More play-around

This commit is contained in:
Lucas Scharenbroich 2020-08-23 00:25:39 -05:00
parent 30cb545e5e
commit 5e757f3cc5
9 changed files with 1565 additions and 240 deletions

32
macros/APP.MACS.S Normal file
View File

@ -0,0 +1,32 @@
;
; Dereference a handle that is on the top of the stack
;
_Deref MAC
phb ; save caller's data bank register
pha ; push high word of handle on stack
plb ; sets B to the bank byte of the pointer
lda |$0002,x ; load the high word of the master pointer
pha ; and save it on the stack
lda |$0000,x ; load the low word of the master pointer
tax ; and return it in X
pla ; restore the high word in A
plb ; pull the handle's high word high byte off the
; stack
plb ; restore the caller's data bank register
<<<
****************************************
* Basic Error Macro *
****************************************
_Err mac
bcc NoErr
do ]0 ; (DO if true)
jsr PgmDeath ; this is conditionally compiled if
str ]1 ; we pass in an error statement
else ; (ELSE)
jmp PgmDeath0 ; we just call the simpler error handler
fin ; (FIN)
NoErr eom

View File

@ -4,7 +4,7 @@
"description": "A game engine for the Applie IIgs written in 65816 assembly language",
"main": "index.js",
"config": {
"merlin32": "C:\\Programs\\IIgsXDev\\bin\\Merlin32.exe",
"merlin32": "C:\\Programs\\IIgsXDev\\bin\\Merlin32-1.1.9.exe",
"cadius": "C:\\Programs\\IIgsXDev\\bin\\Cadius.exe",
"gsport": "C:\\Programs\\gsport\\gsport_0.31\\GSPort.exe",
"macros": "C:\\Programs\\BrutalDeluxe\\Merlin32\\Library"

132
src/GTE.Inline.s Normal file
View File

@ -0,0 +1,132 @@
; Template and utility function for a single line of the GTE blitter. See the other GTE.Line.s file
; for details on the general structure of this template.
;
; This is a variant that places the snippets inline within the code field. We give up
; the speed of three-byte code sequences, but eliminate the double JMP and simplify the
; handling of odd-alignment.
;
; This mode is best when the scenes are always complicated.
;
; Odd:
MX %00
entry_1 ldx #0000 ; patch with the address of the direct page tiles. Fixed.
entry_2 ldy #0000 ; patch with the address of the line in the second layer. Set when BG1 scroll position changes.
entry_3 lda #0000 ; patch with the address of the right edge of the line. Set when origin position changes.
tcs
entry_jmp jmp $2000 ; always jump into the same location. For odd line, the end
; ; of the snippet will be patched to handle the right-edge case.
right_odd sep #$20 ; enter here from the code field
pha
rep #$20
jmp $2000 ; jump back into the code field
jmp odd_exit
jmp even_exit
; Code field, each block is N bytes
loop
lda #1234 ; PEA $0000 becomes LDA #0000 / BRA / PHA
bra l0
jmp exit ; 'normal' exit point
jmp left_odd ; handler for pushing a single byte to the left edge
jmp right_odd ; handler for pushing a single byte to the right edge
l0 pha ; always end with a PHA, this is the patch point
lda (00),y ;
and #MASK
ora #data
bra l1
jmp exit ; 'normal' exit point
jmp left_odd ; handler for pushing a single byte to the left edge
jmp right_odd ; handler for pushing a single byte to the right edge
l0 pha ; always end with a PHA, this is the patch point
...
jmp loop
jmp even_exit
left_odd sep #$20
xba
pha
rep #$20
exit jmp $0000 ; Jump to the next line. We set up the blitter to do 8 or 16 lines at a time
; ; before restoring the machine state and re-enabling interrupts. This makes
; ; the blitter interrupt friendly to allow things like music player to continue
; ; to function.
;
; ; When it's time to exit, the next_entry address points to an alternate exit point
; These are the special code snippets -- there is a 1:1 relationship between each snippet space
; and a 3-byte entry in the code field. Thus, each snippet has a hard-coded JMP to return to
; the next code field location
;
; The snippet is required to handle the odd-alignment in-line; there is no facility for
; patching or intercepting these values due to their complexity. The only requirements
; are:
;
; 1. Carry Clear -> 16-bit write and return to the next code field operand
; 2. Carry Set
; a. Overflow set -> Low 8-bit write and return to the next code field operand
; b. Overflow clear -> High 8-bit write and exit the line
; c. Always clear the Carry flags. It's actually OK to leave the overflow bit in
; its passed state, because having the carry bit clear prevent evaluation of
; the V bit.
;
; Snippet Samples:
;
; Standard Two-level Mix (27 bytes)
;
; Optimal = 18 cycles (LDA/AND/ORA/PHA)
; 16-bit write = 23 cycles
; 8-bit low = 35 cycles
; 8-bit high = 36 cycles
;
; start lda (00),y
; and #MASK
; ora #DATA ; 14 cycles to load the data
; bcs 8_bit
; pha
; out jmp next ; Fast-path completes in 9 additional cycles
; 8_bit sep #$30 ; Switch to 8 bit mode
; bvs r_edge ; Need to switch if doing the left edge
; xba
; r_edge pha ; push the value
; rep #$31 ; put back into 16-bit mode and clear the carry bit, as required
; bvs out ; jmp out and continue if this is the right edge
; jmp even_exit ; exit the line otherwise
; ;
; ; The slow paths have 21 and 22 cycles for the right and left
; ; odd-aligned cases respectively.
snippets ds 32*82

