hush/libbb/unicode_wcwidth.c
Denys Vlasenko 460f827644 better wording in Config
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
2010-01-31 18:12:57 +01:00

550 lines
16 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* This is an implementation of wcwidth() and wcswidth() (defined in
* IEEE Std 1002.1-2001) for Unicode.
*
* http://www.opengroup.org/onlinepubs/007904975/functions/wcwidth.html
* http://www.opengroup.org/onlinepubs/007904975/functions/wcswidth.html
*
* In fixed-width output devices, Latin characters all occupy a single
* "cell" position of equal width, whereas ideographic CJK characters
* occupy two such cells. Interoperability between terminal-line
* applications and (teletype-style) character terminals using the
* UTF-8 encoding requires agreement on which character should advance
* the cursor by how many cell positions. No established formal
* standards exist at present on which Unicode character shall occupy
* how many cell positions on character terminals. These routines are
* a first attempt of defining such behavior based on simple rules
* applied to data provided by the Unicode Consortium.
*
* For some graphical characters, the Unicode standard explicitly
* defines a character-cell width via the definition of the East Asian
* FullWidth (F), Wide (W), Half-width (H), and Narrow (Na) classes.
* In all these cases, there is no ambiguity about which width a
* terminal shall use. For characters in the East Asian Ambiguous (A)
* class, the width choice depends purely on a preference of backward
* compatibility with either historic CJK or Western practice.
* Choosing single-width for these characters is easy to justify as
* the appropriate long-term solution, as the CJK practice of
* displaying these characters as double-width comes from historic
* implementation simplicity (8-bit encoded characters were displayed
* single-width and 16-bit ones double-width, even for Greek,
* Cyrillic, etc.) and not any typographic considerations.
*
* Much less clear is the choice of width for the Not East Asian
* (Neutral) class. Existing practice does not dictate a width for any
* of these characters. It would nevertheless make sense
* typographically to allocate two character cells to characters such
* as for instance EM SPACE or VOLUME INTEGRAL, which cannot be
* represented adequately with a single-width glyph. The following
* routines at present merely assign a single-cell width to all
* neutral characters, in the interest of simplicity. This is not
* entirely satisfactory and should be reconsidered before
* establishing a formal standard in this area. At the moment, the
* decision which Not East Asian (Neutral) characters should be
* represented by double-width glyphs cannot yet be answered by
* applying a simple rule from the Unicode database content. Setting
* up a proper standard for the behavior of UTF-8 character terminals
* will require a careful analysis not only of each Unicode character,
* but also of each presentation form, something the author of these
* routines has avoided to do so far.
*
* http://www.unicode.org/unicode/reports/tr11/
*
* Markus Kuhn -- 2007-05-26 (Unicode 5.0)
*
* Permission to use, copy, modify, and distribute this software
* for any purpose and without fee is hereby granted. The author
* disclaims all warranties with regard to this software.
*
* Latest version: http://www.cl.cam.ac.uk/~mgk25/ucs/wcwidth.c
*/
/* Assigned Unicode character ranges:
* Plane Range
* 0 0000FFFF Basic Multilingual Plane
* 1 100001FFFF Supplementary Multilingual Plane
* 2 200002FFFF Supplementary Ideographic Plane
* 3 30000-3FFFF Tertiary Ideographic Plane (no chars assigned yet)
* 4-13 40000DFFFF currently unassigned
* 14 E0000EFFFF Supplementary Special-purpose Plane
* 15 F0000FFFFF Supplementary Private Use Area-A
* 16 10000010FFFF Supplementary Private Use Area-B
*
* "Supplementary Special-purpose Plane currently contains non-graphical
* characters in two blocks of 128 and 240 characters. The first block
* is for language tag characters for use when language cannot be indicated
* through other protocols (such as the xml:lang attribute in XML).
* The other block contains glyph variation selectors to indicate
* an alternate glyph for a character that cannot be determined by context."
*
* In simpler terms: it is a tool to fix the "Han unification" mess
* created by Unicode committee, to select Chinese/Japanese/Korean/Taiwan
* version of a character. (They forgot that the whole purpose of the Unicode
* was to be able to write all chars in one charset without such tricks).
