use ---*/
|
|
AssertH(s->nMTF > 0, 3001);
|
|
if (s->nMTF < 200) nGroups = 2; else
|
|
if (s->nMTF < 600) nGroups = 3; else
|
|
if (s->nMTF < 1200) nGroups = 4; else
|
|
if (s->nMTF < 2400) nGroups = 5; else
|
|
nGroups = 6;
|
|
|
|
/*--- Generate an initial set of coding tables ---*/
|
|
{
|
|
int32_t nPart, remF, tFreq, aFreq;
|
|
|
|
nPart = nGroups;
|
|
remF = s->nMTF;
|
|
gs = 0;
|
|
while (nPart > 0) {
|
|
tFreq = remF / nPart;
|
|
ge = gs - 1;
|
|
aFreq = 0;
|
|
while (aFreq < tFreq && ge < alphaSize-1) {
|
|
ge++;
|
|
aFreq += s->mtfFreq[ge];
|
|
}
|
|
|
|
if (ge > gs
|
|
&& nPart != nGroups && nPart != 1
|
|
&& ((nGroups - nPart) % 2 == 1) /* bbox: can this be replaced by x & 1? */
|
|
) {
|
|
aFreq -= s->mtfFreq[ge];
|
|
ge--;
|
|
}
|
|
|
|
for (v = 0; v < alphaSize; v++)
|
|
if (v >= gs && v <= ge)
|
|
s->len[nPart-1][v] = BZ_LESSER_ICOST;
|
|
else
|
|
s->len[nPart-1][v] = BZ_GREATER_ICOST;
|
|
|
|
nPart--;
|
|
gs = ge + 1;
|
|
remF -= aFreq;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Iterate up to BZ_N_ITERS times to improve the tables.
|
|
*/
|
|
for (iter = 0; iter < BZ_N_ITERS; iter++) {
|
|
for (t = 0; t < nGroups; t++)
|
|
fave[t] = 0;
|
|
|
|
for (t = 0; t < nGroups; t++)
|
|
for (v = 0; v < alphaSize; v++)
|
|
s->rfreq[t][v] = 0;
|
|
|
|
#if CONFIG_BZIP2_FEATURE_SPEED >= 5
|
|
/*
|
|
* Set up an auxiliary length table which is used to fast-track
|
|
* the common case (nGroups == 6).
|
|
*/
|
|
if (nGroups == 6) {
|
|
for (v = 0; v < alphaSize; v++) {
|
|
s->len_pack[v][0] = (s->len[1][v] << 16) | s->len[0][v];
|
|
s->len_pack[v][1] = (s->len[3][v] << 16) | s->len[2][v];
|
|
s->len_pack[v][2] = (s->len[5][v] << 16) | s->len[4][v];
|
|
}
|
|
}
|
|
#endif
|
|
nSelectors = 0;
|
|
totc = 0;
|
|
gs = 0;
|
|
while (1) {
|
|
/*--- Set group start & end marks. --*/
|
|
if (gs >= s->nMTF)
|
|
break;
|
|
ge = gs + BZ_G_SIZE - 1;
|
|
if (ge >= s->nMTF)
|
|
ge = s->nMTF-1;
|
|
|
|
/*
|
|
* Calculate the cost of this group as coded
|
|
* by each of the coding tables.
