mirror of
https://github.com/sheumann/hush.git
synced 2025-01-10 16:29:44 +00:00
e9b9a19ad3
function old new delta sha512_end 239 237 -2 sha256_end 162 160 -2 sha1_end 191 189 -2 md5_end 168 166 -2 __md5__magic 4 - -4 md5_crypt 627 621 -6 static.S 16 - -16 __md5_Init 42 - -42 static.P 64 - -64 __md5_Final 131 - -131 __md5_Update 153 - -153 static.C 268 12 -256 __md5_Transform 293 - -293 ------------------------------------------------------------------------------ (add/remove: 0/7 grow/shrink: 0/6 up/down: 0/-973) Total: -973 bytes
666 lines
20 KiB
C
666 lines
20 KiB
C
/* vi: set sw=4 ts=4: */
|
|
/*
|
|
* Based on shasum from http://www.netsw.org/crypto/hash/
|
|
* Majorly hacked up to use Dr Brian Gladman's sha1 code
|
|
*
|
|
* Copyright (C) 2002 Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
|
|
* Copyright (C) 2003 Glenn L. McGrath
|
|
* Copyright (C) 2003 Erik Andersen
|
|
*
|
|
* Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
|
|
*
|
|
* ---------------------------------------------------------------------------
|
|
* Issue Date: 10/11/2002
|
|
*
|
|
* This is a byte oriented version of SHA1 that operates on arrays of bytes
|
|
* stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor
|
|
*
|
|
* ---------------------------------------------------------------------------
|
|
*
|
|
* SHA256 and SHA512 parts are:
|
|
* Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.
|
|
* TODO: shrink them.
|
|
*/
|
|
|
|
#include "libbb.h"
|
|
|
|
#define rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
|
|
#define rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n))))
|
|
/* for sha512: */
|
|
#define rotr64(x,n) (((x) >> (n)) | ((x) << (64 - (n))))
|
|
#if BB_LITTLE_ENDIAN
|
|
static inline uint64_t hton64(uint64_t v)
|
|
{
|
|
return (((uint64_t)htonl(v)) << 32) | htonl(v >> 32);
|
|
}
|
|
#else
|
|
#define hton64(v) (v)
|
|
#endif
|
|
#define ntoh64(v) hton64(v)
|
|
|
|
/* To check alignment gcc has an appropriate operator. Other
|
|
compilers don't. */
|
|
#if defined(__GNUC__) && __GNUC__ >= 2
|
|
# define UNALIGNED_P(p,type) (((uintptr_t) p) % __alignof__(type) != 0)
|
|
#else
|
|
# define UNALIGNED_P(p,type) (((uintptr_t) p) % sizeof(type) != 0)
|
|
#endif
|
|
|
|
|
|
#define SHA1_BLOCK_SIZE 64
|
|
#define SHA1_DIGEST_SIZE 20
|
|
#define SHA1_HASH_SIZE SHA1_DIGEST_SIZE
|
|
#define SHA1_MASK (SHA1_BLOCK_SIZE - 1)
|
|
|
|
static void sha1_compile(sha1_ctx_t *ctx)
|
|
{
|
|
uint32_t w[80], i, a, b, c, d, e, t;
|
|
|
|
/* note that words are compiled from the buffer into 32-bit */
|
|
/* words in big-endian order so an order reversal is needed */
|
|
/* here on little endian machines */
|
|
for (i = 0; i < SHA1_BLOCK_SIZE / 4; ++i)
|
|
w[i] = ntohl(ctx->wbuf[i]);
|
|
|
|
for (/*i = SHA1_BLOCK_SIZE / 4*/; i < 80; ++i) {
|
|
t = w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16];
|
|
w[i] = rotl32(t, 1);
|
|
}
|
|
|
|
a = ctx->hash[0];
|
|
b = ctx->hash[1];
|
|
c = ctx->hash[2];
|
|
d = ctx->hash[3];
|
|
e = ctx->hash[4];
|
|
|
|
/* Reverse byte order in 32-bit words */
|
|
#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
|
|
#define parity(x,y,z) ((x) ^ (y) ^ (z))
|
|
#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y))))
|
|
