hush/libbb/md5.c
Denys Vlasenko b8d02597e3 md5: fix biuld failure on big-endian machines
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
2010-10-17 23:01:32 +02:00

443 lines
12 KiB
C

/* vi: set sw=4 ts=4: */
/*
* Compute MD5 checksum of strings according to the
* definition of MD5 in RFC 1321 from April 1992.
*
* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
*
* Copyright (C) 1995-1999 Free Software Foundation, Inc.
* Copyright (C) 2001 Manuel Novoa III
* Copyright (C) 2003 Glenn L. McGrath
* Copyright (C) 2003 Erik Andersen
*
* Licensed under GPLv2 or later, see file LICENSE in this source tree.
*/
#include "libbb.h"
/* 0: fastest, 3: smallest */
#if CONFIG_MD5_SIZE_VS_SPEED < 0
# define MD5_SIZE_VS_SPEED 0
#elif CONFIG_MD5_SIZE_VS_SPEED > 3
# define MD5_SIZE_VS_SPEED 3
#else
# define MD5_SIZE_VS_SPEED CONFIG_MD5_SIZE_VS_SPEED
#endif
/* Initialize structure containing state of computation.
* (RFC 1321, 3.3: Step 3)
*/
void FAST_FUNC md5_begin(md5_ctx_t *ctx)
{
ctx->A = 0x67452301;
ctx->B = 0xefcdab89;
ctx->C = 0x98badcfe;
ctx->D = 0x10325476;
ctx->total64 = 0;
}
/* These are the four functions used in the four steps of the MD5 algorithm
* and defined in the RFC 1321. The first function is a little bit optimized
* (as found in Colin Plumbs public domain implementation).
* #define FF(b, c, d) ((b & c) | (~b & d))
*/
#define FF(b, c, d) (d ^ (b & (c ^ d)))
#define FG(b, c, d) FF(d, b, c)
#define FH(b, c, d) (b ^ c ^ d)
#define FI(b, c, d) (c ^ (b | ~d))
#define rotl32(w, s) (((w) << (s)) | ((w) >> (32 - (s))))
/* Hash a single block, 64 bytes long and 4-byte aligned */
static void md5_process_block64(md5_ctx_t *ctx)
{
#if MD5_SIZE_VS_SPEED > 0
/* Before we start, one word to the strange constants.
They are defined in RFC 1321 as
T[i] = (int)(4294967296.0 * fabs(sin(i))), i=1..64
*/
static const uint32_t C_array[] = {
/* round 1 */
0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
/* round 2 */
0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
/* round 3 */
0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05,
0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
/* round 4 */
0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
};
static const char P_array[] ALIGN1 = {
# if MD5_SIZE_VS_SPEED > 1
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */
# endif
1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */
5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */
0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */
};
#endif
uint32_t *words = (void*) ctx->wbuffer;
uint32_t A = ctx->A;
uint32_t B = ctx->B;
uint32_t C = ctx->C;
uint32_t D = ctx->D;
#if MD5_SIZE_VS_SPEED >= 2 /* 2 or 3 */
static const char S_array[] ALIGN1 = {
7, 12, 17, 22,
5, 9, 14, 20,
4, 11, 16, 23,
6, 10, 15, 21
};
const uint32_t *pc;
const char *pp;
const char *ps;
int i;
uint32_t temp;
# if BB_BIG_ENDIAN
for (i = 0; i < 16; i++)
words[i] = SWAP_LE32(words[i]);
# endif
# if MD5_SIZE_VS_SPEED == 3
pc = C_array;
pp = P_array;
ps = S_array - 4;
for (i = 0; i < 64; i++) {
