mirror of
https://github.com/lscharen/iigs-game-engine.git
synced 2025-02-05 14:31:13 +00:00
Break up large source code files to help with dependency ordering
This commit is contained in:
parent
29d70dc567
commit
d107365d79
@ -24,3 +24,6 @@ _GTEStatus MAC
|
||||
_GTEReadControl MAC
|
||||
UserTool $900+GTEToolNum
|
||||
<<<
|
||||
_GTESetScreenMode MAC
|
||||
UserTool $A00+GTEToolNum
|
||||
<<<
|
||||
|
@ -87,16 +87,17 @@ Overlay EXT
|
||||
|
||||
; Assumes the direct page is set and EngineMode and UserId has been initialized
|
||||
_CoreStartUp
|
||||
jsr IntStartUp ; Enable certain interrupts
|
||||
jsr IntStartUp ; Enable certain interrupts
|
||||
|
||||
jsr InitMemory ; Allocate and initialize memory for the engine
|
||||
jsr EngineReset ; All of the resources are allocated, put the engine in a known state
|
||||
jsr InitMemory ; Allocate and initialize memory for the engine
|
||||
; jsr EngineReset ; All of the resources are allocated, put the engine in a known state
|
||||
|
||||
; jsr InitGraphics ; Initialize all of the graphics-related data
|
||||
; jsr InitSprites ; Initialize the sprite subsystem
|
||||
; jsr InitTiles ; Initialize the tile subsystem
|
||||
|
||||
jsr InitTimers ; Initialize the timer subsystem
|
||||
; jsr InitTimers ; Initialize the timer subsystem
|
||||
rts
|
||||
|
||||
_CoreShutDown
|
||||
jsr IntShutDown
|
||||
|
133
src/Graphics.s
133
src/Graphics.s
@ -11,12 +11,17 @@ InitGraphics
|
||||
lda #0
|
||||
jsr _SetPalette
|
||||
|
||||
jsr _InitBG0 ; Initialize the background layers
|
||||
jsr _InitBG1
|
||||
jsr _InitBG0 ; Initialize the background layer
|
||||
|
||||
lda EngineMode
|
||||
bit #ENGINE_MODE_TWO_LAYER
|
||||
beq :no_bg1
|
||||
|
||||
jsr _InitBG1
|
||||
lda #0
|
||||
jsr _ClearBG1Buffer
|
||||
|
||||
:no_bg1
|
||||
rts
|
||||
|
||||
DefaultPalette dw $0000,$007F,$0090,$0FF0
|
||||
@ -24,7 +29,6 @@ DefaultPalette dw $0000,$007F,$0090,$0FF0
|
||||
dw $0fa9,$0ff0,$00e0,$04DF
|
||||
dw $0d00,$078f,$0ccc,$0FFF
|
||||
|
||||
|
||||
; Allow the user to dynamically select one of the pre-configured screen sizes, or pass
|
||||
; in a specific width and height. The screen is automatically centered. If this is
|
||||
; not desired, then SetScreenRect should be used directly
|
||||
@ -224,9 +228,132 @@ _WaitForVBL
|
||||
rep #$20
|
||||
rts
|
||||
|
||||
; Set the physical location of the virtual screen on the physical screen. The
|
||||
; screen size must by a multiple of 8
|
||||
;
|
||||
; A = XXYY where XX is the left edge [0, 159] and YY is the top edge [0, 199]
|
||||
; X = width (in bytes)
|
||||
; Y = height (in lines)
|
||||
;
|
||||
; This subroutine stores the screen positions in the direct page space and fills
|
||||
; in the double-length ScreenAddrR table that holds the address of the right edge
|
||||
; of the playfield. This table is used to set addresses in the code banks when the
|
||||
; virtual origin is changed.
|
||||
;
|
||||
; We are not concerned about the raw performance of this function because it should
|
||||
; usually only be executed once during app initialization. It doesn't get called
|
||||
; with any significant frequency.
