mirror of
https://github.com/sheumann/hush.git
synced 2025-01-10 16:29:44 +00:00
821 lines
23 KiB
C
821 lines
23 KiB
C
/*
|
|
* FreeSec: libcrypt for NetBSD
|
|
*
|
|
* Copyright (c) 1994 David Burren
|
|
* All rights reserved.
|
|
*
|
|
* Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
|
|
* this file should now *only* export crypt(), in order to make
|
|
* binaries of libcrypt exportable from the USA
|
|
*
|
|
* Adapted for FreeBSD-4.0 by Mark R V Murray
|
|
* this file should now *only* export crypt_des(), in order to make
|
|
* a module that can be optionally included in libcrypt.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the author nor the names of other contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* This is an original implementation of the DES and the crypt(3) interfaces
|
|
* by David Burren <davidb@werj.com.au>.
|
|
*
|
|
* An excellent reference on the underlying algorithm (and related
|
|
* algorithms) is:
|
|
*
|
|
* B. Schneier, Applied Cryptography: protocols, algorithms,
|
|
* and source code in C, John Wiley & Sons, 1994.
|
|
*
|
|
* Note that in that book's description of DES the lookups for the initial,
|
|
* pbox, and final permutations are inverted (this has been brought to the
|
|
* attention of the author). A list of errata for this book has been
|
|
* posted to the sci.crypt newsgroup by the author and is available for FTP.
|
|
*
|
|
* ARCHITECTURE ASSUMPTIONS:
|
|
* It is assumed that the 8-byte arrays passed by reference can be
|
|
* addressed as arrays of uint32_t's (ie. the CPU is not picky about
|
|
* alignment).
|
|
*/
|
|
|
|
|
|
/* Parts busybox doesn't need or had optimized */
|
|
#define USE_PRECOMPUTED_u_sbox 1
|
|
#define USE_REPETITIVE_SPEEDUP 0
|
|
#define USE_ip_mask 0
|
|
#define USE_de_keys 0
|
|
|
|
|
|
/* A pile of data */
|
|
static const uint8_t IP[64] = {
|
|
58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
|
|
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
|
|
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
|
|
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
|
|
};
|
|
|
|
static const uint8_t key_perm[56] = {
|
|
57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
|
|
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
|
|
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
|
|
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
|
|
};
|
|
|
|
static const uint8_t key_shifts[16] = {
|
|
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
|
|
};
|
|
|
|
static const uint8_t comp_perm[48] = {
|
|
14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
|
|
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
|
|
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
|
|
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
|
|
};
|
|
|
|
/*
|
|
* No E box is used, as it's replaced by some ANDs, shifts, and ORs.
|
|
*/
|
|
#if !USE_PRECOMPUTED_u_sbox
|
|
static const uint8_t sbox[8][64] = {
|
|
{ 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
|
|
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
|
|
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
|
|
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
|
|
},
|
|
{ 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
|
|
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
|
|
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
|
|
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
|
|
},
|
|
{ 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
|
|
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
|
|
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
|
|
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
|
|
},
|
|
{ 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
|
|
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
|
|
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
|
|