if ((i & 0x0f) == 0)
ps += 4;
temp = A;
switch (i >> 4) {
case 0:
temp += FF(B, C, D);
break;
case 1:
temp += FG(B, C, D);
break;
case 2:
temp += FH(B, C, D);
break;
case 3:
temp += FI(B, C, D);
}
temp += words[(int) (*pp++)] + *pc++;
temp = rotl32(temp, ps[i & 3]);
temp += B;
A = D;
D = C;
C = B;
B = temp;
}
# else /* MD5_SIZE_VS_SPEED == 2 */
pc = C_array;
pp = P_array;
ps = S_array;
for (i = 0; i < 16; i++) {
temp = A + FF(B, C, D) + words[(int) (*pp++)] + *pc++;
temp = rotl32(temp, ps[i & 3]);
temp += B;
A = D;
D = C;
C = B;
B = temp;
}
ps += 4;
for (i = 0; i < 16; i++) {
temp = A + FG(B, C, D) + words[(int) (*pp++)] + *pc++;
temp = rotl32(temp, ps[i & 3]);
temp += B;
A = D;
D = C;
C = B;
B = temp;
}
ps += 4;
for (i = 0; i < 16; i++) {
temp = A + FH(B, C, D) + words[(int) (*pp++)] + *pc++;
temp = rotl32(temp, ps[i & 3]);
temp += B;
A = D;
D = C;
C = B;
B = temp;
}
ps += 4;
for (i = 0; i < 16; i++) {
temp = A + FI(B, C, D) + words[(int) (*pp++)] + *pc++;
temp = rotl32(temp, ps[i & 3]);
temp += B;
A = D;
D = C;
C = B;
B = temp;
}
# endif
/* Add checksum to the starting values */
ctx->A += A;
ctx->B += B;
ctx->C += C;
ctx->D += D;
#else /* MD5_SIZE_VS_SPEED == 0 or 1 */
uint32_t A_save = A;
uint32_t B_save = B;
uint32_t C_save = C;
uint32_t D_save = D;
# if MD5_SIZE_VS_SPEED == 1
const uint32_t *pc;
const char *pp;
int i;
# endif
/* First round: using the given function, the context and a constant
the next context is computed. Because the algorithm's processing
unit is a 32-bit word and it is determined to work on words in
little endian byte order we perhaps have to change the byte order
before the computation. To reduce the work for the next steps
we save swapped words in WORDS array. */
# undef OP
# define OP(a, b, c, d, s, T) \
do { \
a += FF(b, c, d) + (*words IF_BIG_ENDIAN(= SWAP_LE32(*words))) + T; \
words++; \
a = rotl32(a, s); \
a += b; \
} while (0)
/* Round 1 */
# if MD5_SIZE_VS_SPEED == 1
pc = C_array;
for (i = 0; i < 4; i++) {
OP(A, B, C, D, 7, *pc++);
OP(D, A, B, C, 12, *pc++);
OP(C, D, A, B, 17, *pc++);
OP(B, C, D, A, 22, *pc++);
}
# else
OP(A, B, C, D, 7, 0xd76aa478);
OP(D, A, B, C, 12, 0xe8c7b756);
OP(C, D, A, B, 17, 0x242070db);
OP(B, C, D, A, 22, 0xc1bdceee);
OP(A, B, C, D, 7, 0xf57c0faf);
OP(D, A, B, C, 12, 0x4787c62a);
OP(C, D, A, B, 17, 0xa8304613);
OP(B, C, D, A, 22, 0xfd469501);
OP(A, B, C, D, 7, 0x698098d8);
OP(D, A, B, C, 12, 0x8b44f7af);
OP(C, D, A, B, 17, 0xffff5bb1);
OP(B, C, D, A, 22, 0x895cd7be);
OP(A, B, C, D, 7, 0x6b901122);
OP(D, A, B, C, 12, 0xfd987193);
OP(C, D, A, B, 17, 0xa679438e);
OP(B, C, D, A, 22, 0x49b40821);
# endif
words -= 16;
/* For the second to fourth round we have the possibly swapped words
in WORDS. Redefine the macro to take an additional first
argument specifying the function to use. */
# undef OP
# define OP(f, a, b, c, d, k, s, T) \
do { \
a += f(b, c, d) + words[k] + T; \
a = rotl32(a, s); \
a += b; \
} while (0)
/* Round 2 */
# if MD5_SIZE_VS_SPEED == 1
pp = P_array;
for (i = 0; i < 4; i++) {
OP(FG, A, B, C, D, (int) (*pp++), 5, *pc++);