|
||||
|
||||
SetScreenRect sty ScreenHeight ; Save the screen height and width
|
||||
stx ScreenWidth
|
||||
|
||||
tax ; Temp save of the accumulator
|
||||
and #$00FF
|
||||
sta ScreenY0
|
||||
clc
|
||||
adc ScreenHeight
|
||||
sta ScreenY1
|
||||
|
||||
txa ; Restore the accumulator
|
||||
xba
|
||||
and #$00FF
|
||||
sta ScreenX0
|
||||
clc
|
||||
adc ScreenWidth
|
||||
sta ScreenX1
|
||||
|
||||
lda ScreenHeight ; Divide the height in scanlines by 8 to get the number tiles
|
||||
lsr
|
||||
lsr
|
||||
lsr
|
||||
sta ScreenTileHeight
|
||||
|
||||
lda ScreenWidth ; Divide width in bytes by 4 to get the number of tiles
|
||||
lsr
|
||||
lsr
|
||||
sta ScreenTileWidth
|
||||
|
||||
lda ScreenY0 ; Calculate the address of the first byte
|
||||
asl ; of the right side of the playfield
|
||||
tax
|
||||
lda ScreenAddr,x ; This is the address for the left edge of the physical screen
|
||||
clc
|
||||
adc ScreenX1
|
||||
dec
|
||||
pha ; Save for second loop
|
||||
|
||||
ldx #0
|
||||
ldy ScreenHeight
|
||||
jsr :loop
|
||||
pla ; Reset the address and continue filling in the
|
||||
ldy ScreenHeight ; second half of the table
|
||||
:loop clc
|
||||
sta RTable,x
|
||||
adc #160
|
||||
inx
|
||||
inx
|
||||
dey
|
||||
bne :loop
|
||||
|
||||
; Calculate the screen locations for each tile corner
|
||||
|
||||
lda ScreenY0 ; Calculate the address of the first byte
|
||||
asl ; of the right side of the playfield
|
||||
tax
|
||||
lda ScreenAddr,x ; This is the address for the left edge of the physical screen
|
||||
clc
|
||||
adc ScreenX0
|
||||
|
||||
ldx #0
|
||||
ldy #0
|
||||
:tsloop
|
||||
stal TileStore+TS_SCREEN_ADDR,x
|
||||
|
||||
clc
|
||||
adc #4 ; Go to the next tile
|
||||
|
||||
iny
|
||||
cpy #41 ; If we've done 41 columns, move to the next line
|
||||
bcc :nohop
|
||||
ldy #0
|
||||
clc
|
||||
adc #{8*160}-{4*41}
|
||||
:nohop
|
||||
|
||||
inx
|
||||
inx
|
||||
cpx #TILE_STORE_SIZE-2
|
||||
bcc :tsloop
|
||||
|
||||
rts
|
||||
|
||||
; Clear the SHR screen and then infill the defined field
|
||||
FillScreen lda #0
|
||||
jsr _ClearToColor
|
||||
|
||||
ldy ScreenY0
|
||||
:yloop
|
||||
tya
|
||||
asl a
|
||||
tax
|
||||
lda ScreenAddr,x
|
||||
clc
|
||||
adc ScreenX0
|
||||
tax
|
||||
phy
|
||||
|
||||
lda ScreenWidth
|
||||
lsr
|
||||
tay
|
||||
lda #$FFFF
|
||||
:xloop stal $E10000,x ; X is the absolute address
|
||||
inx
|
||||
inx
|
||||
dey
|
||||
bne :xloop
|
||||
|
||||
ply
|
||||
iny
|
||||
cpy ScreenY1
|
||||
bcc :yloop
|
||||
rts
|
||||
|
@ -121,6 +121,7 @@ InitMemory lda EngineMode
|
||||
brl :bloop
|
||||
:exit1
|
||||
|
||||
|
||||
ldx #0
|
||||
ldy #0