/* A normal version as set out in the FIPS. This version uses */
|
|
/* partial loop unrolling and is optimised for the Pentium 4 */
|
|
#define rnd(f,k) \
|
|
do { \
|
|
t = a; a = rotl32(a,5) + f(b,c,d) + e + k + w[i]; \
|
|
e = d; d = c; c = rotl32(b, 30); b = t; \
|
|
} while (0)
|
|
|
|
for (i = 0; i < 20; ++i)
|
|
rnd(ch, 0x5a827999);
|
|
|
|
for (i = 20; i < 40; ++i)
|
|
rnd(parity, 0x6ed9eba1);
|
|
|
|
for (i = 40; i < 60; ++i)
|
|
rnd(maj, 0x8f1bbcdc);
|
|
|
|
for (i = 60; i < 80; ++i)
|
|
rnd(parity, 0xca62c1d6);
|
|
#undef ch
|
|
#undef parity
|
|
#undef maj
|
|
#undef rnd
|
|
|
|
ctx->hash[0] += a;
|
|
ctx->hash[1] += b;
|
|
ctx->hash[2] += c;
|
|
ctx->hash[3] += d;
|
|
ctx->hash[4] += e;
|
|
}
|
|
|
|
/* Process LEN bytes of BUFFER, accumulating context into CTX.
|
|
It is assumed that LEN % 64 == 0. */
|
|
static void sha256_process_block(const void *buffer, size_t len, sha256_ctx_t *ctx)
|
|
{
|
|
/* Constants for SHA256 from FIPS 180-2:4.2.2. */
|
|
static const uint32_t K[64] = {
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
|
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
|
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
|
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
|
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
|
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
|
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
|
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
|
};
|
|
const uint32_t *words = buffer;
|
|
size_t nwords = len / sizeof(uint32_t);
|
|
uint32_t a = ctx->H[0];
|
|
uint32_t b = ctx->H[1];
|
|
uint32_t c = ctx->H[2];
|
|
uint32_t d = ctx->H[3];
|
|
uint32_t e = ctx->H[4];
|
|
uint32_t f = ctx->H[5];
|
|
uint32_t g = ctx->H[6];
|
|
uint32_t h = ctx->H[7];
|
|
|
|
/* First increment the byte count. FIPS 180-2 specifies the possible
|
|
length of the file up to 2^64 bits. Here we only compute the
|
|
number of bytes. Do a double word increment. */
|
|
ctx->total[0] += len;
|
|
if (ctx->total[0] < len)
|
|
ctx->total[1]++;
|
|
|
|
/* Process all bytes in the buffer with 64 bytes in each round of
|
|
the loop. */
|
|
while (nwords > 0) {
|
|
uint32_t W[64];
|
|
uint32_t a_save = a;
|
|
uint32_t b_save = b;
|
|
uint32_t c_save = c;
|
|
uint32_t d_save = d;
|
|
uint32_t e_save = e;
|
|
uint32_t f_save = f;
|
|
uint32_t g_save = g;
|
|
uint32_t h_save = h;
|
|
|
|
/* Operators defined in FIPS 180-2:4.1.2. */
|
|
#define Ch(x, y, z) ((x & y) ^ (~x & z))
|
|
#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
|
|
#define S0(x) (rotr32(x, 2) ^ rotr32(x, 13) ^ rotr32(x, 22))
|
|
#define S1(x) (rotr32(x, 6) ^ rotr32(x, 11) ^ rotr32(x, 25))
|
|
#define R0(x) (rotr32(x, 7) ^ rotr32(x, 18) ^ (x >> 3))
|
|
#define R1(x) (rotr32(x, 17) ^ rotr32(x, 19) ^ (x >> 10))
|
|
|
|
/* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */
|
|
for (unsigned t = 0; t < 16; ++t) {
|
|
W[t] = ntohl(*words);
|
|
++words;
|
|
}
|
|
for (unsigned t = 16; t < 64; ++t)
|
|
W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
|
|
|
|
/* The actual computation according to FIPS 180-2:6.2.2 step 3. */
|
|
for (unsigned t = 0; t < 64; ++t) {
|
|
uint32_t T1 = h + S1(e) + Ch(e, f, g) + K[t] + W[t];
|
|