View File

@ -221,3 +221,4 @@ snippets ds 32*82

View File

@ -14,49 +14,93 @@
; - 1 page for pointer to the second background
; - 8 pages for the dynamic tiles
mx %00
mx %00
MemInit PushLong #0 ; space for result
PushLong #$008000 ; size (32k)
PushWord UserId
PushWord #%11000000_00010111 ; Fixed location
PushLong #$002000
_NewHandle ; returns LONG Handle on stack
plx ; base address of the new handle
pla ; high address 00XX of the new handle (bank)
_Deref
sta Buff00+2
stx Buff00
MemInit PushLong #0 ; space for result
PushLong #$008000 ; size (32k)
PushWord UserId
PushWord #%11000000_00010111 ; Fixed location
PushLong #$002000
_NewHandle ; returns LONG Handle on stack
plx ; base address of the new handle
pla ; high address 00XX of the new handle (bank)
_Deref
stx Buff00
sta Buff00+2
PushLong #0 ; space for result
PushLong #$008000 ; size (32k)
PushWord UserId
PushWord #%11000000_00010111 ; Fixed location
PushLong #$012000
_NewHandle ; returns LONG Handle on stack
plx ; base address of the new handle
pla ; high address 00XX of the new handle (bank)
_Deref
sta Buff01+2
stx Buff01
PushLong #0 ; space for result
PushLong #$008000 ; size (32k)
PushWord UserId
PushWord #%11000000_00010111 ; Fixed location
PushLong #$012000
_NewHandle ; returns LONG Handle on stack
plx ; base address of the new handle
pla ; high address 00XX of the new handle (bank)
_Deref
stx Buff01
sta Buff01+2
PushLong #0 ; space for result
PushLong #$000A00 ; size (10 pages)
PushWord UserId
PushWord #%11000000_00010101 ; Page-aligned, fixed bank
PushLong #$000000
_NewHandle ; returns LONG Handle on stack
plx ; base address of the new handle
pla ; high address 00XX of the new handle (bank)
_Deref
stx ZeroPage
sta ZeroPage+2
PushLong #0
PushLong #$10000
PushWord UserId
PushWord #%11000000_00011100
PushLong #0
_NewHandle
plx ; base address of the new handle
pla ; high address 00XX of the new handle (bank)
_Deref
stx BlitBuff
sta BlitBuff+2
rts
Buff00 ds 4
Buff01 ds 4
ZeroPage ds 4
BlitBuff ds 4
; Bank allocator (for one full, fixed bank of memory. Can be immediately deferenced)
AllocOneBank PushLong #0
PushLong #$10000
PushWord UserId
PushWord #%11000000_00011100
PushLong #0
_NewHandle ; returns LONG Handle on stack
plx ; base address of the new handle
pla ; high address 00XX of the new handle (bank)
xba ; swap accumulator bytes to XX00
sta :bank+2 ; store as bank for next op (overwrite $XX00)
:bank ldal $000001,X ; recover the bank address in A=XX/00
rts
; Set up the interrupts
;
; oldOneVect = GetVector( oneSecHnd );
; SetVector( oneSecHnd, (Pointer) ONEHANDLER );
; IntSource( oSecEnable );
; SetHeartBeat( VBLTASK );
IntInit rts
; IntSource( oSecDisable ); /* disable one second interrupts */
; SetVector( oneSecHnd, oldOneVect ); /* reset to the old handler */
ShutDown rts
PushLong #0 ; space for result
PushLong #$000A00 ; size (10 pages)
PushWord UserId
PushWord #%11000000_00010101 ; Page-aligned, fixed bank
PushLong #$000000
_NewHandle ; returns LONG Handle on stack
plx ; base address of the new handle
pla ; high address 00XX of the new handle (bank)
_Deref
sta ZeroPage+2
stx ZeroPage
rts
Buff00 ds 4
Buff01 ds 4
ZeroPage ds 4