|
||||
:bloop2
|
||||
|
@ -1,4 +1,4 @@
|
||||
; Support routinges for the primary background
|
||||
; Support routines for the primary background
|
||||
_InitBG0
|
||||
lda #DIRTY_BIT_BG0_X+DIRTY_BIT_BG0_Y
|
||||
tsb DirtyBits
|
||||
|
@ -4,7 +4,6 @@ _InitBG1
|
||||
jsr _ApplyBG1XPos
|
||||
rts
|
||||
|
||||
|
||||
; Copy a binary image data file into BG1. Assumes the file is the correct size (328 x 208)
|
||||
;
|
||||
; A=low word of picture address
|
||||
@ -193,59 +192,6 @@ _ApplyBG1XPos
|
||||
pld
|
||||
rts
|
||||
|
||||
ANGLEBNK ext
|
||||
ApplyBG1XPosAngle ENT
|
||||
phb
|
||||
phk
|
||||
plb
|
||||
jsr _ApplyBG1XPosAngle
|
||||
plb
|
||||
rtl
|
||||
|
||||
_ApplyBG1XPosAngle
|
||||
; phy
|
||||
|
||||
; lda BG1StartX
|
||||
; jsr Mod164
|
||||
; sta BG1StartXMod164
|
||||
|
||||
; lda #162
|
||||
; sec
|
||||
; sbc StartXMod164
|
||||
; bpl *+6
|
||||
; clc
|
||||
; adc #164
|
||||
; clc
|
||||
; adc BG1StartXMod164
|
||||
; cmp #164
|
||||
; bcc *+5
|
||||
; sbc #164
|
||||
|
||||
; clc
|
||||
; adc 1,s
|
||||
; tay ; cache the value
|
||||
|
||||
; pla ; pop the value
|
||||
phd ; save the direct page because we are going to switch to the
|
||||
lda BlitterDP ; blitter direct page space and fill in the addresses
|
||||
tcd
|
||||
|
||||
lda #^ANGLEBNK
|
||||
sta $fe
|
||||
sty $fc ; Store in the new direct page
|
||||
ldy #162
|
||||
tyx
|
||||
:loop
|
||||
lda [$fc],y
|
||||
sta 00,x ; store the value
|
||||
dey
|
||||
dey
|
||||
dex
|
||||
dex
|
||||
bpl :loop
|
||||
pld
|
||||
rts
|
||||
|
||||
_ClearBG1Buffer
|
||||
phb
|
||||
pha
|
||||
@ -266,88 +212,6 @@ _ClearBG1Buffer
|
||||
|
||||
plb
|
||||
rts
|
||||
ApplyBG1YPosAngle ENT
|
||||
phb
|
||||
phk
|
||||
plb
|
||||
jsr _ApplyBG1YPosAngle
|
||||
plb
|
||||
rtl
|
||||
|
||||
_ApplyBG1YPosAngle
|
||||
:virt_line equ tmp0
|
||||
:lines_left equ tmp1
|
||||
:draw_count equ tmp2
|
||||
:ytbl_idx equ tmp3
|
||||
:angle_tbl equ tmp4
|
||||
|
||||
sty :angle_tbl
|
||||
|
||||
lda BG1StartY
|
||||
jsr Mod208
|
||||
sta BG1StartYMod208
|
||||
sta :ytbl_idx ; Start copying from the first entry in the table
|
||||
|
||||
lda StartYMod208 ; This is the base line of the virtual screen
|
||||
sta :virt_line ; Keep track of it
|
||||
|
||||
lda ScreenHeight
|
||||
sta :lines_left
|
||||
|
||||
:loop
|
||||
lda :virt_line
|
||||
asl
|
||||
tax
|
||||
ldal BTableLow,x ; Get the address of the first code field line
|
||||
tay
|
||||
|
||||
sep #$20
|
||||
ldal BTableHigh,x
|
||||
pha ; push the bank on the stack
|
||||
plb
|
||||
rep #$20
|
||||
|
||||
lda :virt_line
|
||||
and #$000F
|
||||
eor #$FFFF
|
||||
inc
|
||||
clc
|