* Until East Asian users say it is actually necessary to support these
* code points in console applications like busybox
* (i.e. do these chars ever appear in filenames, hostnames, text files
* and such?), we are treating these code points as invalid.
*
* Tertiary Ideographic Plane is also ignored for now,
* until Unicode committee assigns something there.
*/
#if CONFIG_LAST_SUPPORTED_WCHAR < 126 || CONFIG_LAST_SUPPORTED_WCHAR >= 0x30000
# define LAST_SUPPORTED_WCHAR 0x2ffff
#else
# define LAST_SUPPORTED_WCHAR CONFIG_LAST_SUPPORTED_WCHAR
#endif
#if LAST_SUPPORTED_WCHAR >= 0x300
struct interval {
uint16_t first;
uint16_t last;
};
/* auxiliary function for binary search in interval table */
static int in_interval_table(unsigned ucs, const struct interval *table, unsigned max)
{
unsigned min;
unsigned mid;
if (ucs < table[0].first || ucs > table[max].last)
return 0;
min = 0;
while (max >= min) {
mid = (min + max) / 2;
if (ucs > table[mid].last)
min = mid + 1;
else if (ucs < table[mid].first)
max = mid - 1;
else
return 1;
}
return 0;
}
static int in_uint16_table(unsigned ucs, const uint16_t *table, unsigned max)
{
unsigned min;
unsigned mid;
unsigned first, last;
first = table[0] >> 2;
last = first + (table[0] & 3);
if (ucs < first || ucs > last)
return 0;
min = 0;
while (max >= min) {
mid = (min + max) / 2;
first = table[mid] >> 2;
last = first + (table[mid] & 3);
if (ucs > last)
min = mid + 1;
else if (ucs < first)
max = mid - 1;
else
return 1;
}
return 0;
}
#endif
/* The following two functions define the column width of an ISO 10646
* character as follows:
*
* - The null character (U+0000) has a column width of 0.
*
* - Other C0/C1 control characters and DEL will lead to a return
* value of -1.
*
* - Non-spacing and enclosing combining characters (general
* category code Mn or Me in the Unicode database) have a
* column width of 0.
*
* - SOFT HYPHEN (U+00AD) has a column width of 1.
*
* - Other format characters (general category code Cf in the Unicode
* database) and ZERO WIDTH SPACE (U+200B) have a column width of 0.
*
* - Hangul Jamo medial vowels and final consonants (U+1160-U+11FF)
* have a column width of 0.
*
* - Spacing characters in the East Asian Wide (W) or East Asian
* Full-width (F) category as defined in Unicode Technical
* Report #11 have a column width of 2.
*
* - All remaining characters (including all printable
* ISO 8859-1 and WGL4 characters, Unicode control characters,
* etc.) have a column width of 1.
*
* This implementation assumes that wchar_t characters are encoded
* in ISO 10646.