OP(FG, D, A, B, C, (int) (*pp++), 9, *pc++);
OP(FG, C, D, A, B, (int) (*pp++), 14, *pc++);
OP(FG, B, C, D, A, (int) (*pp++), 20, *pc++);
}
# else
OP(FG, A, B, C, D, 1, 5, 0xf61e2562);
OP(FG, D, A, B, C, 6, 9, 0xc040b340);
OP(FG, C, D, A, B, 11, 14, 0x265e5a51);
OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
OP(FG, A, B, C, D, 5, 5, 0xd62f105d);
OP(FG, D, A, B, C, 10, 9, 0x02441453);
OP(FG, C, D, A, B, 15, 14, 0xd8a1e681);
OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
OP(FG, A, B, C, D, 9, 5, 0x21e1cde6);
OP(FG, D, A, B, C, 14, 9, 0xc33707d6);
OP(FG, C, D, A, B, 3, 14, 0xf4d50d87);
OP(FG, B, C, D, A, 8, 20, 0x455a14ed);
OP(FG, A, B, C, D, 13, 5, 0xa9e3e905);
OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8);
OP(FG, C, D, A, B, 7, 14, 0x676f02d9);
OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
# endif
/* Round 3 */
# if MD5_SIZE_VS_SPEED == 1
for (i = 0; i < 4; i++) {
OP(FH, A, B, C, D, (int) (*pp++), 4, *pc++);
OP(FH, D, A, B, C, (int) (*pp++), 11, *pc++);
OP(FH, C, D, A, B, (int) (*pp++), 16, *pc++);
OP(FH, B, C, D, A, (int) (*pp++), 23, *pc++);
}
# else
OP(FH, A, B, C, D, 5, 4, 0xfffa3942);
OP(FH, D, A, B, C, 8, 11, 0x8771f681);
OP(FH, C, D, A, B, 11, 16, 0x6d9d6122);
OP(FH, B, C, D, A, 14, 23, 0xfde5380c);
OP(FH, A, B, C, D, 1, 4, 0xa4beea44);
OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9);
OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60);
OP(FH, B, C, D, A, 10, 23, 0xbebfbc70);
OP(FH, A, B, C, D, 13, 4, 0x289b7ec6);
OP(FH, D, A, B, C, 0, 11, 0xeaa127fa);
OP(FH, C, D, A, B, 3, 16, 0xd4ef3085);
OP(FH, B, C, D, A, 6, 23, 0x04881d05);
OP(FH, A, B, C, D, 9, 4, 0xd9d4d039);
OP(FH, D, A, B, C, 12, 11, 0xe6db99e5);
OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8);
OP(FH, B, C, D, A, 2, 23, 0xc4ac5665);
# endif
/* Round 4 */
# if MD5_SIZE_VS_SPEED == 1
for (i = 0; i < 4; i++) {
OP(FI, A, B, C, D, (int) (*pp++), 6, *pc++);
OP(FI, D, A, B, C, (int) (*pp++), 10, *pc++);
OP(FI, C, D, A, B, (int) (*pp++), 15, *pc++);
OP(FI, B, C, D, A, (int) (*pp++), 21, *pc++);
}
# else
OP(FI, A, B, C, D, 0, 6, 0xf4292244);
OP(FI, D, A, B, C, 7, 10, 0x432aff97);
OP(FI, C, D, A, B, 14, 15, 0xab9423a7);
OP(FI, B, C, D, A, 5, 21, 0xfc93a039);
OP(FI, A, B, C, D, 12, 6, 0x655b59c3);
OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92);
OP(FI, C, D, A, B, 10, 15, 0xffeff47d);
OP(FI, B, C, D, A, 1, 21, 0x85845dd1);
OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f);
OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
OP(FI, C, D, A, B, 6, 15, 0xa3014314);
OP(FI, B, C, D, A, 13, 21, 0x4e0811a1);
OP(FI, A, B, C, D, 4, 6, 0xf7537e82);
OP(FI, D, A, B, C, 11, 10, 0xbd3af235);
OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
OP(FI, B, C, D, A, 9, 21, 0xeb86d391);
# endif
/* Add checksum to the starting values */
ctx->A = A_save + A;
ctx->B = B_save + B;
ctx->C = C_save + C;
ctx->D = D_save + D;
#endif
}
/* Feed data through a temporary buffer to call md5_hash_aligned_block()
* with chunks of data that are 4-byte aligned and a multiple of 64 bytes.