uint32_t T2 = S0(a) + Maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
}
|
|
#undef Ch
|
|
#undef Maj
|
|
#undef S0
|
|
#undef S1
|
|
#undef R0
|
|
#undef R1
|
|
/* Add the starting values of the context according to FIPS 180-2:6.2.2
|
|
step 4. */
|
|
a += a_save;
|
|
b += b_save;
|
|
c += c_save;
|
|
d += d_save;
|
|
e += e_save;
|
|
f += f_save;
|
|
g += g_save;
|
|
h += h_save;
|
|
|
|
/* Prepare for the next round. */
|
|
nwords -= 16;
|
|
}
|
|
|
|
/* Put checksum in context given as argument. */
|
|
ctx->H[0] = a;
|
|
ctx->H[1] = b;
|
|
ctx->H[2] = c;
|
|
ctx->H[3] = d;
|
|
ctx->H[4] = e;
|
|
ctx->H[5] = f;
|
|
ctx->H[6] = g;
|
|
ctx->H[7] = h;
|
|
}
|
|
|
|
/* Process LEN bytes of BUFFER, accumulating context into CTX.
|
|
It is assumed that LEN % 128 == 0. */
|
|
static void sha512_process_block(const void *buffer, size_t len, sha512_ctx_t *ctx)
|
|
{
|
|
/* Constants for SHA512 from FIPS 180-2:4.2.3. */
|
|
static const uint64_t K[80] = {
|
|
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
|
|
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
|
|
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
|
|
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
|
|
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
|
|
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
|
|
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
|
|
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
|
|
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
|
|
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
|
|
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
|
|
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
|
|
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
|
|
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
|
|
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
|
|
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
|
|
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
|
|
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
|
|
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
|
|
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
|
|
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
|
|
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
|
|
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
|
|
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
|
|
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
|
|
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
|
|
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
|
|
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
|
|
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
|
|
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
|
|
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
|
|
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
|
|
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
|
|
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
|
|
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
|
|
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
|
|
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
|
|
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
|
|
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
|
|