|
|
*/
|
|
for (t = 0; t < nGroups; t++)
|
|
cost[t] = 0;
|
|
#if CONFIG_BZIP2_FEATURE_SPEED >= 5
|
|
if (nGroups == 6 && 50 == ge-gs+1) {
|
|
/*--- fast track the common case ---*/
|
|
register uint32_t cost01, cost23, cost45;
|
|
register uint16_t icv;
|
|
cost01 = cost23 = cost45 = 0;
|
|
#define BZ_ITER(nn) \
|
|
icv = mtfv[gs+(nn)]; \
|
|
cost01 += s->len_pack[icv][0]; \
|
|
cost23 += s->len_pack[icv][1]; \
|
|
cost45 += s->len_pack[icv][2];
|
|
BZ_ITER(0); BZ_ITER(1); BZ_ITER(2); BZ_ITER(3); BZ_ITER(4);
|
|
BZ_ITER(5); BZ_ITER(6); BZ_ITER(7); BZ_ITER(8); BZ_ITER(9);
|
|
BZ_ITER(10); BZ_ITER(11); BZ_ITER(12); BZ_ITER(13); BZ_ITER(14);
|
|
BZ_ITER(15); BZ_ITER(16); BZ_ITER(17); BZ_ITER(18); BZ_ITER(19);
|
|
BZ_ITER(20); BZ_ITER(21); BZ_ITER(22); BZ_ITER(23); BZ_ITER(24);
|
|
BZ_ITER(25); BZ_ITER(26); BZ_ITER(27); BZ_ITER(28); BZ_ITER(29);
|
|
BZ_ITER(30); BZ_ITER(31); BZ_ITER(32); BZ_ITER(33); BZ_ITER(34);
|
|
BZ_ITER(35); BZ_ITER(36); BZ_ITER(37); BZ_ITER(38); BZ_ITER(39);
|
|
BZ_ITER(40); BZ_ITER(41); BZ_ITER(42); BZ_ITER(43); BZ_ITER(44);
|
|
BZ_ITER(45); BZ_ITER(46); BZ_ITER(47); BZ_ITER(48); BZ_ITER(49);
|
|
#undef BZ_ITER
|
|
cost[0] = cost01 & 0xffff; cost[1] = cost01 >> 16;
|
|
cost[2] = cost23 & 0xffff; cost[3] = cost23 >> 16;
|
|
cost[4] = cost45 & 0xffff; cost[5] = cost45 >> 16;
|
|
|
|
} else
|
|
#endif
|
|
{
|
|
/*--- slow version which correctly handles all situations ---*/
|
|
for (i = gs; i <= ge; i++) {
|
|
uint16_t icv = mtfv[i];
|
|
for (t = 0; t < nGroups; t++)
|
|
cost[t] += s->len[t][icv];
|
|
}
|
|
}
|
|
/*
|
|
* Find the coding table which is best for this group,
|
|
* and record its identity in the selector table.
|
|
*/
|
|
/*bc = 999999999;*/
|
|
/*bt = -1;*/
|
|
bc = cost[0];
|
|
bt = 0;
|
|
for (t = 1 /*0*/; t < nGroups; t++) {
|
|
if (cost[t] < bc) {
|
|
bc = cost[t];
|
|
bt = t;
|
|
}
|
|
}
|
|
totc += bc;
|
|
fave[bt]++;
|
|
s->selector[nSelectors] = bt;
|
|
nSelectors++;
|
|
|
|
/*
|
|
* Increment the symbol frequencies for the selected table.
|
|
*/
|
|
/* 1% faster compress. +800 bytes */
|
|
#if CONFIG_BZIP2_FEATURE_SPEED >= 4
|
|
if (nGroups == 6 && 50 == ge-gs+1) {
|
|
/*--- fast track the common case ---*/
|
|
#define BZ_ITUR(nn) s->rfreq[bt][mtfv[gs + (nn)]]++
|
|
BZ_ITUR(0); BZ_ITUR(1); BZ_ITUR(2); BZ_ITUR(3); BZ_ITUR(4);
|
|
BZ_ITUR(5); BZ_ITUR(6); BZ_ITUR(7); BZ_ITUR(8); BZ_ITUR(9);
|
|
BZ_ITUR(10); BZ_ITUR(11); BZ_ITUR(12); BZ_ITUR(13); BZ_ITUR(14);
|
|
BZ_ITUR(15); BZ_ITUR(16); BZ_ITUR(17); BZ_ITUR(18); BZ_ITUR(19);
|
|
BZ_ITUR(20); BZ_ITUR(21); BZ_ITUR(22); BZ_ITUR(23); BZ_ITUR(24);
|
|
BZ_ITUR(25); BZ_ITUR(26); BZ_ITUR(27); BZ_ITUR(28); BZ_ITUR(29);
|
|
BZ_ITUR(30); BZ_ITUR(31); BZ_ITUR(32); BZ_ITUR(33); BZ_ITUR(34);
|
|
BZ_ITUR(35); BZ_ITUR(36); BZ_ITUR(37); BZ_ITUR(38); BZ_ITUR(39);
|
|
BZ_ITUR(40); BZ_ITUR(41); BZ_ITUR(42); BZ_ITUR(43); BZ_ITUR(44);
|
|
BZ_ITUR(45); BZ_ITUR(46); BZ_ITUR(47); BZ_ITUR(48); BZ_ITUR(49);
|
|
#undef BZ_ITUR
|
|
gs = ge + 1;
|
|
} else
|
|
#endif
|
|
{
|
|
/*--- slow version which correctly handles all situations ---*/
|
|
while (gs <= ge) {
|
|
s->rfreq[bt][mtfv[gs]]++;
|
|
gs++;
|
|
}
|
|
/* already is: gs = ge + 1; */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Recompute the tables based on the accumulated frequencies.