* This function's internal buffer remembers previous data until it has 64
* bytes worth to pass on. Call md5_end() to flush this buffer. */
void FAST_FUNC md5_hash(md5_ctx_t *ctx, const void *buffer, size_t len)
{
unsigned bufpos = ctx->total64 & 63;
unsigned remaining;
/* RFC 1321 specifies the possible length of the file up to 2^64 bits.
* Here we only track the number of bytes. */
ctx->total64 += len;
#if 0
remaining = 64 - bufpos;
/* Hash whole blocks */
while (len >= remaining) {
memcpy(ctx->wbuffer + bufpos, buffer, remaining);
buffer = (const char *)buffer + remaining;
len -= remaining;
remaining = 64;
bufpos = 0;
md5_process_block64(ctx);
}
/* Save last, partial blosk */
memcpy(ctx->wbuffer + bufpos, buffer, len);
#else
/* Tiny bit smaller code */
while (1) {
remaining = 64 - bufpos;
if (remaining > len)
remaining = len;
/* Copy data into aligned buffer */
memcpy(ctx->wbuffer + bufpos, buffer, remaining);
len -= remaining;
buffer = (const char *)buffer + remaining;
bufpos += remaining;
/* clever way to do "if (bufpos != 64) break; ... ; bufpos = 0;" */
bufpos -= 64;
if (bufpos != 0)
break;
/* Buffer is filled up, process it */
md5_process_block64(ctx);
/*bufpos = 0; - already is */
}
#endif
}
/* Process the remaining bytes in the buffer and put result from CTX
* in first 16 bytes following RESBUF. The result is always in little
* endian byte order, so that a byte-wise output yields to the wanted
* ASCII representation of the message digest.
*/
void FAST_FUNC md5_end(md5_ctx_t *ctx, void *resbuf)
{
unsigned bufpos = ctx->total64 & 63;
/* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0... */
ctx->wbuffer[bufpos++] = 0x80;
/* This loop iterates either once or twice, no more, no less */
while (1) {
unsigned remaining = 64 - bufpos;
memset(ctx->wbuffer + bufpos, 0, remaining);
/* Do we have enough space for the length count? */
if (remaining >= 8) {
/* Store the 64-bit counter of bits in the buffer in BE format */
uint64_t t = ctx->total64 << 3;
unsigned i;
for (i = 0; i < 8; i++) {
ctx->wbuffer[56 + i] = t;
t >>= 8;
}
}
md5_process_block64(ctx);
if (remaining >= 8)
break;
bufpos = 0;
}
/* The MD5 result is in little endian byte order.
* We (ab)use the fact that A-D are consecutive in memory.
*/
#if BB_BIG_ENDIAN
ctx->A = SWAP_LE32(ctx->A);
ctx->B = SWAP_LE32(ctx->B);
ctx->C = SWAP_LE32(ctx->C);
ctx->D = SWAP_LE32(ctx->D);
#endif
memcpy(resbuf, &ctx->A, sizeof(ctx->A) * 4);
}