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL,
|
|
};
|
|
const uint64_t *words = buffer;
|
|
size_t nwords = len / sizeof(uint64_t);
|
|
uint64_t a = ctx->H[0];
|
|
uint64_t b = ctx->H[1];
|
|
uint64_t c = ctx->H[2];
|
|
uint64_t d = ctx->H[3];
|
|
uint64_t e = ctx->H[4];
|
|
uint64_t f = ctx->H[5];
|
|
uint64_t g = ctx->H[6];
|
|
uint64_t h = ctx->H[7];
|
|
|
|
/* First increment the byte count. FIPS 180-2 specifies the possible
|
|
length of the file up to 2^128 bits. Here we only compute the
|
|
number of bytes. Do a double word increment. */
|
|
ctx->total[0] += len;
|
|
if (ctx->total[0] < len)
|
|
ctx->total[1]++;
|
|
|
|
/* Process all bytes in the buffer with 128 bytes in each round of
|
|
the loop. */
|
|
while (nwords > 0) {
|
|
uint64_t W[80];
|
|
uint64_t a_save = a;
|
|
uint64_t b_save = b;
|
|
uint64_t c_save = c;
|
|
uint64_t d_save = d;
|
|
uint64_t e_save = e;
|
|
uint64_t f_save = f;
|
|
uint64_t g_save = g;
|
|
uint64_t h_save = h;
|
|
|
|
/* Operators defined in FIPS 180-2:4.1.2. */
|
|
#define Ch(x, y, z) ((x & y) ^ (~x & z))
|
|
#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
|
|
#define S0(x) (rotr64(x, 28) ^ rotr64(x, 34) ^ rotr64(x, 39))
|
|
#define S1(x) (rotr64(x, 14) ^ rotr64(x, 18) ^ rotr64(x, 41))
|
|
#define R0(x) (rotr64(x, 1) ^ rotr64(x, 8) ^ (x >> 7))
|
|
#define R1(x) (rotr64(x, 19) ^ rotr64(x, 61) ^ (x >> 6))
|
|
|
|
/* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */
|
|
for (unsigned t = 0; t < 16; ++t) {
|
|
W[t] = ntoh64(*words);
|
|
++words;
|
|
}
|
|
for (unsigned t = 16; t < 80; ++t)
|
|
W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
|
|
|
|
/* The actual computation according to FIPS 180-2:6.3.2 step 3. */
|
|
for (unsigned t = 0; t < 80; ++t) {
|
|
uint64_t T1 = h + S1(e) + Ch(e, f, g) + K[t] + W[t];
|
|
uint64_t T2 = S0(a) + Maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
}
|
|
#undef Ch
|
|
#undef Maj
|
|
#undef S0
|
|
#undef S1
|
|
#undef R0
|
|
#undef R1
|
|
/* Add the starting values of the context according to FIPS 180-2:6.3.2
|
|
step 4. */
|
|
a += a_save;
|
|
b += b_save;
|
|
c += c_save;
|
|
d += d_save;
|
|
e += e_save;
|
|
f += f_save;
|
|
g += g_save;
|
|
h += h_save;
|
|
|
|
/* Prepare for the next round. */
|
|
nwords -= 16;
|
|
}
|
|
|
|
/* Put checksum in context given as argument. */
|
|
ctx->H[0] = a;
|
|
ctx->H[1] = b;
|
|
ctx->H[2] = c;
|
|
ctx->H[3] = d;
|
|
ctx->H[4] = e;
|
|
ctx->H[5] = f;
|
|
ctx->H[6] = g;
|
|
ctx->H[7] = h;
|
|
}
|
|
|
|
|
|
void FAST_FUNC sha1_begin(sha1_ctx_t *ctx)
|
|
{
|
|
ctx->count[0] = ctx->count[1] = 0;
|
|
ctx->hash[0] = 0x67452301;
|
|
ctx->hash[1] = 0xefcdab89;
|
|
ctx->hash[2] = 0x98badcfe;
|
|
ctx->hash[3] = 0x10325476;
|
|
ctx->hash[4] = 0xc3d2e1f0;
|
|
}
|
|
|
|
/* Initialize structure containing state of computation.
|
|
(FIPS 180-2:5.3.2) */
|
|
void FAST_FUNC sha256_begin(sha256_ctx_t *ctx)
|
|
{
|
|
ctx->H[0] = 0x6a09e667;
|
|
ctx->H[1] = 0xbb67ae85;
|
|
ctx->H[2] = 0x3c6ef372;
|
|
ctx->H[3] = 0xa54ff53a;
|
|
ctx->H[4] = 0x510e527f;
|
|
ctx->H[5] = 0x9b05688c;
|
|
ctx->H[6] = 0x1f83d9ab;
|
|
ctx->H[7] = 0x5be0cd19;
|
|
ctx->total[0] = ctx->total[1] = 0;
|
|
ctx->buflen = 0;
|
|
}
|
|
|
|
/* Initialize structure containing state of computation.