View File

@ -1,263 +1,429 @@
; Test program for graphics stufff...
rel
rel
use Util.Macs.s
use Locator.Macs.s
use Mem.Macs.s
use Misc.Macs.s
put ..\macros\App.Macs.s
put ..\macros\EDS.GSOS.MACS.s
use Util.Macs.s
use Locator.Macs.s
use Mem.Macs.s
use Misc.Macs.s
put ..\macros\App.Macs.s
put ..\macros\EDS.GSOS.MACS.s
mx %00
mx %00
SHADOW_REG equ $E0C035
NEW_VIDEO_REG equ $E0C029
BORDER_REG equ $E0C034 ; 0-3 = border 4-7 Text color
VBL_VERT_REG equ $E0C02E
VBL_HORZ_REG equ $E0C02F
KBD_REG equ $E0C000
KBD_STROBE_REG equ $E0C010
VBL_STATE_REG equ $E0C019
; Typical init
phk
plb
phk
plb
; Tool startup
_TLStartUp ; normal tool initialization
pha
_MMStartUp
_Err ; should never happen
pla
sta MasterId ; our master handle references the memory allocated to us
ora #$0100 ; set auxID = $01 (valid values $01-0f)
sta UserId ; any memory we request must use our own id
_TLStartUp ; normal tool initialization
pha
_MMStartUp
_Err ; should never happen
pla
sta MasterId ; our master handle references the memory allocated to us
ora #$0100 ; set auxID = $01 (valid values $01-0f)
sta UserId ; any memory we request must use our own id
_MTStartUp
; Install interrupt handlers
PushLong #0
pea $0015 ; Get the existing 1-second interrupt handler and save
_GetVector
PullLong OldOneSecVec
pea $0015 ; Set the new handler and enable interrupts
PushLong #OneSecHandler
_SetVector
pea $0006
_IntSource
PushLong #VBLTASK ; Also register a Heart Beat Task
_SetHeartBeat
; Start up the graphics engine...
jsr MemInit
jsr MemInit
lda BlitBuff+2 ; Fill in this bank
jsr BuildBank
; Load a picture and copy it into Bank $E1. Then turn on the screen.
jsr AllocOneBank ; Alloc 64KB for Load/Unpack
sta BankLoad ; Store "Bank Pointer"
jsr AllocOneBank ; Alloc 64KB for Load/Unpack
sta BankLoad ; Store "Bank Pointer"
ldx #ImageName ; Load+Unpack Boot Picture
jsr LoadPicture ; X=Name, A=Bank to use for loading
jsr GrafOn
lda BankLoad ; get address of loaded/uncompressed picture
clc
adc #$0080 ; skip header?
sta :copySHR+2 ; and store that over the 'ldal' address below
ldx #$7FFE ; copy all image data
:copySHR ldal $000000,x ; load from BankLoad we allocated
stal $E12000,x ; store to SHR screen
dex
dex
bpl :copySHR
EvtLoop
jsr WaitForKey
cmp #'q'
bne :1
brl Exit
:1 cmp #'l'
bne :2
brl DoLoadPic
:2 cmp #'m'
beq DoMessage
bra EvtLoop
jsr GrafOn
jsr WaitForKey
HexToChar dfb '0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'
DoMessage
sep #$20
ldx #0
lda BlitBuff+2
and #$F0
lsr
lsr
lsr
lsr
tax
lda HexToChar,x
sta Hello+1
; Deallocate all of our memory
PushWord UserId
_DisposeAll
lda BlitBuff+2
and #$0F
tax
lda HexToChar,x
sta Hello+2
Exit _QuitGS qtRec
lda BlitBuff+1
and #$F0
lsr
lsr
lsr
lsr
tax
lda HexToChar,x
sta Hello+4
bcs Fatal
Fatal brk $00
lda BlitBuff+1
and #$0F
tax
lda HexToChar,x
sta Hello+5
WaitForKey sep #$30
:WFK ldal $00C000
bpl :WFK
stal $00C010
rep #$30
rts
lda BlitBuff
and #$F0
lsr
lsr
lsr
lsr
tax
lda HexToChar,x
sta Hello+6
lda BlitBuff
and #$0F
tax
lda HexToChar,x
sta Hello+7
rep #$20
lda #Hello
ldx #{60*160+30}
ldy #$7777
jsr DrawString
jmp EvtLoop
DoLoadPic
lda BankLoad
ldx #ImageName ; Load+Unpack Boot Picture
jsr LoadPicture ; X=Name, A=Bank to use for loading
lda BankLoad ; get address of loaded/uncompressed picture
clc
adc #$0080 ; skip header?
sta :copySHR+2 ; and store that over the 'ldal' address below
ldx #$7FFE ; copy all image data
:copySHR ldal $000000,x ; load from BankLoad we allocated
stal $E12000,x ; store to SHR screen
dex
dex
bpl :copySHR
jmp EvtLoop
Exit
pea $0007 ; disable 1-second interrupts