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
|
|
},
|
|
{ 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
|
|
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
|
|
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
|
|
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
|
|
},
|
|
{ 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
|
|
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
|
|
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
|
|
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
|
|
},
|
|
{ 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
|
|
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
|
|
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
|
|
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
|
|
},
|
|
{ 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
|
|
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
|
|
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
|
|
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
|
|
}
|
|
};
|
|
#else /* precomputed, with half-bytes packed into one byte */
|
|
static const uint8_t u_sbox[8][32] = {
|
|
{ 0x0e, 0xf4, 0x7d, 0x41, 0xe2, 0x2f, 0xdb, 0x18,
|
|
0xa3, 0x6a, 0xc6, 0xbc, 0x95, 0x59, 0x30, 0x87,
|
|
0xf4, 0xc1, 0x8e, 0x28, 0x4d, 0x96, 0x12, 0x7b,
|
|
0x5f, 0xbc, 0x39, 0xe7, 0xa3, 0x0a, 0x65, 0xd0,
|
|
},
|
|
{ 0x3f, 0xd1, 0x48, 0x7e, 0xf6, 0x2b, 0x83, 0xe4,
|
|
0xc9, 0x07, 0x12, 0xad, 0x6c, 0x90, 0xb5, 0x5a,
|
|
0xd0, 0x8e, 0xa7, 0x1b, 0x3a, 0xf4, 0x4d, 0x21,
|
|
0xb5, 0x68, 0x7c, 0xc6, 0x09, 0x53, 0xe2, 0x9f,
|
|
},
|
|
{ 0xda, 0x70, 0x09, 0x9e, 0x36, 0x43, 0x6f, 0xa5,
|
|
0x21, 0x8d, 0x5c, 0xe7, 0xcb, 0xb4, 0xf2, 0x18,
|
|
0x1d, 0xa6, 0xd4, 0x09, 0x68, 0x9f, 0x83, 0x70,
|
|
0x4b, 0xf1, 0xe2, 0x3c, 0xb5, 0x5a, 0x2e, 0xc7,
|
|
},
|
|
{ 0xd7, 0x8d, 0xbe, 0x53, 0x60, 0xf6, 0x09, 0x3a,
|
|
0x41, 0x72, 0x28, 0xc5, 0x1b, 0xac, 0xe4, 0x9f,
|
|
0x3a, 0xf6, 0x09, 0x60, 0xac, 0x1b, 0xd7, 0x8d,
|
|
0x9f, 0x41, 0x53, 0xbe, 0xc5, 0x72, 0x28, 0xe4,
|
|
},
|
|
{ 0xe2, 0xbc, 0x24, 0xc1, 0x47, 0x7a, 0xdb, 0x16,
|
|
0x58, 0x05, 0xf3, 0xaf, 0x3d, 0x90, 0x8e, 0x69,
|
|
0xb4, 0x82, 0xc1, 0x7b, 0x1a, 0xed, 0x27, 0xd8,
|
|
0x6f, 0xf9, 0x0c, 0x95, 0xa6, 0x43, 0x50, 0x3e,
|
|
},
|
|
{ 0xac, 0xf1, 0x4a, 0x2f, 0x79, 0xc2, 0x96, 0x58,
|
|
0x60, 0x1d, 0xd3, 0xe4, 0x0e, 0xb7, 0x35, 0x8b,
|
|
0x49, 0x3e, 0x2f, 0xc5, 0x92, 0x58, 0xfc, 0xa3,
|
|
0xb7, 0xe0, 0x14, 0x7a, 0x61, 0x0d, 0x8b, 0xd6,
|
|
},
|
|
{ 0xd4, 0x0b, 0xb2, 0x7e, 0x4f, 0x90, 0x18, 0xad,
|
|
0xe3, 0x3c, 0x59, 0xc7, 0x25, 0xfa, 0x86, 0x61,
|
|
0x61, 0xb4, 0xdb, 0x8d, 0x1c, 0x43, 0xa7, 0x7e,
|
|
0x9a, 0x5f, 0x06, 0xf8, 0xe0, 0x25, 0x39, 0xc2,
|
|
},
|
|
{ 0x1d, 0xf2, 0xd8, 0x84, 0xa6, 0x3f, 0x7b, 0x41,
|
|
0xca, 0x59, 0x63, 0xbe, 0x05, 0xe0, 0x9c, 0x27,
|
|
0x27, 0x1b, 0xe4, 0x71, 0x49, 0xac, 0x8e, 0xd2,
|
|
0xf0, 0xc6, 0x9a, 0x0d, 0x3f, 0x53, 0x65, 0xb8,
|
|
},
|
|
};
|
|
#endif
|
|
|
|
static const uint8_t pbox[32] = {
|
|
16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
|
|
2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
|
|
};
|
|
|
|
static const uint32_t bits32[32] =
|
|
{
|
|
0x80000000, 0x40000000, 0x20000000, 0x10000000,
|
|
0x08000000, 0x04000000, 0x02000000, 0x01000000,
|
|
0x00800000, 0x00400000, 0x00200000, 0x00100000,
|
|
0x00080000, 0x00040000, 0x00020000, 0x00010000,
|
|
0x00008000, 0x00004000, 0x00002000, 0x00001000,
|
|
0x00000800, 0x00000400, 0x00000200, 0x00000100,
|
|
0x00000080, 0x00000040, 0x00000020, 0x00000010,
|
|
0x00000008, 0x00000004, 0x00000002, 0x00000001
|
|
};
|
|
|
|
static const uint8_t bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
|
|
|
|
|
|
static int
|
|
ascii_to_bin(char ch)
|
|
{
|
|
if (ch > 'z')
|
|
return 0;
|
|
if (ch >= 'a')
|
|
return (ch - 'a' + 38);
|
|
if (ch > 'Z')
|
|
return 0;
|
|
if (ch >= 'A')
|
|
return (ch - 'A' + 12);
|
|
if (ch > '9')
|
|
return 0;
|
|
if (ch >= '.')