||||
adc #16
|
||||
min :lines_left
|
||||
|
||||
sta :draw_count ; Do this many lines
|
||||
asl
|
||||
tax
|
||||
|
||||
lda :ytbl_idx ; Read from this location (duplicate every 4 lines)
|
||||
lsr
|
||||
lsr
|
||||
asl
|
||||
clc
|
||||
adc :angle_tbl
|
||||
sec
|
||||
sbc #ANGLEBNK
|
||||
jsr CopyAngleYTableToBG1Addr ; or CopyBG1YTableToBG1Addr2
|
||||
|
||||
lda :virt_line ; advance to the virtual line after the segment we just
|
||||
clc ; filled in
|
||||
adc :draw_count
|
||||
sta :virt_line
|
||||
|
||||
lda :ytbl_idx ; advance the index into the YTable
|
||||
adc :draw_count
|
||||
sta :ytbl_idx
|
||||
|
||||
lda :lines_left ; subtract the number of lines we just completed
|
||||
sec
|
||||
sbc :draw_count
|
||||
sta :lines_left
|
||||
|
||||
jne :loop
|
||||
|
||||
phk
|
||||
plb
|
||||
rts
|
||||
|
||||
; Everytime either BG1 or BG0 Y-position changes, we have to update the Y-register
|
||||
; value in all of the code fields (within the visible screen)
|
||||
@ -494,97 +358,6 @@ CopyBG1YTableToBG1Addr
|
||||
sta: BG1_ADDR+$0000,y
|
||||
:none rts
|
||||
|
||||
; Unrolled copy routine to move y_angle entries into BG1_ADDR position with an additional
|
||||
; shift. This has to be split into two
|
||||
;
|
||||
; A = index into the array (x2)
|
||||
; Y = starting line * $1000
|
||||
; X = number of lines (x2)
|
||||
CopyAngleYTableToBG1Addr
|
||||
phx
|
||||
phb
|
||||
|
||||
phk ; restore access to this bank
|
||||
plb
|
||||
jsr SaveBG1AngleValues
|
||||
|
||||
plb
|
||||
plx ; x is used directly in this routine
|
||||
jsr ApplyBG1OffsetValues
|
||||
rts
|
||||
|
||||
SaveBG1AngleValues
|
||||
jmp (:tbl,x)
|
||||
:tbl da :none
|
||||
da :do01,:do02,:do03,:do04
|
||||
da :do05,:do06,:do07,:do08
|
||||
da :do09,:do10,:do11,:do12
|
||||
da :do13,:do14,:do15,:do16
|
||||
:do15 tax
|
||||
bra :x15
|
||||
:do14 tax
|
||||
bra :x14
|
||||
:do13 tax
|
||||
bra :x13
|
||||
:do12 tax
|
||||
bra :x12
|
||||
:do11 tax
|
||||
bra :x11
|
||||
:do10 tax
|
||||
bra :x10
|
||||
:do09 tax
|
||||
bra :x09
|
||||
:do08 tax
|
||||
bra :x08
|
||||
:do16 tax
|
||||
ldal ANGLEBNK+06,x
|
||||
sta BG1YCache+30
|
||||
:x15 ldal ANGLEBNK+06,x
|
||||
sta BG1YCache+28
|
||||
:x14 ldal ANGLEBNK+06,x
|
||||
sta BG1YCache+26
|
||||
:x13 ldal ANGLEBNK+06,x
|
||||
sta BG1YCache+24
|
||||
:x12 ldal ANGLEBNK+04,x
|
||||
sta BG1YCache+22
|
||||
:x11 ldal ANGLEBNK+04,x
|
||||
sta BG1YCache+20
|
||||
:x10 ldal ANGLEBNK+04,x
|
||||
sta BG1YCache+18
|
||||
:x09 ldal ANGLEBNK+04,x
|
||||
sta BG1YCache+16
|
||||
:x08 ldal ANGLEBNK+02,x
|
||||
sta BG1YCache+14
|
||||
:x07 ldal ANGLEBNK+02,x
|
||||
sta BG1YCache+12