_IntSource
PushLong #VBLTASK ; Remove our heartbeat task
_DelHeartBeat
pea $0015
PushLong OldOneSecVec ; Reset the interrupt vector
_SetVector
PushWord UserId ; Deallocate all of our memory
_DisposeAll
_QuitGS qtRec
bcs Fatal
Fatal brk $00
Hello str '00/0000'
****************************************
* Fatal Error Handler *
****************************************
PgmDeath tax
pla
inc
phx
phk
pha
bra ContDeath
PgmDeath0 pha
pea $0000
pea $0000
ContDeath ldx #$1503
jsl $E10000
PgmDeath tax
pla
inc
phx
phk
pha
bra ContDeath
PgmDeath0 pha
pea $0000
pea $0000
ContDeath ldx #$1503
jsl $E10000
; Interrupt handlers. We install a heartbeat (1/60th second and a 1-second timer)
OneSecHandler mx %11
phb
pha
phk
plb
rep #$20
inc OneSecondCounter
sep #$20
ldal $E0C032
and #%10111111 ;clear IRQ source
stal $E0C032
pla
plb
clc
rtl
mx %00
OneSecondCounter dw 0
OldOneSecVec ds 4
VBLTASK hex 00000000
dw 0
hex 5AA5
; Graphic screen initialization
GrafInit ldx #$7FFE
lda #0000
:loop stal $E12000,x
dex
dex
bne :loop
rts
GrafInit ldx #$7FFE
lda #0000
:loop stal $E12000,x
dex
dex
bne :loop
rts
; Return the current border color ($0 - $F) in the accumulator
GetBorderColor lda #0000
sep #$20
ldal BORDER_REG
and #$0F
rep #$20
rts
GrafOn sep #$30
lda #$81
stal $00C029
rep #$30
rts
; Set the border color to the accumulator value.
SetBorderColor sep #$20 ; ACC = $X_Y, REG = $W_Z
eorl BORDER_REG ; ACC = $(X^Y)_(Y^Z)
and #$0F ; ACC = $0_(Y^Z)
eorl BORDER_REG ; ACC = $W_(Y^Z^Z) = $W_Y
stal BORDER_REG
rep #$20
rts
; Bank allocator (for one full, fixed bank of memory. Can be immediately deferenced)
; Turn SHR screen On/Off
GrafOn sep #$20
lda #$81
stal NEW_VIDEO_REG
rep #$20
rts
AllocOneBank PushLong #0
PushLong #$10000
PushWord UserId
PushWord #%11000000_00011100
PushLong #0
_NewHandle ; returns LONG Handle on stack
plx ; base address of the new handle
pla ; high address 00XX of the new handle (bank)
xba ; swap accumulator bytes to XX00
sta :bank+2 ; store as bank for next op (overwrite $XX00)
:bank ldal $000001,X ; recover the bank address in A=XX/00
rts
GrafOff sep #$20
lda #$01
stal NEW_VIDEO_REG
rep #$20
rts
; Enable/Disable Shadowing.
ShadowOn sep #$20
ldal SHADOW_REG
and #$F7
stal SHADOW_REG
rep #$20
rts
ShadowOff sep #$20
ldal SHADOW_REG
ora #$08
stal SHADOW_REG
rep #$20
rts
GetVBL sep #$20
ldal VBL_HORZ_REG
asl
ldal VBL_VERT_REG
rol ; put V5 into carry bit, if needed. See TN #39 for details.
rep #$20
and #$00FF
rts
WaitForVBL sep #$20
:wait1 ldal VBL_STATE_REG ; If we are already in VBL, then wait
bmi :wait1
:wait2 ldal VBL_STATE_REG
bpl :wait2 ; spin until transition into VBL
rep #$20
rts
WaitForKey sep #$20
stal KBD_STROBE_REG ; clear the strobe
:WFK ldal KBD_REG
bpl :WFK
rep #$20
and #$007F
rts
ClearKeyboardStrobe sep #$20
stal KBD_STROBE_REG
rep #$20
rts
; Graphics helpers
LoadPicture jsr LoadFile ; X=Nom Image, A=Banc de chargement XX/00
bcc :loadOK
brl Exit
:loadOK jsr UnpackPicture ; A=Packed Size
rts
LoadPicture
jsr LoadFile ; X=Nom Image, A=Banc de chargement XX/00
bcc :loadOK
rts
:loadOK
jsr UnpackPicture ; A=Packed Size
rts
UnpackPicture sta UP_PackedSize ; Size of Packed Data
lda #$8000 ; Size of output Data Buffer
sta UP_UnPackedSize
lda BankLoad ; Banc de chargement / Decompression
sta UP_Packed+1 ; Packed Data
clc
adc #$0080
stz UP_UnPacked ; On remet a zero car modifie par l'appel
stz UP_UnPacked+2
sta UP_UnPacked+1 ; Unpacked Data buffer
UnpackPicture sta UP_PackedSize ; Size of Packed Data
lda #$8000 ; Size of output Data Buffer
sta UP_UnPackedSize