|
|
*/
|
|
/* maxLen was changed from 20 to 17 in bzip2-1.0.3. See
|
|
* comment in huffman.c for details. */
|
|
for (t = 0; t < nGroups; t++)
|
|
BZ2_hbMakeCodeLengths(s, &(s->len[t][0]), &(s->rfreq[t][0]), alphaSize, 17 /*20*/);
|
|
}
|
|
|
|
AssertH(nGroups < 8, 3002);
|
|
AssertH(nSelectors < 32768 && nSelectors <= (2 + (900000 / BZ_G_SIZE)), 3003);
|
|
|
|
/*--- Compute MTF values for the selectors. ---*/
|
|
{
|
|
uint8_t pos[BZ_N_GROUPS], ll_i, tmp2, tmp;
|
|
|
|
for (i = 0; i < nGroups; i++)
|
|
pos[i] = i;
|
|
for (i = 0; i < nSelectors; i++) {
|
|
ll_i = s->selector[i];
|
|
j = 0;
|
|
tmp = pos[j];
|
|
while (ll_i != tmp) {
|
|
j++;
|
|
tmp2 = tmp;
|
|
tmp = pos[j];
|
|
pos[j] = tmp2;
|
|
};
|
|
pos[0] = tmp;
|
|
s->selectorMtf[i] = j;
|
|
}
|
|
};
|
|
|
|
/*--- Assign actual codes for the tables. --*/
|
|
for (t = 0; t < nGroups; t++) {
|
|
minLen = 32;
|
|
maxLen = 0;
|
|
for (i = 0; i < alphaSize; i++) {
|
|
if (s->len[t][i] > maxLen) maxLen = s->len[t][i];
|
|
if (s->len[t][i] < minLen) minLen = s->len[t][i];
|
|
}
|
|
AssertH(!(maxLen > 17 /*20*/), 3004);
|
|
AssertH(!(minLen < 1), 3005);
|
|
BZ2_hbAssignCodes(&(s->code[t][0]), &(s->len[t][0]), minLen, maxLen, alphaSize);
|
|
}
|
|
|
|
/*--- Transmit the mapping table. ---*/
|
|
{
|
|
/* bbox: optimized a bit more than in bzip2 */
|
|
int inUse16 = 0;
|
|
for (i = 0; i < 16; i++) {
|
|
if (sizeof(long) <= 4) {
|
|
inUse16 = inUse16*2 +
|
|
((*(uint32_t*)&(s->inUse[i * 16 + 0])
|
|
| *(uint32_t*)&(s->inUse[i * 16 + 4])
|
|
| *(uint32_t*)&(s->inUse[i * 16 + 8])
|
|
| *(uint32_t*)&(s->inUse[i * 16 + 12])) != 0);
|
|
} else { /* Our CPU can do better */
|
|
inUse16 = inUse16*2 +
|
|
((*(uint64_t*)&(s->inUse[i * 16 + 0])
|
|
| *(uint64_t*)&(s->inUse[i * 16 + 8])) != 0);
|
|
}
|
|
}
|
|
|
|
nBytes = s->numZ;
|
|
bsW(s, 16, inUse16);
|
|
|
|
inUse16 <<= (sizeof(int)*8 - 16); /* move 15th bit into sign bit */
|
|
for (i = 0; i < 16; i++) {
|
|
if (inUse16 < 0) {
|
|
unsigned v16 = 0;
|
|
for (j = 0; j < 16; j++)
|
|
v16 = v16*2 + s->inUse[i * 16 + j];
|
|
bsW(s, 16, v16);
|
|
}
|
|
inUse16 <<= 1;
|
|
}
|
|
}
|
|
|
|
/*--- Now the selectors. ---*/
|
|
nBytes = s->numZ;
|
|
bsW(s, 3, nGroups);
|
|
bsW(s, 15, nSelectors);
|
|
for (i = 0; i < nSelectors; i++) {
|
|