*/
static int wcwidth(unsigned ucs)
{
#if LAST_SUPPORTED_WCHAR >= 0x300
/* sorted list of non-overlapping intervals of non-spacing characters */
/* generated by "uniset +cat=Me +cat=Mn +cat=Cf -00AD +1160-11FF +200B c" */
static const struct interval combining[] = {
#define BIG_(a,b) { a, b },
#define PAIR(a,b)
/* PAIR if < 0x4000 and no more than 4 chars big */
BIG_(0x0300, 0x036F)
PAIR(0x0483, 0x0486)
PAIR(0x0488, 0x0489)
BIG_(0x0591, 0x05BD)
PAIR(0x05BF, 0x05BF)
PAIR(0x05C1, 0x05C2)
PAIR(0x05C4, 0x05C5)
PAIR(0x05C7, 0x05C7)
PAIR(0x0600, 0x0603)
BIG_(0x0610, 0x0615)
BIG_(0x064B, 0x065E)
PAIR(0x0670, 0x0670)
BIG_(0x06D6, 0x06E4)
PAIR(0x06E7, 0x06E8)
PAIR(0x06EA, 0x06ED)
PAIR(0x070F, 0x070F)
PAIR(0x0711, 0x0711)
BIG_(0x0730, 0x074A)
BIG_(0x07A6, 0x07B0)
BIG_(0x07EB, 0x07F3)
PAIR(0x0901, 0x0902)
PAIR(0x093C, 0x093C)
BIG_(0x0941, 0x0948)
PAIR(0x094D, 0x094D)
PAIR(0x0951, 0x0954)
PAIR(0x0962, 0x0963)
PAIR(0x0981, 0x0981)
PAIR(0x09BC, 0x09BC)
PAIR(0x09C1, 0x09C4)
PAIR(0x09CD, 0x09CD)
PAIR(0x09E2, 0x09E3)
PAIR(0x0A01, 0x0A02)
PAIR(0x0A3C, 0x0A3C)
PAIR(0x0A41, 0x0A42)
PAIR(0x0A47, 0x0A48)
PAIR(0x0A4B, 0x0A4D)
PAIR(0x0A70, 0x0A71)
PAIR(0x0A81, 0x0A82)
PAIR(0x0ABC, 0x0ABC)
BIG_(0x0AC1, 0x0AC5)
PAIR(0x0AC7, 0x0AC8)
PAIR(0x0ACD, 0x0ACD)
PAIR(0x0AE2, 0x0AE3)
PAIR(0x0B01, 0x0B01)
PAIR(0x0B3C, 0x0B3C)
PAIR(0x0B3F, 0x0B3F)
PAIR(0x0B41, 0x0B43)
PAIR(0x0B4D, 0x0B4D)
PAIR(0x0B56, 0x0B56)
PAIR(0x0B82, 0x0B82)
PAIR(0x0BC0, 0x0BC0)
PAIR(0x0BCD, 0x0BCD)
PAIR(0x0C3E, 0x0C40)
PAIR(0x0C46, 0x0C48)
PAIR(0x0C4A, 0x0C4D)
PAIR(0x0C55, 0x0C56)
PAIR(0x0CBC, 0x0CBC)
PAIR(0x0CBF, 0x0CBF)
PAIR(0x0CC6, 0x0CC6)
PAIR(0x0CCC, 0x0CCD)
PAIR(0x0CE2, 0x0CE3)
PAIR(0x0D41, 0x0D43)
PAIR(0x0D4D, 0x0D4D)
PAIR(0x0DCA, 0x0DCA)
PAIR(0x0DD2, 0x0DD4)
PAIR(0x0DD6, 0x0DD6)
PAIR(0x0E31, 0x0E31)
BIG_(0x0E34, 0x0E3A)
BIG_(0x0E47, 0x0E4E)
PAIR(0x0EB1, 0x0EB1)
BIG_(0x0EB4, 0x0EB9)
PAIR(0x0EBB, 0x0EBC)
BIG_(0x0EC8, 0x0ECD)
PAIR(0x0F18, 0x0F19)
PAIR(0x0F35, 0x0F35)
PAIR(0x0F37, 0x0F37)
PAIR(0x0F39, 0x0F39)
BIG_(0x0F71, 0x0F7E)
BIG_(0x0F80, 0x0F84)
PAIR(0x0F86, 0x0F87)
PAIR(0x0FC6, 0x0FC6)
BIG_(0x0F90, 0x0F97)
BIG_(0x0F99, 0x0FBC)
PAIR(0x102D, 0x1030)
PAIR(0x1032, 0x1032)
PAIR(0x1036, 0x1037)
PAIR(0x1039, 0x1039)
PAIR(0x1058, 0x1059)
BIG_(0x1160, 0x11FF)