|
|
return (ch - '.');
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Static stuff that stays resident and doesn't change after
|
|
* being initialized, and therefore doesn't need to be made
|
|
* reentrant. */
|
|
struct const_des_ctx {
|
|
#if USE_ip_mask
|
|
uint8_t init_perm[64]; /* referenced 2 times */
|
|
#endif
|
|
uint8_t final_perm[64]; /* 2 times */
|
|
uint8_t m_sbox[4][4096]; /* 5 times */
|
|
};
|
|
#define C (*cctx)
|
|
#define init_perm (C.init_perm )
|
|
#define final_perm (C.final_perm)
|
|
#define m_sbox (C.m_sbox )
|
|
|
|
static struct const_des_ctx*
|
|
const_des_init(void)
|
|
{
|
|
unsigned i, j, b;
|
|
struct const_des_ctx *cctx;
|
|
|
|
#if !USE_PRECOMPUTED_u_sbox
|
|
uint8_t u_sbox[8][64];
|
|
|
|
cctx = xmalloc(sizeof(*cctx));
|
|
|
|
/* Invert the S-boxes, reordering the input bits. */
|
|
for (i = 0; i < 8; i++) {
|
|
for (j = 0; j < 64; j++) {
|
|
b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
|
|
u_sbox[i][j] = sbox[i][b];
|
|
}
|
|
}
|
|
for (i = 0; i < 8; i++) {
|
|
fprintf(stderr, "\t{\t");
|
|
for (j = 0; j < 64; j+=2)
|
|
fprintf(stderr, " 0x%02x,", u_sbox[i][j] + u_sbox[i][j+1]*16);
|
|
fprintf(stderr, "\n\t},\n");
|
|
}
|
|
/*
|
|
* Convert the inverted S-boxes into 4 arrays of 8 bits.
|
|
* Each will handle 12 bits of the S-box input.
|
|
*/
|
|
for (b = 0; b < 4; b++)
|
|
for (i = 0; i < 64; i++)
|
|
for (j = 0; j < 64; j++)
|
|
m_sbox[b][(i << 6) | j] =
|
|
(uint8_t)((u_sbox[(b << 1)][i] << 4) |
|
|
u_sbox[(b << 1) + 1][j]);
|
|
#else
|
|
cctx = xmalloc(sizeof(*cctx));
|
|
|
|
/*
|
|
* Convert the inverted S-boxes into 4 arrays of 8 bits.
|
|
* Each will handle 12 bits of the S-box input.
|
|
*/
|
|
for (b = 0; b < 4; b++)
|
|
for (i = 0; i < 64; i++)
|
|
for (j = 0; j < 64; j++) {
|
|
uint8_t lo, hi;
|
|
hi = u_sbox[(b << 1)][i / 2];
|
|
if (!(i & 1))
|
|
hi <<= 4;
|
|
lo = u_sbox[(b << 1) + 1][j / 2];
|
|
if (j & 1)
|
|
lo >>= 4;
|
|
m_sbox[b][(i << 6) | j] = (hi & 0xf0) | (lo & 0x0f);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Set up the initial & final permutations into a useful form.