for (j = 0; j < s->selectorMtf[i]; j++)
|
|
bsW(s, 1, 1);
|
|
bsW(s, 1, 0);
|
|
}
|
|
|
|
/*--- Now the coding tables. ---*/
|
|
nBytes = s->numZ;
|
|
|
|
for (t = 0; t < nGroups; t++) {
|
|
int32_t curr = s->len[t][0];
|
|
bsW(s, 5, curr);
|
|
for (i = 0; i < alphaSize; i++) {
|
|
while (curr < s->len[t][i]) { bsW(s, 2, 2); curr++; /* 10 */ };
|
|
while (curr > s->len[t][i]) { bsW(s, 2, 3); curr--; /* 11 */ };
|
|
bsW(s, 1, 0);
|
|
}
|
|
}
|
|
|
|
/*--- And finally, the block data proper ---*/
|
|
nBytes = s->numZ;
|
|
selCtr = 0;
|
|
gs = 0;
|
|
while (1) {
|
|
if (gs >= s->nMTF)
|
|
break;
|
|
ge = gs + BZ_G_SIZE - 1;
|
|
if (ge >= s->nMTF)
|
|
ge = s->nMTF-1;
|
|
AssertH(s->selector[selCtr] < nGroups, 3006);
|
|
|
|
/* Costs 1300 bytes and is _slower_ (on Intel Core 2) */
|
|
#if 0
|
|
if (nGroups == 6 && 50 == ge-gs+1) {
|
|
/*--- fast track the common case ---*/
|
|
uint16_t mtfv_i;
|
|
uint8_t* s_len_sel_selCtr = &(s->len[s->selector[selCtr]][0]);
|
|
int32_t* s_code_sel_selCtr = &(s->code[s->selector[selCtr]][0]);
|
|
#define BZ_ITAH(nn) \
|
|
mtfv_i = mtfv[gs+(nn)]; \
|
|
bsW(s, s_len_sel_selCtr[mtfv_i], s_code_sel_selCtr[mtfv_i])
|
|
BZ_ITAH(0); BZ_ITAH(1); BZ_ITAH(2); BZ_ITAH(3); BZ_ITAH(4);
|
|
BZ_ITAH(5); BZ_ITAH(6); BZ_ITAH(7); BZ_ITAH(8); BZ_ITAH(9);
|
|
BZ_ITAH(10); BZ_ITAH(11); BZ_ITAH(12); BZ_ITAH(13); BZ_ITAH(14);
|
|
BZ_ITAH(15); BZ_ITAH(16); BZ_ITAH(17); BZ_ITAH(18); BZ_ITAH(19);
|
|
BZ_ITAH(20); BZ_ITAH(21); BZ_ITAH(22); BZ_ITAH(23); BZ_ITAH(24);
|
|
BZ_ITAH(25); BZ_ITAH(26); BZ_ITAH(27); BZ_ITAH(28); BZ_ITAH(29);
|
|
BZ_ITAH(30); BZ_ITAH(31); BZ_ITAH(32); BZ_ITAH(33); BZ_ITAH(34);
|
|
BZ_ITAH(35); BZ_ITAH(36); BZ_ITAH(37); BZ_ITAH(38); BZ_ITAH(39);
|
|
BZ_ITAH(40); BZ_ITAH(41); BZ_ITAH(42); BZ_ITAH(43); BZ_ITAH(44);
|
|
BZ_ITAH(45); BZ_ITAH(46); BZ_ITAH(47); BZ_ITAH(48); BZ_ITAH(49);
|
|
#undef BZ_ITAH
|
|
gs = ge+1;
|
|
} else
|
|
#endif
|
|
{
|
|
/*--- slow version which correctly handles all situations ---*/
|
|
/* code is bit bigger, but moves multiply out of the loop */
|
|
uint8_t* s_len_sel_selCtr = &(s->len [s->selector[selCtr]][0]);
|
|
int32_t* s_code_sel_selCtr = &(s->code[s->selector[selCtr]][0]);
|
|
while (gs <= ge) {
|
|
bsW(s,
|
|
s_len_sel_selCtr[mtfv[gs]],
|
|
s_code_sel_selCtr[mtfv[gs]]
|
|
);
|
|
gs++;
|
|
}