PAIR(0x135F, 0x135F)
PAIR(0x1712, 0x1714)
PAIR(0x1732, 0x1734)
PAIR(0x1752, 0x1753)
PAIR(0x1772, 0x1773)
PAIR(0x17B4, 0x17B5)
BIG_(0x17B7, 0x17BD)
PAIR(0x17C6, 0x17C6)
BIG_(0x17C9, 0x17D3)
PAIR(0x17DD, 0x17DD)
PAIR(0x180B, 0x180D)
PAIR(0x18A9, 0x18A9)
PAIR(0x1920, 0x1922)
PAIR(0x1927, 0x1928)
PAIR(0x1932, 0x1932)
PAIR(0x1939, 0x193B)
PAIR(0x1A17, 0x1A18)
PAIR(0x1B00, 0x1B03)
PAIR(0x1B34, 0x1B34)
BIG_(0x1B36, 0x1B3A)
PAIR(0x1B3C, 0x1B3C)
PAIR(0x1B42, 0x1B42)
BIG_(0x1B6B, 0x1B73)
BIG_(0x1DC0, 0x1DCA)
PAIR(0x1DFE, 0x1DFF)
BIG_(0x200B, 0x200F)
BIG_(0x202A, 0x202E)
PAIR(0x2060, 0x2063)
BIG_(0x206A, 0x206F)
BIG_(0x20D0, 0x20EF)
BIG_(0x302A, 0x302F)
PAIR(0x3099, 0x309A)
/* Too big to be packed in PAIRs: */
{ 0xA806, 0xA806 },
{ 0xA80B, 0xA80B },
{ 0xA825, 0xA826 },
{ 0xFB1E, 0xFB1E },
{ 0xFE00, 0xFE0F },
{ 0xFE20, 0xFE23 },
{ 0xFEFF, 0xFEFF },
{ 0xFFF9, 0xFFFB }
#undef BIG_
#undef PAIR
};
static const uint16_t combining1[] = {
#define BIG_(a,b)
#define PAIR(a,b) (a << 2) | (b-a),
/* Exact copy-n-paste of the above: */
BIG_(0x0300, 0x036F)
PAIR(0x0483, 0x0486)
PAIR(0x0488, 0x0489)
BIG_(0x0591, 0x05BD)
PAIR(0x05BF, 0x05BF)
PAIR(0x05C1, 0x05C2)
PAIR(0x05C4, 0x05C5)
PAIR(0x05C7, 0x05C7)
PAIR(0x0600, 0x0603)
BIG_(0x0610, 0x0615)
BIG_(0x064B, 0x065E)
PAIR(0x0670, 0x0670)
BIG_(0x06D6, 0x06E4)
PAIR(0x06E7, 0x06E8)
PAIR(0x06EA, 0x06ED)
PAIR(0x070F, 0x070F)
PAIR(0x0711, 0x0711)
BIG_(0x0730, 0x074A)
BIG_(0x07A6, 0x07B0)
BIG_(0x07EB, 0x07F3)
PAIR(0x0901, 0x0902)
PAIR(0x093C, 0x093C)
BIG_(0x0941, 0x0948)
PAIR(0x094D, 0x094D)
PAIR(0x0951, 0x0954)
PAIR(0x0962, 0x0963)
PAIR(0x0981, 0x0981)
PAIR(0x09BC, 0x09BC)
PAIR(0x09C1, 0x09C4)
PAIR(0x09CD, 0x09CD)
PAIR(0x09E2, 0x09E3)
PAIR(0x0A01, 0x0A02)
PAIR(0x0A3C, 0x0A3C)
PAIR(0x0A41, 0x0A42)
PAIR(0x0A47, 0x0A48)
PAIR(0x0A4B, 0x0A4D)
PAIR(0x0A70, 0x0A71)
PAIR(0x0A81, 0x0A82)
PAIR(0x0ABC, 0x0ABC)
BIG_(0x0AC1, 0x0AC5)
PAIR(0x0AC7, 0x0AC8)
PAIR(0x0ACD, 0x0ACD)
PAIR(0x0AE2, 0x0AE3)
PAIR(0x0B01, 0x0B01)
PAIR(0x0B3C, 0x0B3C)
PAIR(0x0B3F, 0x0B3F)
PAIR(0x0B41, 0x0B43)
PAIR(0x0B4D, 0x0B4D)
PAIR(0x0B56, 0x0B56)
PAIR(0x0B82, 0x0B82)
PAIR(0x0BC0, 0x0BC0)
PAIR(0x0BCD, 0x0BCD)
PAIR(0x0C3E, 0x0C40)
PAIR(0x0C46, 0x0C48)
PAIR(0x0C4A, 0x0C4D)
PAIR(0x0C55, 0x0C56)
PAIR(0x0CBC, 0x0CBC)
PAIR(0x0CBF, 0x0CBF)