|
|
*/
|
|
for (i = 0; i < 64; i++) {
|
|
final_perm[i] = IP[i] - 1;
|
|
#if USE_ip_mask
|
|
init_perm[final_perm[i]] = (uint8_t)i;
|
|
#endif
|
|
}
|
|
|
|
return cctx;
|
|
}
|
|
|
|
|
|
struct des_ctx {
|
|
const struct const_des_ctx *const_ctx;
|
|
uint32_t saltbits; /* referenced 5 times */
|
|
#if USE_REPETITIVE_SPEEDUP
|
|
uint32_t old_salt; /* 3 times */
|
|
uint32_t old_rawkey0, old_rawkey1; /* 3 times each */
|
|
#endif
|
|
uint8_t un_pbox[32]; /* 2 times */
|
|
uint8_t inv_comp_perm[56]; /* 3 times */
|
|
uint8_t inv_key_perm[64]; /* 3 times */
|
|
uint32_t en_keysl[16], en_keysr[16]; /* 2 times each */
|
|
#if USE_de_keys
|
|
uint32_t de_keysl[16], de_keysr[16]; /* 2 times each */
|
|
#endif
|
|
#if USE_ip_mask
|
|
uint32_t ip_maskl[8][256], ip_maskr[8][256]; /* 9 times each */
|
|
#endif
|
|
uint32_t fp_maskl[8][256], fp_maskr[8][256]; /* 9 times each */
|
|
uint32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; /* 9 times */
|
|
uint32_t comp_maskl[8][128], comp_maskr[8][128]; /* 9 times each */
|
|
uint32_t psbox[4][256]; /* 5 times */
|
|
};
|
|
#define D (*ctx)
|
|
#define const_ctx (D.const_ctx )
|
|
#define saltbits (D.saltbits )
|
|
#define old_salt (D.old_salt )
|
|
#define old_rawkey0 (D.old_rawkey0 )
|
|
#define old_rawkey1 (D.old_rawkey1 )
|
|
#define un_pbox (D.un_pbox )
|
|
#define inv_comp_perm (D.inv_comp_perm )
|
|
#define inv_key_perm (D.inv_key_perm )
|
|
#define en_keysl (D.en_keysl )
|
|
#define en_keysr (D.en_keysr )
|
|
#define de_keysl (D.de_keysl )
|
|
#define de_keysr (D.de_keysr )
|
|
#define ip_maskl (D.ip_maskl )
|
|
#define ip_maskr (D.ip_maskr )
|
|
#define fp_maskl (D.fp_maskl )
|
|
#define fp_maskr (D.fp_maskr )
|
|
#define key_perm_maskl (D.key_perm_maskl )
|
|
#define key_perm_maskr (D.key_perm_maskr )
|
|
#define comp_maskl (D.comp_maskl )
|
|
#define comp_maskr (D.comp_maskr )
|
|
#define psbox (D.psbox )
|
|
|
|
static struct des_ctx*
|
|
des_init(struct des_ctx *ctx, const struct const_des_ctx *cctx)
|
|
{
|
|
int i, j, b, k, inbit, obit;
|
|
uint32_t p;
|
|
const uint32_t *bits28, *bits24;
|
|
|
|
if (!ctx)
|
|
ctx = xmalloc(sizeof(*ctx));
|
|
const_ctx = cctx;
|
|
|
|
#if USE_REPETITIVE_SPEEDUP
|
|
old_rawkey0 = old_rawkey1 = 0;
|
|
old_salt = 0;
|
|
#endif
|
|
saltbits = 0;
|
|
bits28 = bits32 + 4;
|
|
bits24 = bits28 + 4;
|
|
|
|
/* Initialise the inverted key permutation. */
|
|
for (i = 0; i < 64; i++) {
|
|
inv_key_perm[i] = 255;
|
|
}
|
|
|
|
/*
|
|
* Invert the key permutation and initialise the inverted key
|
|
* compression permutation.
|
|
*/
|
|
for (i = 0; i < 56; i++) {
|
|
inv_key_perm[key_perm[i] - 1] = (uint8_t)i;
|
|
inv_comp_perm[i] = 255;
|
|
}
|
|
|
|
/* Invert the key compression permutation. */
|
|
for (i = 0; i < 48; i++) {
|
|
inv_comp_perm[comp_perm[i] - 1] = (uint8_t)i;
|
|
}
|
|
|
|
/*
|
|
* Set up the OR-mask arrays for the initial and final permutations,
|
|
* and for the key initial and compression permutations.