|
|
(FIPS 180-2:5.3.3) */
|
|
void FAST_FUNC sha512_begin(sha512_ctx_t *ctx)
|
|
{
|
|
ctx->H[0] = 0x6a09e667f3bcc908ULL;
|
|
ctx->H[1] = 0xbb67ae8584caa73bULL;
|
|
ctx->H[2] = 0x3c6ef372fe94f82bULL;
|
|
ctx->H[3] = 0xa54ff53a5f1d36f1ULL;
|
|
ctx->H[4] = 0x510e527fade682d1ULL;
|
|
ctx->H[5] = 0x9b05688c2b3e6c1fULL;
|
|
ctx->H[6] = 0x1f83d9abfb41bd6bULL;
|
|
ctx->H[7] = 0x5be0cd19137e2179ULL;
|
|
ctx->total[0] = ctx->total[1] = 0;
|
|
ctx->buflen = 0;
|
|
}
|
|
|
|
|
|
/* SHA1 hash data in an array of bytes into hash buffer and call the */
|
|
/* hash_compile function as required. */
|
|
void FAST_FUNC sha1_hash(const void *data, size_t length, sha1_ctx_t *ctx)
|
|
{
|
|
uint32_t pos = (uint32_t) (ctx->count[0] & SHA1_MASK);
|
|
uint32_t freeb = SHA1_BLOCK_SIZE - pos;
|
|
const unsigned char *sp = data;
|
|
|
|
ctx->count[0] += length;
|
|
if (ctx->count[0] < length)
|
|
ctx->count[1]++;
|
|
|
|
while (length >= freeb) { /* transfer whole blocks while possible */
|
|
memcpy(((unsigned char *) ctx->wbuf) + pos, sp, freeb);
|
|
sp += freeb;
|
|
length -= freeb;
|
|
freeb = SHA1_BLOCK_SIZE;
|
|
pos = 0;
|
|
sha1_compile(ctx);
|
|
}
|
|
|
|
memcpy(((unsigned char *) ctx->wbuf) + pos, sp, length);
|
|
}
|
|
|
|
void FAST_FUNC sha256_hash(const void *buffer, size_t len, sha256_ctx_t *ctx)
|
|
{
|
|
/* When we already have some bits in our internal buffer concatenate
|
|
both inputs first. */
|
|
if (ctx->buflen != 0) {
|
|
size_t left_over = ctx->buflen;
|
|
size_t add = 128 - left_over > len ? len : 128 - left_over;
|
|
|
|
memcpy(&ctx->buffer[left_over], buffer, add);
|
|
ctx->buflen += add;
|
|
|
|
if (ctx->buflen > 64) {
|
|
sha256_process_block(ctx->buffer, ctx->buflen & ~63, ctx);
|
|
|
|
ctx->buflen &= 63;
|
|
/* The regions in the following copy operation cannot overlap. */
|
|
memcpy(ctx->buffer,
|
|
&ctx->buffer[(left_over + add) & ~63],
|
|
ctx->buflen);
|
|
}
|
|
|
|
buffer = (const char *)buffer + add;
|
|
len -= add;
|
|
}
|
|
|
|
/* Process available complete blocks. */
|
|
if (len >= 64) {
|
|
if (UNALIGNED_P(buffer, uint32_t)) {
|
|
while (len > 64) {
|
|
sha256_process_block(memcpy(ctx->buffer, buffer, 64),
|
|
64, ctx);
|
|
buffer = (const char *)buffer + 64;
|
|
len -= 64;
|
|
}
|
|
} else {
|
|
sha256_process_block(buffer, len & ~63, ctx);
|
|
buffer = (const char *)buffer + (len & ~63);
|
|
len &= 63;
|
|
}
|
|
}
|
|
|
|
/* Move remaining bytes into internal buffer. */
|
|
if (len > 0) {
|
|
size_t left_over = ctx->buflen;
|
|
|
|
memcpy(&ctx->buffer[left_over], buffer, len);
|
|
left_over += len;
|
|
if (left_over >= 64) {
|
|
sha256_process_block(ctx->buffer, 64, ctx);
|
|
left_over -= 64;
|
|
memcpy(ctx->buffer, &ctx->buffer[64], left_over);
|
|
}
|
|
ctx->buflen = left_over;
|
|
}
|
|
}
|
|
|
|
void FAST_FUNC sha512_hash(const void *buffer, size_t len, sha512_ctx_t *ctx)
|
|
{
|
|
/* When we already have some bits in our internal buffer concatenate
|
|
both inputs first. */
|
|
if (ctx->buflen != 0) {
|
|
size_t left_over = ctx->buflen;
|
|
size_t add = 256 - left_over > len ? len : 256 - left_over;
|
|
|
|
memcpy(&ctx->buffer[left_over], buffer, add);
|
|
ctx->buflen += add;
|
|
|
|
if (ctx->buflen > 128) {
|
|
sha512_process_block(ctx->buffer, ctx->buflen & ~127, ctx);
|
|
|
|