|
||||
:x06 ldal ANGLEBNK+02,x
|
||||
sta BG1YCache+10
|
||||
:x05 ldal ANGLEBNK+02,x
|
||||
sta BG1YCache+08
|
||||
:x04 ldal ANGLEBNK+00,x
|
||||
sta BG1YCache+06
|
||||
:x03 ldal ANGLEBNK+00,x
|
||||
sta BG1YCache+04
|
||||
:x02 ldal ANGLEBNK+00,x
|
||||
sta BG1YCache+02
|
||||
:x01 ldal ANGLEBNK+00,x
|
||||
sta BG1YCache+00
|
||||
:none rts
|
||||
:do07 tax
|
||||
bra :x07
|
||||
:do06 tax
|
||||
bra :x06
|
||||
:do05 tax
|
||||
bra :x05
|
||||
:do04 tax
|
||||
bra :x04
|
||||
:do03 tax
|
||||
bra :x03
|
||||
:do02 tax
|
||||
bra :x02
|
||||
:do01 tax
|
||||
bra :x01
|
||||
|
||||
; Unrolled copy routine to move BG1YTable entries into BG1_ADDR position with an additional
|
||||
; shift. This has to be split into two
|
||||
;
|
||||
@ -738,7 +511,3 @@ ApplyBG1OffsetValues
|
||||
:none rts
|
||||
|
||||
BG1YCache ds 32
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -59,7 +59,7 @@ _BltRange
|
||||
; beq :primary
|
||||
; lda BG1AltBank
|
||||
; bra :alt
|
||||
:primary lda BG1DataBank
|
||||
:primary lda BG1DataBank ; This is $00 if the TWO_LAYER bit of EngineMode is not set
|
||||
:alt
|
||||
pha
|
||||
plb
|
||||
|
@ -20,25 +20,25 @@
|
||||
; Remember, because the data is pushed on to the stack, the last instruction, which is
|
||||
; in the highest memory location, pushed data that apepars on the left edge of the screen.
|
||||
|
||||
;PER_TILE_SIZE equ 3
|
||||
;]step equ 0
|
||||
PER_TILE_SIZE equ 3
|
||||
]step equ 0
|
||||
|
||||
; dw CODE_TOP ; There is a spot where we load Col2CodeOffet-2,x
|
||||
;Col2CodeOffset lup 82
|
||||
; dw CODE_TOP+{{81-]step}*PER_TILE_SIZE}
|
||||
;]step equ ]step+1
|
||||
; --^
|
||||
; dw CODE_TOP+{81*PER_TILE_SIZE}
|
||||
dw CODE_TOP ; There is a spot where we load Col2CodeOffet-2,x
|
||||
Col2CodeOffset lup 82
|
||||
dw CODE_TOP+{{81-]step}*PER_TILE_SIZE}
|
||||
]step equ ]step+1
|
||||
--^
|
||||
dw CODE_TOP+{81*PER_TILE_SIZE}
|
||||
|
||||
; A parallel table to Col2CodeOffset that holds the offset to the exception handler address for each column
|
||||
;SNIPPET_SIZE equ 32
|
||||
;]step equ 0
|
||||
; dw SNIPPET_BASE
|
||||
;JTableOffset lup 82
|
||||
; dw SNIPPET_BASE+{{81-]step}*SNIPPET_SIZE}
|
||||
;]step equ ]step+1
|
||||
; --^
|
||||
; dw SNIPPET_BASE+{81*SNIPPET_SIZE}
|
||||
SNIPPET_SIZE equ 32
|
||||
]step equ 0
|
||||
dw SNIPPET_BASE
|
||||
JTableOffset lup 82
|
||||
dw SNIPPET_BASE+{{81-]step}*SNIPPET_SIZE}
|
||||
]step equ ]step+1
|
||||
--^
|
||||
dw SNIPPET_BASE+{81*SNIPPET_SIZE}
|
||||
|
||||
; Table of BRA instructions that are used to exit the code field. Separate tables for
|
||||
; even and odd aligned cases.