|
|
*/
|
|
for (k = 0; k < 8; k++) {
|
|
uint32_t il, ir;
|
|
uint32_t fl, fr;
|
|
for (i = 0; i < 256; i++) {
|
|
#if USE_ip_mask
|
|
il = 0;
|
|
ir = 0;
|
|
#endif
|
|
fl = 0;
|
|
fr = 0;
|
|
for (j = 0; j < 8; j++) {
|
|
inbit = 8 * k + j;
|
|
if (i & bits8[j]) {
|
|
#if USE_ip_mask
|
|
obit = init_perm[inbit];
|
|
if (obit < 32)
|
|
il |= bits32[obit];
|
|
else
|
|
ir |= bits32[obit - 32];
|
|
#endif
|
|
obit = final_perm[inbit];
|
|
if (obit < 32)
|
|
fl |= bits32[obit];
|
|
else
|
|
fr |= bits32[obit - 32];
|
|
}
|
|
}
|
|
#if USE_ip_mask
|
|
ip_maskl[k][i] = il;
|
|
ip_maskr[k][i] = ir;
|
|
#endif
|
|
fp_maskl[k][i] = fl;
|
|
fp_maskr[k][i] = fr;
|
|
}
|
|
for (i = 0; i < 128; i++) {
|
|
il = 0;
|
|
ir = 0;
|
|
for (j = 0; j < 7; j++) {
|
|
inbit = 8 * k + j;
|
|
if (i & bits8[j + 1]) {
|
|
obit = inv_key_perm[inbit];
|
|
if (obit == 255)
|
|
continue;
|
|
if (obit < 28)
|
|
il |= bits28[obit];
|
|
else
|
|
ir |= bits28[obit - 28];
|
|
}
|
|
}
|
|
key_perm_maskl[k][i] = il;
|
|
key_perm_maskr[k][i] = ir;
|
|
il = 0;
|
|
ir = 0;
|
|
for (j = 0; j < 7; j++) {
|
|
inbit = 7 * k + j;
|
|
if (i & bits8[j + 1]) {
|
|
obit = inv_comp_perm[inbit];
|
|
if (obit == 255)
|
|
continue;
|
|
if (obit < 24)
|
|
il |= bits24[obit];
|
|
else
|
|
ir |= bits24[obit - 24];
|
|
}
|
|
}
|
|
comp_maskl[k][i] = il;
|
|
comp_maskr[k][i] = ir;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Invert the P-box permutation, and convert into OR-masks for
|
|
* handling the output of the S-box arrays setup above.
|
|
*/
|
|
for (i = 0; i < 32; i++)
|
|
un_pbox[pbox[i] - 1] = (uint8_t)i;
|
|
|
|
for (b = 0; b < 4; b++) {
|
|
for (i = 0; i < 256; i++) {
|
|
p = 0;
|
|
for (j = 0; j < 8; j++) {
|
|
if (i & bits8[j])
|
|
p |= bits32[un_pbox[8 * b + j]];
|
|
}
|
|
psbox[b][i] = p;
|
|
}
|
|
}
|
|
|
|
return ctx;
|
|
}
|
|
|
|
|
|
static void
|
|
setup_salt(struct des_ctx *ctx, uint32_t salt)
|
|
{
|
|
uint32_t obit, saltbit;
|
|
int i;
|
|
|
|
#if USE_REPETITIVE_SPEEDUP
|
|
if (salt == old_salt)
|
|
return;
|
|
old_salt = salt;
|
|
#endif
|
|
|
|
saltbits = 0;
|
|
saltbit = 1;
|
|
obit = 0x800000;
|
|
for (i = 0; i < 24; i++) {
|
|
if (salt & saltbit)
|
|
saltbits |= obit;
|
|
saltbit <<= 1;
|
|
obit >>= 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
des_setkey(struct des_ctx *ctx, const char *key)
|
|
{
|
|
uint32_t k0, k1, rawkey0, rawkey1;
|
|
int shifts, round;
|
|
|
|
rawkey0 = ntohl(*(const uint32_t *) key);
|
|
rawkey1 = ntohl(*(const uint32_t *) (key + 4));
|
|
|
|
#if USE_REPETITIVE_SPEEDUP
|
|
if ((rawkey0 | rawkey1)
|
|
&& rawkey0 == old_rawkey0
|
|
&& rawkey1 == old_rawkey1
|
|
) {
|
|
/*
|
|
* Already setup for this key.
|
|
* This optimisation fails on a zero key (which is weak and
|
|
* has bad parity anyway) in order to simplify the starting
|
|
* conditions.
|
|
*/
|
|
return;
|
|
}
|
|
old_rawkey0 = rawkey0;
|
|
old_rawkey1 = rawkey1;
|
|
#endif
|
|
|
|
/*
|
|
* Do key permutation and split into two 28-bit subkeys.