|
|
/* already is: gs = ge+1; */
|
|
}
|
|
selCtr++;
|
|
}
|
|
AssertH(selCtr == nSelectors, 3007);
|
|
#undef code
|
|
#undef rfreq
|
|
#undef len_pack
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------*/
|
|
static
|
|
void BZ2_compressBlock(EState* s, int is_last_block)
|
|
{
|
|
if (s->nblock > 0) {
|
|
BZ_FINALISE_CRC(s->blockCRC);
|
|
s->combinedCRC = (s->combinedCRC << 1) | (s->combinedCRC >> 31);
|
|
s->combinedCRC ^= s->blockCRC;
|
|
if (s->blockNo > 1)
|
|
s->numZ = 0;
|
|
|
|
BZ2_blockSort(s);
|
|
}
|
|
|
|
s->zbits = &((uint8_t*)s->arr2)[s->nblock];
|
|
|
|
/*-- If this is the first block, create the stream header. --*/
|
|
if (s->blockNo == 1) {
|
|
BZ2_bsInitWrite(s);
|
|
/*bsPutU8(s, BZ_HDR_B);*/
|
|
/*bsPutU8(s, BZ_HDR_Z);*/
|
|
/*bsPutU8(s, BZ_HDR_h);*/
|
|
/*bsPutU8(s, BZ_HDR_0 + s->blockSize100k);*/
|
|
bsPutU32(s, BZ_HDR_BZh0 + s->blockSize100k);
|
|
}
|
|
|
|
if (s->nblock > 0) {
|
|
/*bsPutU8(s, 0x31);*/
|
|
/*bsPutU8(s, 0x41);*/
|
|
/*bsPutU8(s, 0x59);*/
|
|
/*bsPutU8(s, 0x26);*/
|
|
bsPutU32(s, 0x31415926);
|
|
/*bsPutU8(s, 0x53);*/
|
|
/*bsPutU8(s, 0x59);*/
|
|
bsPutU16(s, 0x5359);
|
|
|
|
/*-- Now the block's CRC, so it is in a known place. --*/
|
|
bsPutU32(s, s->blockCRC);
|
|
|
|
/*
|
|
* Now a single bit indicating (non-)randomisation.
|
|
* As of version 0.9.5, we use a better sorting algorithm
|
|
* which makes randomisation unnecessary. So always set
|
|
* the randomised bit to 'no'. Of course, the decoder
|
|
* still needs to be able to handle randomised blocks
|
|
* so as to maintain backwards compatibility with
|
|
* older versions of bzip2.
|
|
*/
|
|
bsW(s, 1, 0);
|
|
|
|
bsW(s, 24, s->origPtr);
|
|
generateMTFValues(s);
|
|
sendMTFValues(s);
|
|
}
|
|
|
|
/*-- If this is the last block, add the stream trailer. --*/
|
|
if (is_last_block) {
|
|
/*bsPutU8(s, 0x17);*/
|
|
/*bsPutU8(s, 0x72);*/
|
|
/*bsPutU8(s, 0x45);*/
|
|
/*bsPutU8(s, 0x38);*/
|
|
bsPutU32(s, 0x17724538);
|
|
/*bsPutU8(s, 0x50);*/
|
|
/*bsPutU8(s, 0x90);*/
|
|
bsPutU16(s, 0x5090);
|
|
bsPutU32(s, s->combinedCRC);
|
|
bsFinishWrite(s);
|
|
}
|
|
}
|
|
|
|
|
|
/*-------------------------------------------------------------*/
|
|
/*--- end compress.c ---*/
|
|
/*-------------------------------------------------------------*/
|