PAIR(0x0CC6, 0x0CC6)
PAIR(0x0CCC, 0x0CCD)
PAIR(0x0CE2, 0x0CE3)
PAIR(0x0D41, 0x0D43)
PAIR(0x0D4D, 0x0D4D)
PAIR(0x0DCA, 0x0DCA)
PAIR(0x0DD2, 0x0DD4)
PAIR(0x0DD6, 0x0DD6)
PAIR(0x0E31, 0x0E31)
BIG_(0x0E34, 0x0E3A)
BIG_(0x0E47, 0x0E4E)
PAIR(0x0EB1, 0x0EB1)
BIG_(0x0EB4, 0x0EB9)
PAIR(0x0EBB, 0x0EBC)
BIG_(0x0EC8, 0x0ECD)
PAIR(0x0F18, 0x0F19)
PAIR(0x0F35, 0x0F35)
PAIR(0x0F37, 0x0F37)
PAIR(0x0F39, 0x0F39)
BIG_(0x0F71, 0x0F7E)
BIG_(0x0F80, 0x0F84)
PAIR(0x0F86, 0x0F87)
PAIR(0x0FC6, 0x0FC6)
BIG_(0x0F90, 0x0F97)
BIG_(0x0F99, 0x0FBC)
PAIR(0x102D, 0x1030)
PAIR(0x1032, 0x1032)
PAIR(0x1036, 0x1037)
PAIR(0x1039, 0x1039)
PAIR(0x1058, 0x1059)
BIG_(0x1160, 0x11FF)
PAIR(0x135F, 0x135F)
PAIR(0x1712, 0x1714)
PAIR(0x1732, 0x1734)
PAIR(0x1752, 0x1753)
PAIR(0x1772, 0x1773)
PAIR(0x17B4, 0x17B5)
BIG_(0x17B7, 0x17BD)
PAIR(0x17C6, 0x17C6)
BIG_(0x17C9, 0x17D3)
PAIR(0x17DD, 0x17DD)
PAIR(0x180B, 0x180D)
PAIR(0x18A9, 0x18A9)
PAIR(0x1920, 0x1922)
PAIR(0x1927, 0x1928)
PAIR(0x1932, 0x1932)
PAIR(0x1939, 0x193B)
PAIR(0x1A17, 0x1A18)
PAIR(0x1B00, 0x1B03)
PAIR(0x1B34, 0x1B34)
BIG_(0x1B36, 0x1B3A)
PAIR(0x1B3C, 0x1B3C)
PAIR(0x1B42, 0x1B42)
BIG_(0x1B6B, 0x1B73)
BIG_(0x1DC0, 0x1DCA)
PAIR(0x1DFE, 0x1DFF)
BIG_(0x200B, 0x200F)
BIG_(0x202A, 0x202E)
PAIR(0x2060, 0x2063)
BIG_(0x206A, 0x206F)
BIG_(0x20D0, 0x20EF)
BIG_(0x302A, 0x302F)
PAIR(0x3099, 0x309A)
#undef BIG_
#undef PAIR
};
struct CHECK {
#define BIG_(a,b) char big##a[b-a <= 3 ? -1 : 1];
#define PAIR(a,b) char pair##a[b-a > 3 ? -1 : 1];
/* Copy-n-paste it here again to verify correctness */
#undef BIG_
#undef PAIR
};
#endif
if (ucs == 0)
return 0;
/* Test for 8-bit control characters (00-1f, 80-9f, 7f) */
if ((ucs & ~0x80) < 0x20 || ucs == 0x7f)
return -1;
/* Quick abort if it is an obviously invalid char */
if (ucs > LAST_SUPPORTED_WCHAR)
return -1;
/* Optimization: no combining chars below 0x300 */
if (LAST_SUPPORTED_WCHAR < 0x300 || ucs < 0x300)
return 1;
#if LAST_SUPPORTED_WCHAR >= 0x300
/* Binary search in table of non-spacing characters */
if (in_interval_table(ucs, combining, ARRAY_SIZE(combining) - 1))
return 0;
if (in_uint16_table(ucs, combining1, ARRAY_SIZE(combining1) - 1))
return 0;
/* Optimization: all chars below 0x1100 are not double-width */
if (LAST_SUPPORTED_WCHAR < 0x1100 || ucs < 0x1100)