|
||||
@ -275,6 +275,7 @@ RTable ds 400
|
||||
|
||||
; Array of addresses for the banks that hold the blitter.
|
||||
BlitBuff ENT
|
||||
dw $5a5a
|
||||
ds 4*13
|
||||
|
||||
; The blitter table (BTable) is a double-length table that holds the full 4-byte address of each
|
||||
|
@ -42,7 +42,7 @@ PagePatches da {long_0-base+2}
|
||||
|
||||
]index equ 0
|
||||
lup 82 ; All the snippet addresses. The two JMP
|
||||
da {snippets-base+{]index*32}+31} ; instructino are at the end of each of
|
||||
da {snippets-base+{]index*32}+31} ; instructions are at the end of each of
|
||||
da {snippets-base+{]index*32}+28} ; the 32-byte buffers
|
||||
]index equ ]index+1
|
||||
--^
|
||||
@ -58,537 +58,6 @@ BankPatches da {long_0-base+3}
|
||||
da {long_6-base+3}
|
||||
BankPatchNum equ *-BankPatches
|
||||
|
||||
; Set the physical location of the virtual screen on the physical screen. The
|
||||
; screen size must by a multiple of 8
|
||||
;
|
||||
; A = XXYY where XX is the left edge [0, 159] and YY is the top edge [0, 199]
|
||||
; X = width (in bytes)
|
||||
; Y = height (in lines)
|
||||
;
|
||||
; This subroutine stores the screen positions in the direct page space and fills
|
||||
; in the double-length ScreenAddrR table that holds the address of the right edge
|
||||
; of the playfield. This table is used to set addresses in the code banks when the
|
||||
; virtual origin is changed.
|
||||
;
|
||||
; We are not concerned about the raw performance of this function because it should
|
||||
; usually only be executed once during app initialization. It doesn't get called
|
||||
; with any significant frequency.
|
||||
|
||||
SetScreenRect sty ScreenHeight ; Save the screen height and width
|
||||
stx ScreenWidth
|
||||
|
||||
tax ; Temp save of the accumulator
|
||||
and #$00FF
|
||||
sta ScreenY0
|
||||
clc
|
||||
adc ScreenHeight
|
||||
sta ScreenY1
|
||||
|
||||
txa ; Restore the accumulator
|
||||
xba
|
||||
and #$00FF
|
||||
sta ScreenX0
|
||||
clc
|
||||
adc ScreenWidth
|
||||
sta ScreenX1
|
||||
|
||||
lda ScreenHeight ; Divide the height in scanlines by 8 to get the number tiles
|
||||
lsr
|
||||
lsr
|
||||
lsr
|
||||
sta ScreenTileHeight
|
||||
|
||||
lda ScreenWidth ; Divide width in bytes by 4 to get the number of tiles
|
||||
lsr
|
||||
lsr
|
||||
sta ScreenTileWidth
|
||||
|
||||
lda ScreenY0 ; Calculate the address of the first byte
|
||||
asl ; of the right side of the playfield
|
||||
tax
|
||||
lda ScreenAddr,x ; This is the address for the left edge of the physical screen
|
||||
clc
|
||||
adc ScreenX1
|
||||
dec
|
||||
pha ; Save for second loop
|
||||
|
||||
ldx #0
|
||||
ldy ScreenHeight
|
||||
jsr :loop
|
||||
pla ; Reset the address and continue filling in the
|
||||
ldy ScreenHeight ; second half of the table
|
||||
:loop clc
|
||||
sta RTable,x
|
||||
adc #160
|
||||
inx
|
||||
inx
|
||||
dey
|
||||
bne :loop
|
||||
|
||||
; Calculate the screen locations for each tile corner
|
||||
|
||||
lda ScreenY0 ; Calculate the address of the first byte
|
||||
asl ; of the right side of the playfield
|
||||
tax
|
||||
lda ScreenAddr,x ; This is the address for the left edge of the physical screen
|
||||
clc
|
||||
adc ScreenX0
|
||||
|
||||
ldx #0
|
||||
ldy #0
|
||||
:tsloop
|
||||
stal TileStore+TS_SCREEN_ADDR,x
|
||||
|
||||
clc
|
||||
adc #4 ; Go to the next tile
|
||||
|
||||
iny
|
||||
cpy #41 ; If we've done 41 columns, move to the next line
|
||||
bcc :nohop
|
||||
ldy #0
|
||||
clc
|
||||
adc #{8*160}-{4*41}
|
||||
:nohop
|
||||
|
||||
inx
|
||||
inx
|
||||
cpx #TILE_STORE_SIZE-2
|
||||
bcc :tsloop
|
||||
|
||||
rts
|
||||
|
||||
; Generalized routine that calculates the on-screen address of the tiles and takes the
|
||||
; StartX and StartY values into consideration. This routine really exists to support
|
||||
; the dirty tile rendering mode and the tiles *must* be aligned with the playfield.