|
|
*/
|
|
k0 = key_perm_maskl[0][rawkey0 >> 25]
|
|
| key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
|
|
| key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
|
|
| key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
|
|
| key_perm_maskl[4][rawkey1 >> 25]
|
|
| key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
|
|
| key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
|
|
| key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
|
|
k1 = key_perm_maskr[0][rawkey0 >> 25]
|
|
| key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
|
|
| key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
|
|
| key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
|
|
| key_perm_maskr[4][rawkey1 >> 25]
|
|
| key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
|
|
| key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
|
|
| key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
|
|
/*
|
|
* Rotate subkeys and do compression permutation.
|
|
*/
|
|
shifts = 0;
|
|
for (round = 0; round < 16; round++) {
|
|
uint32_t t0, t1;
|
|
|
|
shifts += key_shifts[round];
|
|
|
|
t0 = (k0 << shifts) | (k0 >> (28 - shifts));
|
|
t1 = (k1 << shifts) | (k1 >> (28 - shifts));
|
|
|
|
#if USE_de_keys
|
|
de_keysl[15 - round] =
|
|
#endif
|
|
en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
|
|
| comp_maskl[1][(t0 >> 14) & 0x7f]
|
|
| comp_maskl[2][(t0 >> 7) & 0x7f]
|
|
| comp_maskl[3][t0 & 0x7f]
|
|
| comp_maskl[4][(t1 >> 21) & 0x7f]
|
|
| comp_maskl[5][(t1 >> 14) & 0x7f]
|
|
| comp_maskl[6][(t1 >> 7) & 0x7f]
|
|
| comp_maskl[7][t1 & 0x7f];
|
|
|
|
#if USE_de_keys
|
|
de_keysr[15 - round] =
|
|
#endif
|
|
en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
|
|
| comp_maskr[1][(t0 >> 14) & 0x7f]
|
|
| comp_maskr[2][(t0 >> 7) & 0x7f]
|
|
| comp_maskr[3][t0 & 0x7f]
|
|
| comp_maskr[4][(t1 >> 21) & 0x7f]
|
|
| comp_maskr[5][(t1 >> 14) & 0x7f]
|
|
| comp_maskr[6][(t1 >> 7) & 0x7f]
|
|
| comp_maskr[7][t1 & 0x7f];
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
do_des(struct des_ctx *ctx, /*uint32_t l_in, uint32_t r_in,*/ uint32_t *l_out, uint32_t *r_out, int count)
|
|
{
|
|
const struct const_des_ctx *cctx = const_ctx;
|
|
/*
|
|
* l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
|
|
*/
|
|
uint32_t l, r, *kl, *kr;
|
|
uint32_t f = f; /* silence gcc */
|
|
uint32_t r48l, r48r;
|
|
int round;
|
|
|
|
/* Do initial permutation (IP). */
|
|
#if USE_ip_mask
|
|
uint32_t l_in = 0;
|
|
uint32_t r_in = 0;
|
|
l = ip_maskl[0][l_in >> 24]
|
|
| ip_maskl[1][(l_in >> 16) & 0xff]
|
|
| ip_maskl[2][(l_in >> 8) & 0xff]
|
|
| ip_maskl[3][l_in & 0xff]
|
|
| ip_maskl[4][r_in >> 24]
|
|
| ip_maskl[5][(r_in >> 16) & 0xff]
|
|
| ip_maskl[6][(r_in >> 8) & 0xff]
|
|
| ip_maskl[7][r_in & 0xff];
|
|
r = ip_maskr[0][l_in >> 24]
|
|
| ip_maskr[1][(l_in >> 16) & 0xff]
|
|
| ip_maskr[2][(l_in >> 8) & 0xff]
|
|
| ip_maskr[3][l_in & 0xff]
|
|
| ip_maskr[4][r_in >> 24]
|
|
| ip_maskr[5][(r_in >> 16) & 0xff]
|
|
| ip_maskr[6][(r_in >> 8) & 0xff]
|
|
| ip_maskr[7][r_in & 0xff];
|
|
#elif 0 /* -65 bytes (using the fact that l_in == r_in == 0) */
|
|
l = r = 0;
|
|
for (round = 0; round < 8; round++) {
|
|
l |= ip_maskl[round][0];
|
|
r |= ip_maskr[round][0];
|
|
}
|
|
bb_error_msg("l:%x r:%x", l, r); /* reports 0, 0 always! */
|
|
#else /* using the fact that ip_maskX[] is constant (written to by des_init) */
|
|
l = r = 0;
|
|
#endif
|
|
|
|
do {
|
|
/* Do each round. */
|
|
kl = en_keysl;
|
|
kr = en_keysr;
|
|
round = 16;
|
|
do {
|
|
/* Expand R to 48 bits (simulate the E-box). */
|
|
r48l = ((r & 0x00000001) << 23)
|
|
| ((r & 0xf8000000) >> 9)
|
|
| ((r & 0x1f800000) >> 11)
|
|
| ((r & 0x01f80000) >> 13)
|
|
| ((r & 0x001f8000) >> 15);
|
|
|
|
r48r = ((r & 0x0001f800) << 7)
|
|
| ((r & 0x00001f80) << 5)
|
|
| ((r & 0x000001f8) << 3)
|
|
| ((r & 0x0000001f) << 1)
|
|
| ((r & 0x80000000) >> 31);
|
|
/*
|
|
* Do salting for crypt() and friends, and
|
|
* XOR with the permuted key.