ctx->buflen &= 127;
|
|
/* The regions in the following copy operation cannot overlap. */
|
|
memcpy(ctx->buffer,
|
|
&ctx->buffer[(left_over + add) & ~127],
|
|
ctx->buflen);
|
|
}
|
|
|
|
buffer = (const char *)buffer + add;
|
|
len -= add;
|
|
}
|
|
|
|
/* Process available complete blocks. */
|
|
if (len >= 128) {
|
|
// #if BB_ARCH_REQUIRES_ALIGNMENT
|
|
if (UNALIGNED_P(buffer, uint64_t)) {
|
|
while (len > 128) {
|
|
sha512_process_block(memcpy(ctx->buffer, buffer, 128),
|
|
128, ctx);
|
|
buffer = (const char *)buffer + 128;
|
|
len -= 128;
|
|
}
|
|
} else
|
|
// #endif
|
|
{
|
|
sha512_process_block(buffer, len & ~127, ctx);
|
|
buffer = (const char *)buffer + (len & ~127);
|
|
len &= 127;
|
|
}
|
|
}
|
|
|
|
/* Move remaining bytes into internal buffer. */
|
|
if (len > 0) {
|
|
size_t left_over = ctx->buflen;
|
|
|
|
memcpy(&ctx->buffer[left_over], buffer, len);
|
|
left_over += len;
|
|
if (left_over >= 128) {
|
|
sha512_process_block(ctx->buffer, 128, ctx);
|
|
left_over -= 128;
|
|
memcpy(ctx->buffer, &ctx->buffer[128], left_over);
|
|
}
|
|
ctx->buflen = left_over;
|
|
}
|
|
}
|
|
|
|
|
|
void FAST_FUNC sha1_end(void *resbuf, sha1_ctx_t *ctx)
|
|
{
|
|
/* SHA1 Final padding and digest calculation */
|
|
#if BB_BIG_ENDIAN
|
|
static const uint32_t mask[4] = { 0x00000000, 0xff000000, 0xffff0000, 0xffffff00 };
|
|
static const uint32_t bits[4] = { 0x80000000, 0x00800000, 0x00008000, 0x00000080 };
|
|
#else
|
|
static const uint32_t mask[4] = { 0x00000000, 0x000000ff, 0x0000ffff, 0x00ffffff };
|
|
static const uint32_t bits[4] = { 0x00000080, 0x00008000, 0x00800000, 0x80000000 };
|
|
#endif
|
|
|
|
uint8_t *hval = resbuf;
|
|
uint32_t i, cnt = (uint32_t) (ctx->count[0] & SHA1_MASK);
|
|
|
|
/* mask out the rest of any partial 32-bit word and then set */
|
|
/* the next byte to 0x80. On big-endian machines any bytes in */
|
|
/* the buffer will be at the top end of 32 bit words, on little */
|
|
/* endian machines they will be at the bottom. Hence the AND */
|
|
/* and OR masks above are reversed for little endian systems */
|
|
ctx->wbuf[cnt >> 2] =
|
|
(ctx->wbuf[cnt >> 2] & mask[cnt & 3]) | bits[cnt & 3];
|
|
|
|
/* we need 9 or more empty positions, one for the padding byte */
|
|
/* (above) and eight for the length count. If there is not */
|
|
/* enough space pad and empty the buffer */
|
|
if (cnt > SHA1_BLOCK_SIZE - 9) {
|
|
if (cnt < 60)
|
|
ctx->wbuf[15] = 0;
|
|
sha1_compile(ctx);
|
|
cnt = 0;
|
|
} else /* compute a word index for the empty buffer positions */
|
|
cnt = (cnt >> 2) + 1;
|
|
|
|
while (cnt < 14) /* and zero pad all but last two positions */
|
|
ctx->wbuf[cnt++] = 0;
|
|
|
|
/* assemble the eight byte counter in the buffer in big-endian */
|
|
/* format */
|
|
ctx->wbuf[14] = htonl((ctx->count[1] << 3) | (ctx->count[0] >> 29));
|
|
ctx->wbuf[15] = htonl(ctx->count[0] << 3);
|
|
|
|
sha1_compile(ctx);
|
|
|
|
/* extract the hash value as bytes in case the hash buffer is */
|
|
/* misaligned for 32-bit words */
|
|
for (i = 0; i < SHA1_DIGEST_SIZE; ++i)
|
|
hval[i] = (unsigned char) (ctx->hash[i >> 2] >> 8 * (~i & 3));
|
|
}
|
|
|
|
|
|
/* Process the remaining bytes in the internal buffer and the usual
|
|
prolog according to the standard and write the result to RESBUF.