return 1;
# if LAST_SUPPORTED_WCHAR >= 0x1100
/* Invalid code points: */
/* High (d800..dbff) and low (dc00..dfff) surrogates (valid only in UTF16) */
/* Private Use Area (e000..f8ff) */
/* Noncharacters fdd0..fdef */
if ((LAST_SUPPORTED_WCHAR >= 0xd800 && ucs >= 0xd800 && ucs <= 0xf8ff)
|| (LAST_SUPPORTED_WCHAR >= 0xfdd0 && ucs >= 0xfdd0 && ucs <= 0xfdef)
) {
return -1;
}
/* 0xfffe and 0xffff in every plane are invalid */
if (LAST_SUPPORTED_WCHAR >= 0xfffe && ((ucs & 0xfffe) == 0xfffe)) {
return -1;
}
# if LAST_SUPPORTED_WCHAR >= 0x10000
if (ucs >= 0x10000) {
/* Combining chars in Supplementary Multilingual Plane 0x1xxxx */
static const struct interval combining0x10000[] = {
{ 0x0A01, 0x0A03 }, { 0x0A05, 0x0A06 }, { 0x0A0C, 0x0A0F },
{ 0x0A38, 0x0A3A }, { 0x0A3F, 0x0A3F }, { 0xD167, 0xD169 },
{ 0xD173, 0xD182 }, { 0xD185, 0xD18B }, { 0xD1AA, 0xD1AD },
{ 0xD242, 0xD244 }
};
/* Binary search in table of non-spacing characters in Supplementary Multilingual Plane */
if (in_interval_table(ucs ^ 0x10000, combining0x10000, ARRAY_SIZE(combining0x10000) - 1))
return 0;
/* Check a few non-spacing chars in Supplementary Special-purpose Plane 0xExxxx */
if (LAST_SUPPORTED_WCHAR >= 0xE0001
&& ( ucs == 0xE0001
|| (ucs >= 0xE0020 && ucs <= 0xE007F)
|| (ucs >= 0xE0100 && ucs <= 0xE01EF)
)
) {
return 0;
}
}
# endif
/* If we arrive here, ucs is not a combining or C0/C1 control character.
* Check whether it's 1 char or 2-shar wide.
*/
return 1 +
( (/*ucs >= 0x1100 &&*/ ucs <= 0x115f) /* Hangul Jamo init. consonants */
|| ucs == 0x2329 /* left-pointing angle bracket; also CJK punct. char */
|| ucs == 0x232a /* right-pointing angle bracket; also CJK punct. char */
|| (ucs >= 0x2e80 && ucs <= 0xa4cf && ucs != 0x303f) /* CJK ... Yi */
# if LAST_SUPPORTED_WCHAR >= 0xac00
|| (ucs >= 0xac00 && ucs <= 0xd7a3) /* Hangul Syllables */
|| (ucs >= 0xf900 && ucs <= 0xfaff) /* CJK Compatibility Ideographs */
|| (ucs >= 0xfe10 && ucs <= 0xfe19) /* Vertical forms */
|| (ucs >= 0xfe30 && ucs <= 0xfe6f) /* CJK Compatibility Forms */
|| (ucs >= 0xff00 && ucs <= 0xff60) /* Fullwidth Forms */
|| (ucs >= 0xffe0 && ucs <= 0xffe6)
|| ((ucs >> 17) == (2 >> 1)) /* 20000..3ffff: Supplementary and Tertiary Ideographic Planes */
# endif
);
# endif
#endif
}