lda BankLoad ; Banc de chargement / Decompression
sta UP_Packed+1 ; Packed Data
clc
adc #$0080
stz UP_UnPacked ; On remet a zero car modifie par l'appel
stz UP_UnPacked+2
sta UP_UnPacked+1 ; Unpacked Data buffer
PushWord #0 ; Space for Result : Number of bytes unpacked
PushLong UP_Packed ; Pointer to buffer containing the packed data
PushWord UP_PackedSize ; Size of the Packed Data
PushLong #UP_UnPacked ; Pointer to Pointer to unpacked buffer
PushLong #UP_UnPackedSize ; Pointer to a Word containing size of unpacked data
_UnPackBytes
pla ; Number of byte unpacked
rts
PushWord #0 ; Space for Result : Number of bytes unpacked
PushLong UP_Packed ; Pointer to buffer containing the packed data
PushWord UP_PackedSize ; Size of the Packed Data
PushLong #UP_UnPacked ; Pointer to Pointer to unpacked buffer
PushLong #UP_UnPackedSize ; Pointer to a Word containing size of unpacked data
_UnPackBytes
pla ; Number of byte unpacked
rts
UP_Packed hex 00000000 ; Address of Packed Data
UP_PackedSize hex 0000 ; Size of Packed Data
UP_UnPacked hex 00000000 ; Address of Unpacked Data Buffer (modified)
UP_UnPackedSize hex 0000 ; Size of Unpacked Data Buffer (modified)
UP_Packed hex 00000000 ; Address of Packed Data
UP_PackedSize hex 0000 ; Size of Packed Data
UP_UnPacked hex 00000000 ; Address of Unpacked Data Buffer (modified)
UP_UnPackedSize hex 0000 ; Size of Unpacked Data Buffer (modified)
; Basic I/O function to load files
LoadFile stx openRec+4 ; X=File, A=Bank/Page XX/00
sta readRec+5
LoadFile stx openRec+4 ; X=File, A=Bank/Page XX/00
sta readRec+5
:openFile _OpenGS openRec
bcs :openReadErr
lda openRec+2
sta eofRec+2
sta readRec+2
:openFile _OpenGS openRec
bcs :openReadErr
lda openRec+2
sta eofRec+2
sta readRec+2
_GetEOFGS eofRec
lda eofRec+4
sta readRec+8
lda eofRec+6
sta readRec+10
_GetEOFGS eofRec
lda eofRec+4
sta readRec+8
lda eofRec+6
sta readRec+10
_ReadGS readRec
bcs :openReadErr
_ReadGS readRec
bcs :openReadErr
:closeFile _CloseGS closeRec
clc
lda eofRec+4 ; File Size
rts
:closeFile _CloseGS closeRec
clc
lda eofRec+4 ; File Size
rts
:openReadErr jsr :closeFile
nop
nop
:openReadErr jsr :closeFile
nop
nop
PushWord #0
PushLong #msgLine1
PushLong #msgLine2
PushLong #msgLine3
PushLong #msgLine4
_TLTextMountVolume
pla
cmp #1
bne :loadFileErr
brl :openFile
:loadFileErr sec
rts
PushWord #0
PushLong #msgLine1
PushLong #msgLine2
PushLong #msgLine3
PushLong #msgLine4
_TLTextMountVolume
pla
cmp #1
bne :loadFileErr
brl :openFile
:loadFileErr sec
rts
msgLine1 str 'Unable to load File'
msgLine2 str 'Press a key :'
msgLine3 str ' -> Return to Try Again'
msgLine4 str ' -> Esc to Quit'
msgLine1 str 'Unable to load File'
msgLine2 str 'Press a key :'
msgLine3 str ' -> Return to Try Again'
msgLine4 str ' -> Esc to Quit'
; Data storage
ImageName strl '1/test.pic'
MasterId ds 2
UserId ds 2
BankLoad hex 0000
openRec dw 2 ; pCount
ds 2 ; refNum
adrl ImageName ; pathname
eofRec dw 2 ; pCount
ds 2 ; refNum
ds 4 ; eof
readRec dw 4 ; pCount
ds 2 ; refNum
ds 4 ; dataBuffer
ds 4 ; requestCount
ds 4 ; transferCount
closeRec dw 1 ; pCount
ds 2 ; refNum
qtRec adrl $0000
da $00
put App.Init.s
ImageName strl '1/test.pic'
MasterId ds 2
UserId ds 2
BankLoad hex 0000
openRec dw 2 ; pCount
ds 2 ; refNum
adrl ImageName ; pathname
eofRec dw 2 ; pCount
ds 2 ; refNum
ds 4 ; eof
readRec dw 4 ; pCount
ds 2 ; refNum
ds 4 ; dataBuffer
ds 4 ; requestCount
ds 4 ; transferCount
closeRec dw 1 ; pCount
ds 2 ; refNum
qtRec adrl $0000
da $00
put App.Init.s
put font.s
put blitter/Template.s
put blitter/Tables.s
lda #BG1_ADDR