|
|
*/
|
|
f = (r48l ^ r48r) & saltbits;
|
|
r48l ^= f ^ *kl++;
|
|
r48r ^= f ^ *kr++;
|
|
/*
|
|
* Do sbox lookups (which shrink it back to 32 bits)
|
|
* and do the pbox permutation at the same time.
|
|
*/
|
|
f = psbox[0][m_sbox[0][r48l >> 12]]
|
|
| psbox[1][m_sbox[1][r48l & 0xfff]]
|
|
| psbox[2][m_sbox[2][r48r >> 12]]
|
|
| psbox[3][m_sbox[3][r48r & 0xfff]];
|
|
/* Now that we've permuted things, complete f(). */
|
|
f ^= l;
|
|
l = r;
|
|
r = f;
|
|
} while (--round);
|
|
r = l;
|
|
l = f;
|
|
} while (--count);
|
|
|
|
/* Do final permutation (inverse of IP). */
|
|
*l_out = fp_maskl[0][l >> 24]
|
|
| fp_maskl[1][(l >> 16) & 0xff]
|
|
| fp_maskl[2][(l >> 8) & 0xff]
|
|
| fp_maskl[3][l & 0xff]
|
|
| fp_maskl[4][r >> 24]
|
|
| fp_maskl[5][(r >> 16) & 0xff]
|
|
| fp_maskl[6][(r >> 8) & 0xff]
|
|
| fp_maskl[7][r & 0xff];
|
|
*r_out = fp_maskr[0][l >> 24]
|
|
| fp_maskr[1][(l >> 16) & 0xff]
|
|
| fp_maskr[2][(l >> 8) & 0xff]
|
|
| fp_maskr[3][l & 0xff]
|
|
| fp_maskr[4][r >> 24]
|
|
| fp_maskr[5][(r >> 16) & 0xff]
|
|
| fp_maskr[6][(r >> 8) & 0xff]
|
|
| fp_maskr[7][r & 0xff];
|
|
}
|
|
|
|
#define DES_OUT_BUFSIZE 21
|
|
|
|
static void
|
|
to64_msb_first(char *s, unsigned v)
|
|
{
|
|
#if 0
|
|
*s++ = ascii64[(v >> 18) & 0x3f]; /* bits 23..18 */
|
|
*s++ = ascii64[(v >> 12) & 0x3f]; /* bits 17..12 */
|
|
*s++ = ascii64[(v >> 6) & 0x3f]; /* bits 11..6 */
|
|
*s = ascii64[v & 0x3f]; /* bits 5..0 */
|
|
#endif
|
|
*s++ = i64c(v >> 18); /* bits 23..18 */
|
|
*s++ = i64c(v >> 12); /* bits 17..12 */
|
|
*s++ = i64c(v >> 6); /* bits 11..6 */
|
|
*s = i64c(v); /* bits 5..0 */
|
|
}
|
|
|
|
static char *
|
|
NOINLINE
|
|
des_crypt(struct des_ctx *ctx, char output[DES_OUT_BUFSIZE],
|
|
const unsigned char *key, const unsigned char *setting)
|
|
{
|
|
uint32_t salt, r0, r1, keybuf[2];
|
|
uint8_t *q;
|
|
|
|
/*
|
|
* Copy the key, shifting each character up by one bit
|
|
* and padding with zeros.