|
||||
; That is, StartX % 4 == 0 and StartY % 8 == 0. If these conditions are not met, then
|
||||
; screen will not render correctly.
|
||||
_RecalcTileScreenAddrs
|
||||
NextColPtr equ tmp0
|
||||
RowAddrPtr equ tmp1
|
||||
OnScreenAddr equ tmp2
|
||||
Counter equ tmp3
|
||||
|
||||
jsr _OriginToTileStore ; Get the (col,row) of the tile in the upper-left corner of the playfield
|
||||
|
||||
; Manually add the offsets to the NextCol and TileStoreYTable array address and put in a direct page
|
||||
; location so we can free up the registers.
|
||||
|
||||
clc
|
||||
txa
|
||||
adc #NextCol
|
||||
sta NextColPtr
|
||||
|
||||
tya
|
||||
adc #TileStoreYTable
|
||||
sta RowAddrPtr
|
||||
|
||||
; Calculate the on-screen address of the upper-left corner of the playfiled
|
||||
|
||||
lda ScreenY0 ; Calculate the address of the first byte
|
||||
asl ; of the right side of the playfield
|
||||
tax
|
||||
lda ScreenAddr,x ; This is the address for the left edge of the physical screen
|
||||
clc
|
||||
adc ScreenX0
|
||||
sta OnScreenAddr
|
||||
|
||||
; Now, loop through the tile store
|
||||
|
||||
lda #MAX_TILES
|
||||
sta Counter
|
||||
ldy #0
|
||||
:tsloop
|
||||
lda (NextColPtr),y ; Need to recalculate each time since the wrap-around could
|
||||
clc ; happen anywhere
|
||||
adc (RowAddrPtr) ;
|
||||
tax ; NOTE: Try to rework to use new TileStore2DLookup array
|
||||
|
||||
lda OnScreenAddr
|
||||
stal TileStore+TS_SCREEN_ADDR,x
|
||||
|
||||
clc
|
||||
adc #4 ; Go to the next tile
|
||||
|
||||
iny
|
||||
iny
|
||||
cpy #2*41 ; If we've done 41 columns, move to the next line
|
||||
bcc :nohop
|
||||
|
||||
inc RowAddrPtr ; Advance the row address (with wrap-around)
|
||||
inc RowAddrPtr
|
||||
ldy #0 ; Reset the column counter
|
||||
clc
|
||||
adc #{8*160}-{4*41}
|
||||
:nohop
|
||||
sta OnScreenAddr ; Save the updated on-screen address
|
||||
dec Counter
|
||||
bne :tsloop
|
||||
|
||||
rts
|
||||
|
||||
; Clear the SHR screen and then infill the defined field
|
||||
FillScreen lda #0
|
||||
jsr _ClearToColor
|
||||
|
||||
ldy ScreenY0
|
||||
:yloop
|
||||
tya
|
||||
asl a
|
||||
tax
|
||||
lda ScreenAddr,x
|
||||
clc
|
||||
adc ScreenX0
|
||||
tax
|
||||
phy
|
||||
|
||||
lda ScreenWidth
|
||||
lsr
|
||||
tay
|
||||
lda #$FFFF
|
||||
:xloop stal $E10000,x ; X is the absolute address
|
||||
inx
|
||||
inx
|
||||
dey
|
||||
bne :xloop
|
||||
|
||||
ply
|
||||
iny
|