26
test/blitter/Tables.s Normal file
View File

@ -0,0 +1,26 @@
; Collection of data tables
;
; Tile2CodeOffset
;
; Takes a tile number (0 - 40) and returns the offset into the blitter code
; template.
;
; This is used for rendering tile data into the code field. For example, is we assume that
; we are filling in the operans for a bunch of PEA values, we could do this
;
; ldy tileNumber*2
; lda #DATA
; ldx Tile2CodeOffset,y
; sta $0001,x
;
; This table is necessary, because due to the data being draw via stack instructions, the
; tile order is reversed.
PER_TILE_SIZE equ 6
]step equ 0
Tile2CodeOffset lup 41
dw CODE_TOP+{]step*PER_TILE_SIZE}
]step equ ]step+1
--^

279
test/blitter/Template.s Normal file
View File

@ -0,0 +1,279 @@
; Template and equates for GTE blitter
mx %00
DP_ADDR equ entry_1-base+1
BG1_ADDR equ entry_2-base+1
STK_ADDR equ entry_3-base+1
CODE_TOP equ loop-base
CODE_LEN equ top-base
; Locations that need the page offset added
PagePatches da {long_0-base+2}
da {long_1-base+2}
da {long_2-base+2}
da {long_3-base+2}
da {long_4-base+2}
da {long_5-base+2}
da {long_6-base+2}
da {odd_entry-base+2}
da {loop_exit_1-base+2}
da {loop_exit_2-base+2}
da {loop_back-base+2}
da {loop_exit_3-base+2}
PagePatchNum equ *-PagePatches
BankPatches da {long_0-base+3}
da {long_1-base+3}
da {long_2-base+3}
da {long_3-base+3}
da {long_4-base+3}
da {long_5-base+3}
da {long_6-base+3}
BankPatchNum equ *-BankPatches
target equ 0
BuildBank
stz target
sta target+2
:next
jsr BuildLine2
lda target
clc
adc #$1000
sta target
bcc :next
rts
; this is a relocation subroutine, it is responsible for copying the template to a
; memory location and patching up the necessary instructions.
;
; X = low word of address (must be a multiple of $1000)
; A = high word of address (bank)
BuildLine
stx target
sta target+2
BuildLine2
lda #CODE_LEN ; round up to an even number of bytes
inc
and #$FFFE
beq :nocopy
dec
dec
tay
:loop lda base,y
sta [target],y
dey
dey
bpl :loop
:nocopy lda #0 ; copy is complete, now patch up the addresses
sep #$20
ldx #0
lda target+2 ; patch in the bank for the absolute long addressing mode
:dobank ldy BankPatches,x
sta [target],y
inx
inx
cpx #BankPatchNum
bcc :dobank
ldx #0
:dopage ldy PagePatches,x ; patch the page addresses by adding the page offset to each
lda [target],y
clc
adc target+1
sta [target],y
inx
inx
cpx #PagePatchNum
bcc :dopage
:out
rep #$20
rts
; start of the template code
base
entry_1 ldx #0000
entry_2 ldy #0000
entry_3 lda #0000
tcs
long_0
entry_jmp jmp $0100
dfb $00 ; if the screen is odd-aligned, then the opcode is set to
; ; $AF to convert to a LDA long instruction. This puts the
; ; first two bytes of the instruction field in the accumulator
; ; and falls through to the next instruction.
;
; ; We structure the line so that the entry point only needs to
; ; update the low-byte of the address, the means it takes only
; ; an amortized 4-cycles per line to set the entry pointbra
right_odd bit #$000B ; Check the bottom nibble to quickly identify a PEA instruction
beq r_is_pea ; This costs 6 cycles in the fast-path
bit #$0040 ; Check bit 6 to distinguish between JMP and all of the LDA variants
bne r_is_jmp
long_1 stal *+4-base
dfb $00,$00 ; this here to avoid needing a BRA instruction back. So the fast-path
; ; gets a 1-cycle penalty, but we save 3 cycles here.
r_is_pea xba ; fast code for PEA
sep #$30
pha
rep #$30
odd_entry jmp $0100 ; unconditionally jump into the "next" instruction in the
; ; code field. This is OK, even if the entry point was the
; ; last instruction, because there is a JMP at the end of
; ; the code field, so the code will simply jump to that
; ; instruction directly.
; ;
; ; As with the original entry point, because all of the
; ; code field is page-aligned, only the low byte needs to
; ; be updated when the scroll position changes
r_is_jmp sep #$41 ; Set the C and V flags which tells a snippet to push only the low byte
long_2 ldal entry_jmp+1-base
long_3 stal *+5-base
dfb $4C,$00,$00 ; Jump back to address in entry_jmp (this takes 16 cycles, is there a better way?)
; This is the spot that needs to be page-aligned. In addition to simplifying the entry address
; and only needing to update a byte instad of a word, because the code breaks out of the
; code field with a BRA instruction, we keep everything within a page to avoid the 1-cycle
; page-crossing penalty of the branch.
ds 204
loop_exit_1 jmp odd_exit-base ; +0 Alternate exit point depending on whether the left edge is
loop_exit_2 jmp even_exit-base ; +3 odd-aligned
loop lup 82 ; +6 Set up 82 PEA instructions, which is 328 pixels and consumes 246 bytes
pea $0000 ; This is 41 8x8 tiles in width. Need to have N+1 tiles for screen overlap
--^
loop_back jmp loop-base ; +252 Ensure execution continues to loop around
loop_exit_3 jmp even_exit-base ; +255
odd_exit lda #0000 ; This operand field is *always* used to hold the original 2 bytes of the code field
; ; that are replaced by the needed BRA instruction to exit the code field. When the
; ; left edge is odd-aligned, we are able to immediately load the value and perform
; ; similar logic to the right_odd code path above
left_odd bit #$000B
beq l_is_pea
bit #$0040
bne l_is_jmp
long_4 stal *+4-base
dfb $00,$00
l_is_pea xba
sep #$30
pha
rep #$30
bra even_exit
l_is_jmp sep #$01 ; Set the C flag (V is always cleared at this point) which tells a snippet to push only the high byte
long_5 ldal entry_jmp+1-base
long_6 stal *+5-base
dfb $4C,$00,$00 ; Jump back to address in entry_jmp (this takes 13 cycles, is there a better way?)
even_exit jmp $1000 ; Jump to the next line. We set up the blitter to do 8 or 16 lines at a time
; ; before restoring the machine state and re-enabling interrupts. This makes
; ; the blitter interrupt friendly to allow things like music player to continue
; ; to function.
;
; ; When it's time to exit, the next_entry address points to an alternate exit point
; These are the special code snippets -- there is a 1:1 relationship between each snippet space
; and a 3-byte entry in the code field. Thus, each snippet has a hard-coded JMP to return to
; the next code field location
;
; The snippet is required to handle the odd-alignment in-line; there is no facility for
; patching or intercepting these values due to their complexity. The only requirements
; are:
;
; 1. Carry Clear -> 16-bit write and return to the next code field operand
; 2. Carry Set
; a. Overflow set -> Low 8-bit write and return to the next code field operand
; b. Overflow clear -> High 8-bit write and exit the line
; c. Always clear the Carry flags. It's actually OK to leave the overflow bit in
; its passed state, because having the carry bit clear prevent evaluation of
; the V bit.
;
; Snippet Samples:
;
; Standard Two-level Mix (27 bytes)
;
; Optimal = 18 cycles (LDA/AND/ORA/PHA)
; 16-bit write = 23 cycles
; 8-bit low = 35 cycles
; 8-bit high = 36 cycles
;
; start lda (00),y
; and #MASK
; ora #DATA ; 14 cycles to load the data
; bcs 8_bit
; pha
; out jmp next ; Fast-path completes in 9 additional cycles
; 8_bit sep #$30 ; Switch to 8 bit mode
; bvs r_edge ; Need to switch if doing the left edge
; xba
; r_edge pha ; push the value
; rep #$31 ; put back into 16-bit mode and clear the carry bit, as required
; bvs out ; jmp out and continue if this is the right edge
; jmp even_exit ; exit the line otherwise
; ;
; ; The slow paths have 21 and 22 cycles for the right and left
; ; odd-aligned cases respectively.
; snippets ds 32*82
top