|
|
*/
|
|
q = (uint8_t *)keybuf;
|
|
while (q - (uint8_t *)keybuf != 8) {
|
|
*q = *key << 1;
|
|
if (*q)
|
|
key++;
|
|
q++;
|
|
}
|
|
des_setkey(ctx, (char *)keybuf);
|
|
|
|
/*
|
|
* setting - 2 bytes of salt
|
|
* key - up to 8 characters
|
|
*/
|
|
salt = (ascii_to_bin(setting[1]) << 6)
|
|
| ascii_to_bin(setting[0]);
|
|
|
|
output[0] = setting[0];
|
|
/*
|
|
* If the encrypted password that the salt was extracted from
|
|
* is only 1 character long, the salt will be corrupted. We
|
|
* need to ensure that the output string doesn't have an extra
|
|
* NUL in it!
|
|
*/
|
|
output[1] = setting[1] ? setting[1] : output[0];
|
|
|
|
setup_salt(ctx, salt);
|
|
/* Do it. */
|
|
do_des(ctx, /*0, 0,*/ &r0, &r1, 25 /* count */);
|
|
|
|
/* Now encode the result. */
|
|
#if 0
|
|
{
|
|
uint32_t l = (r0 >> 8);
|
|
q = (uint8_t *)output + 2;
|
|
*q++ = ascii64[(l >> 18) & 0x3f]; /* bits 31..26 of r0 */
|
|
*q++ = ascii64[(l >> 12) & 0x3f]; /* bits 25..20 of r0 */
|
|
*q++ = ascii64[(l >> 6) & 0x3f]; /* bits 19..14 of r0 */
|
|
*q++ = ascii64[l & 0x3f]; /* bits 13..8 of r0 */
|
|
l = ((r0 << 16) | (r1 >> 16));
|
|
*q++ = ascii64[(l >> 18) & 0x3f]; /* bits 7..2 of r0 */
|
|
*q++ = ascii64[(l >> 12) & 0x3f]; /* bits 1..2 of r0 and 31..28 of r1 */
|
|
*q++ = ascii64[(l >> 6) & 0x3f]; /* bits 27..22 of r1 */
|
|
*q++ = ascii64[l & 0x3f]; /* bits 21..16 of r1 */
|
|
l = r1 << 2;
|
|
*q++ = ascii64[(l >> 12) & 0x3f]; /* bits 15..10 of r1 */
|
|
*q++ = ascii64[(l >> 6) & 0x3f]; /* bits 9..4 of r1 */
|
|
*q++ = ascii64[l & 0x3f]; /* bits 3..0 of r1 + 00 */
|
|
*q = 0;
|
|
}
|
|
#else
|
|
/* Each call takes low-order 24 bits and stores 4 chars */
|
|
/* bits 31..8 of r0 */
|
|
to64_msb_first(output + 2, (r0 >> 8));
|
|
/* bits 7..0 of r0 and 31..16 of r1 */
|
|
to64_msb_first(output + 6, (r0 << 16) | (r1 >> 16));
|
|
/* bits 15..0 of r1 and two zero bits (plus extra zero byte) */
|
|
to64_msb_first(output + 10, (r1 << 8));
|
|
/* extra zero byte is encoded as '.', fixing it */
|
|
output[13] = '\0';
|
|
#endif
|
|
|
|
return output;
|
|
}
|
|
|
|
#undef USE_PRECOMPUTED_u_sbox
|
|
#undef USE_REPETITIVE_SPEEDUP
|
|
#undef USE_ip_mask
|
|
#undef USE_de_keys
|
|
|
|
#undef C
|
|
#undef init_perm
|
|
#undef final_perm
|
|
#undef m_sbox
|
|
#undef D
|
|
#undef const_ctx
|
|
#undef saltbits
|
|
#undef old_salt
|
|
#undef old_rawkey0
|
|
#undef old_rawkey1
|
|
#undef un_pbox
|
|
#undef inv_comp_perm
|
|
#undef inv_key_perm
|
|
#undef en_keysl
|
|
#undef en_keysr
|
|
#undef de_keysl
|
|
#undef de_keysr
|
|
#undef ip_maskl
|
|
#undef ip_maskr
|
|
#undef fp_maskl
|
|
#undef fp_maskr
|
|
#undef key_perm_maskl
|
|
#undef key_perm_maskr
|
|
#undef comp_maskl
|
|
#undef comp_maskr
|
|
#undef psbox
|