|
|
|
|
IMPORTANT: On some systems it is required that RESBUF is correctly
|
|
aligned for a 32 bits value. */
|
|
void FAST_FUNC sha256_end(void *resbuf, sha256_ctx_t *ctx)
|
|
{
|
|
/* Take yet unprocessed bytes into account. */
|
|
uint32_t bytes = ctx->buflen;
|
|
size_t pad;
|
|
|
|
/* Now count remaining bytes. */
|
|
ctx->total[0] += bytes;
|
|
if (ctx->total[0] < bytes)
|
|
ctx->total[1]++;
|
|
|
|
/* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0...
|
|
(FIPS 180-2:5.1.1) */
|
|
pad = (bytes >= 56 ? 64 + 56 - bytes : 56 - bytes);
|
|
memset(&ctx->buffer[bytes], 0, pad);
|
|
ctx->buffer[bytes] = 0x80;
|
|
|
|
/* Put the 64-bit file length in *bits* at the end of the buffer. */
|
|
*(uint32_t *) &ctx->buffer[bytes + pad + 4] = ntohl(ctx->total[0] << 3);
|
|
*(uint32_t *) &ctx->buffer[bytes + pad] = ntohl((ctx->total[1] << 3) | (ctx->total[0] >> 29));
|
|
|
|
/* Process last bytes. */
|
|
sha256_process_block(ctx->buffer, bytes + pad + 8, ctx);
|
|
|
|
/* Put result from CTX in first 32 bytes following RESBUF. */
|
|
for (unsigned i = 0; i < 8; ++i)
|
|
((uint32_t *) resbuf)[i] = ntohl(ctx->H[i]);
|
|
}
|
|
|
|
/* Process the remaining bytes in the internal buffer and the usual
|
|
prolog according to the standard and write the result to RESBUF.
|
|
|
|
IMPORTANT: On some systems it is required that RESBUF is correctly
|
|
aligned for a 64 bits value. */
|
|
void FAST_FUNC sha512_end(void *resbuf, sha512_ctx_t *ctx)
|
|
{
|
|
/* Take yet unprocessed bytes into account. */
|
|
uint64_t bytes = ctx->buflen;
|
|
size_t pad;
|
|
|
|
/* Now count remaining bytes. */
|
|
ctx->total[0] += bytes;
|
|
if (ctx->total[0] < bytes)
|
|
ctx->total[1]++;
|
|
|
|
/* Pad the buffer to the next 128-byte boundary with 0x80,0,0,0...
|
|
(FIPS 180-2:5.1.2) */
|
|
pad = bytes >= 112 ? 128 + 112 - bytes : 112 - bytes;
|
|
memset(&ctx->buffer[bytes], 0, pad);
|
|
ctx->buffer[bytes] = 0x80;
|
|
|
|
/* Put the 128-bit file length in *bits* at the end of the buffer. */
|
|
*(uint64_t *) &ctx->buffer[bytes + pad + 8] = hton64(ctx->total[0] << 3);
|
|
*(uint64_t *) &ctx->buffer[bytes + pad] = hton64((ctx->total[1] << 3) | (ctx->total[0] >> 61));
|
|
|
|
/* Process last bytes. */
|
|
sha512_process_block(ctx->buffer, bytes + pad + 16, ctx);
|
|
|
|
/* Put result from CTX in first 64 bytes following RESBUF. */
|
|
for (unsigned i = 0; i < 8; ++i)
|
|
((uint64_t *) resbuf)[i] = hton64(ctx->H[i]);
|
|
}
|