645
test/font.s Normal file
View File

@ -0,0 +1,645 @@
****************************************
* FONT ENGINE (v3?) *
* *
* Dagen Brock <dagenbrock@gmail.com> *
* 2013-07-20 *
****************************************
* A= ptr to string preceded by length *
* X= screen location *
****************************************
; each char:
; draw char at loc
; update loc
; see if length hit - no? back to draw char
rel
mx %00
]F_Length ds 2 ;length of string (only one byte currently used)
]F_CharIdx ds 2 ;index of current character
]F_CurrentPos ds 2 ;current top left char position
]F_StrPtr equ $00 ;pointer to string (including length byte) / DP
]F_StrClr equ $02
DrawString
sta ]F_StrPtr ;store at dp 0 ($00) for indirect loads
stx ]F_CurrentPos
sty ]F_StrClr
stz ]F_CharIdx
lda (]F_StrPtr)
and #$00ff ;strip off first char (len is only one byte)
sta ]F_Length ;get our length byte
NextChar lda ]F_CharIdx
cmp ]F_Length
bne :notDone
rts ;DONE! Return to caller
:notDone inc ]F_CharIdx
ldy ]F_CharIdx
lda ($00),y ;get next char!
and #$00FF ;mask high byte
sec
sbc #' ' ;our table starts with space ' '
asl ;*2
tay
ldx ]F_CurrentPos
jsr :drawChar
inc ]F_CurrentPos ;compare to addition time (?)
inc ]F_CurrentPos
inc ]F_CurrentPos
inc ]F_CurrentPos ;update screen pos (2 words=8 pixels)
bra NextChar
;x = TopLeft screen pos
;y = char table offset
:drawChar lda FontTable,y ;get real address of char data
sec
sbc #FontData ;pivot offset - now a is offset of fontdata
tay ;so we'll index with that
lda FontData,y
and ]F_StrClr
stal $E12000,x
lda FontData+2,y
and ]F_StrClr
stal $E12000+2,x
lda FontData+4,y
and ]F_StrClr
stal $E12000+160,x
lda FontData+6,y
and ]F_StrClr
stal $E12000+160+2,x
lda FontData+8,y
and ]F_StrClr
stal {$E12000+160*2},x
lda FontData+10,y
and ]F_StrClr
stal {$E12000+160*2+2},x
lda FontData+12,y
and ]F_StrClr
stal {$E12000+160*3},x
lda FontData+14,y
and ]F_StrClr
stal {$E12000+160*3+2},x
lda FontData+16,y
and ]F_StrClr
stal {$E12000+160*4},x
lda FontData+18,y
and ]F_StrClr
stal {$E12000+160*4+2},x
lda FontData+20,y
and ]F_StrClr
stal {$E12000+160*5},x
lda FontData+22,y
and ]F_StrClr
stal {$E12000+160*5+2},x
rts
FontTable dw s_Space
dw s_Exclaim
dw s_Quote
dw s_Number
dw s_Dollar
dw s_Percent
dw s_Amper
dw s_Single
dw s_OpenParen
dw s_CloseParen
dw s_Asterix
dw s_Plus
dw s_Comma
dw s_Minus
dw s_Period
dw s_Slash
dw s_N0
dw s_N1
dw s_N2
dw s_N3
dw s_N4
dw s_N5
dw s_N6
dw s_N7
dw s_N8
dw s_N9
dw s_Colon
dw s_Semi
dw s_LAngle
dw s_Equal
dw s_RAngle
dw s_Question
dw s_At
dw s_A
dw s_B
dw s_C
dw s_D
dw s_E
dw s_F
dw s_G
dw s_H
dw s_I
dw s_J
dw s_K
dw s_L
dw s_M
dw s_N
dw s_O
dw s_P
dw s_Q
dw s_R
dw s_S
dw s_T
dw s_U
dw s_V
dw s_W
dw s_X
dw s_Y
dw s_Z
dw s_LBracket
dw s_BackSlash
dw s_RBracket
dw s_Carot
dw s_UnderLine
FontData = *
s_Space hex 00000000
hex 00000000
hex 00000000
hex 00000000
hex 00000000
hex 00000000
s_Exclaim hex 000FF000
hex 000FF000
hex 000FF000
hex 000FF000
hex 00000000
hex 000FF000
s_Quote hex 0FF00FF0
hex 00F000F0
hex 00000000
hex 00000000
hex 00000000
hex 00000000
s_Number hex 00000000
hex 00F00F00
hex 0FFFFFF0
hex 00F00F00
hex 0FFFFFF0
hex 00F00F00
s_Dollar hex 000F0F00
hex 00FFFFF0
hex 0F0F0F00
hex 00FFFF00
hex 000F0FF0
hex 0FFFFF00
s_Percent hex 0FF000F0
hex 00000F00
hex 0000F000
hex 000F0000
hex 00F00000
hex 0F000FF0
s_Amper hex 000FF000
hex 00F00F00
hex 0F00F000
hex 00F000F0
hex 0F0FFF00
hex 00F0F000
s_Single hex 000FF000
hex 0000F000
hex 00000000
hex 00000000
hex 00000000
hex 00000000
s_OpenParen hex 000FF000
hex 00FF0000
hex 0FF00000
hex 0FF00000
hex 00FF0000
hex 000FF000
s_CloseParen hex 000FF000
hex 0000FF00
hex 00000FF0
hex 00000FF0
hex 0000FF00
hex 000FF000
s_Asterix hex 00000000
hex 00F0F0F0
hex 000FFF00
hex 00FFFFF0
hex 000FFF00
hex 00F0F0F0
s_Plus hex 000F0000
hex 000F0000
hex 0FFFFF00
hex 000F0000
hex 000F0000
hex 00000000
s_Comma hex 00000000
hex 00000000
hex 00000000
hex 00000000
hex 0000FF00
hex 0000F000
s_Minus hex 00000000
hex 00000000
hex 0FFFFF00
hex 00000000
hex 00000000
hex 00000000
s_Period hex 00000000
hex 00000000
hex 00000000
hex 00000000
hex 0000FF00
hex 0000FF00
s_Slash hex 000000F0
hex 00000F00
hex 0000F000
hex 000F0000
hex 00F00000
hex 0F000000
s_N0 hex 00FFFF00
hex 0F000FF0
hex 0F00F0F0
hex 0F0F00F0
hex 0FF000F0
hex 00FFFF00
s_N1 hex 000F0000
hex 00FF0000
hex 000F0000
hex 000F0000
hex 000F0000
hex 00FFF000
s_N2 hex 00FFFF00
hex 0F0000F0
hex 00000F00
hex 000FF000
hex 00F00000
hex 0FFFFFF0
s_N3 hex 00FFFF00
hex 000000F0
hex 000FFF00
hex 000000F0
hex 000000F0
hex 00FFFF00
s_N4 hex 0000FF00
hex 000F0F00
hex 00F00F00
hex 0FFFFFF0
hex 00000F00
hex 00000F00
s_N5 hex 0FFFFFF0
hex 0F000000
hex 0FFFFF00
hex 000000F0
hex 0F0000F0
hex 00FFFF00
s_N6 hex 000FFF00
hex 00F00000
hex 0F000000
hex 0FFFFF00
hex 0F0000F0
hex 00FFFFF0
s_N7 hex 0FFFFFF0
hex 000000F0
hex 00000F00
hex 0000F000
hex 000F0000
hex 000F0000
s_N8 hex 00FFFF00
hex 0F0000F0
hex 00FFFF00
hex 0F0000F0
hex 0F0000F0
hex 00FFFF00
s_N9 hex 00FFFF00
hex 0F0000F0
hex 00FFFF00
hex 0000F000
hex 000F0000
hex 00F00000
s_Colon hex 000FF000
hex 000FF000
hex 00000000
hex 000FF000
hex 000FF000
hex 00000000
s_Semi hex 00000000
hex 000FF000
hex 000FF000
hex 00000000
hex 000FF000
hex 000F0000
s_LAngle hex 0000F000
hex 000F0000
hex 00F00000
hex 000F0000
hex 0000F000
hex 00000000
s_Equal hex 00000000
hex 00000000
hex 0FFFFF00
hex 00000000
hex 0FFFFF00
hex 00000000
s_RAngle hex 0000F000
hex 00000F00
hex 000000F0
hex 00000F00
hex 0000F000
hex 00000000
s_Question hex 00FFF000
hex 0F000F00
hex 00000F00
hex 000FF000
hex 00000000
hex 000FF000
s_At hex 00FFFF00
hex 0F0000F0
hex 0F00F0F0
hex 0FFFF0F0
hex 000000F0
hex 0FFFFF00
s_A hex 000FF000
hex 00F00F00
hex 0F0000F0
hex 0FFFFFF0
hex 0F0000F0
hex 0F0000F0
s_B hex 0FFFFF00
hex 0F0000F0
hex 0FFFFF00
hex 0F0000F0
hex 0F0000F0
hex 0FFFFF00
s_C hex 00FFFFF0
hex 0F000000
hex 0F000000
hex 0F000000
hex 0F000000
hex 00FFFFF0
s_D hex 0FFFFF00
hex 0F0000F0
hex 0F0000F0
hex 0F0000F0
hex 0F0000F0
hex 0FFFFF00
s_E hex 0FFFFFF0
hex 0F000000
hex 0FFFF000
hex 0F000000
hex 0F000000
hex 0FFFFFF0
s_F hex 0FFFFFF0
hex 0F000000
hex 0FFFF000
hex 0F000000
hex 0F000000
hex 0F000000
s_G hex 00FFFFF0
hex 0F000000
hex 0F000000
hex 0F00FFF0
hex 0F0000F0
hex 00FFFF00
s_H hex 0F0000F0
hex 0F0000F0
hex 0FFFFFF0
hex 0F0000F0
hex 0F0000F0
hex 0F0000F0
s_I hex 0FFFFF00
hex 000F0000
hex 000F0000
hex 000F0000
hex 000F0000
hex 0FFFFF00
s_J hex 000000F0
hex 000000F0
hex 000000F0
hex 0F0000F0
hex 0F0000F0
hex 00FFFF00
s_K hex 0F000F00
hex 0F00F000
hex 0FFF0000
hex 0F00F000
hex 0F000F00
hex 0F000F00
s_L hex 0F000000
hex 0F000000
hex 0F000000
hex 0F000000
hex 0F000000
hex 0FFFFFF0
s_M hex 0F0000F0
hex 0FF00FF0
hex 0F0FF0F0
hex 0F0000F0
hex 0F0000F0
hex 0F0000F0
s_N hex 0F0000F0
hex 0FF000F0
hex 0F0F00F0
hex 0F00F0F0
hex 0F000FF0
hex 0F0000F0
s_O hex 00FFFF00
hex 0F0000F0
hex 0F0000F0
hex 0F0000F0
hex 0F0000F0
hex 00FFFF00
s_P hex 0FFFFF00
hex 0F0000F0
hex 0FFFFF00
hex 0F000000
hex 0F000000
hex 0F000000
s_Q hex 00FFFF00
hex 0F0000F0
hex 0F0000F0
hex 0F00F0F0
hex 0F000FF0
hex 00FFFFF0
s_R hex 0FFFFF00
hex 0F0000F0
hex 0FFFFF00
hex 0F000F00
hex 0F0000F0
hex 0F0000F0
s_S hex 00FFFFF0
hex 0F000000
hex 00FFFF00
hex 000000F0
hex 000000F0
hex 0FFFFF00
s_T hex 0FFFFF00
hex 000F0000
hex 000F0000
hex 000F0000
hex 000F0000
hex 000F0000
s_U hex 0F0000F0
hex 0F0000F0
hex 0F0000F0
hex 0F0000F0
hex 0F0000F0
hex 00FFFF00
s_V hex 0F0000F0
hex 0F0000F0
hex 0F0000F0
hex 0F0000F0
hex 00F00F00
hex 000FF000
s_W hex 0F0000F0
hex 0F0000F0
hex 0F0000F0
hex 0F0FF0F0
hex 0FF00FF0
hex 0F0000F0
s_X hex 0F0000F0
hex 00F00F00
hex 000FF000
hex 000FF000
hex 00F00F00
hex 0F0000F0
s_Y hex F00000F0
hex 0F000F00
hex 00F0F000
hex 000F0000
hex 000F0000
hex 000F0000
s_Z hex 0FFFFFF0
hex 00000F00
hex 0000F000
hex 000F0000
hex 00F00000
hex 0FFFFFF0
s_LBracket hex 000FFF00
hex 000F0000
hex 000F0000
hex 000F0000
hex 000F0000
hex 000FFF00
s_BackSlash hex 0F000000
hex 00F00000
hex 000F0000
hex 0000F000
hex 00000F00
hex 000000F0
s_RBracket hex 00FFF000
hex 0000F000
hex 0000F000
hex 0000F000
hex 0000F000
hex 00FFF000
s_Carot hex 0000F000
hex 000F0F00
hex 00F000F0
hex 00000000
hex 00000000
hex 00000000
s_UnderLine hex 00000000
hex 00000000
hex 00000000
hex 00000000
hex 00000000
hex FFFFFFF0
s_Template hex 00000000
hex 00000000
hex 00000000
hex 00000000
hex 00000000
hex 00000000