||||
cpy ScreenY1
|
||||
bcc :yloop
|
||||
rts
|
||||
|
||||
; Special subroutine to divide the accumulator by 164 and return remainder in the Accumulator
|
||||
;
|
||||
; 164 = $A4 = 1010_0100
|
||||
Mod164 cmp #%1010010000000000
|
||||
bcc *+5
|
||||
sbc #%1010010000000000
|
||||
|
||||
cmp #%0101001000000000
|
||||
bcc *+5
|
||||
sbc #%0101001000000000
|
||||
|
||||
cmp #%0010100100000000
|
||||
bcc *+5
|
||||
sbc #%0010100100000000
|
||||
|
||||
cmp #%0001010010000000
|
||||
bcc *+5
|
||||
sbc #%0001010010000000
|
||||
|
||||
cmp #%0000101001000000
|
||||
bcc *+5
|
||||
sbc #%0000101001000000
|
||||
|
||||
cmp #%0000010100100000
|
||||
bcc *+5
|
||||
sbc #%0000010100100000
|
||||
|
||||
cmp #%0000001010010000
|
||||
bcc *+5
|
||||
sbc #%0000001010010000
|
||||
|
||||
cmp #%0000000101001000
|
||||
bcc *+5
|
||||
sbc #%0000000101001000
|
||||
|
||||
cmp #%0000000010100100
|
||||
bcc *+5
|
||||
sbc #%0000000010100100
|
||||
rts
|
||||
|
||||
; Special subroutine to divide the accumulator by 208 and return remainder in the Accumulator
|
||||
;
|
||||
; 208 = $D0 = 1101_0000
|
||||
;
|
||||
; There are probably faster hacks to divide a 16-bit unsigned value by 208
|
||||
; https://www.drdobbs.com/parallel/optimizing-integer-division-by-a-constan/184408499
|
||||
; https://embeddedgurus.com/stack-overflow/2009/06/division-of-integers-by-constants/
|
||||
|
||||
Mod208 cmp #%1101000000000000
|
||||
bcc *+5
|
||||
sbc #%1101000000000000
|
||||
|
||||
cmp #%0110100000000000
|
||||
bcc *+5
|
||||
sbc #%0110100000000000
|
||||
|
||||
cmp #%0011010000000000
|
||||
bcc *+5
|
||||
sbc #%0011010000000000
|
||||
|
||||
cmp #%0001101000000000
|
||||
bcc *+5
|
||||
sbc #%0001101000000000
|
||||
|
||||
cmp #%0000110100000000
|
||||
bcc *+5
|
||||
sbc #%0000110100000000
|
||||
|
||||
cmp #%0000011010000000
|
||||
bcc *+5
|
||||
sbc #%0000011010000000
|
||||
|
||||
cmp #%0000001101000000
|
||||
bcc *+5
|
||||
sbc #%0000001101000000
|
||||
|
||||
cmp #%0000000110100000
|
||||
bcc *+5
|
||||
sbc #%0000000110100000
|
||||
|
||||
cmp #%0000000011010000
|
||||
bcc *+5
|
||||
sbc #%0000000011010000
|
||||
rts
|
||||
|
||||
; Patch an 8-bit or 16-bit valueS into the bank. These are a set up unrolled loops to
|
||||
; quickly patch in a constanct value, or a value from an array into a given set of
|
||||
; templates.
|
||||
;
|
||||
; Because we have structured everything as parallel code blocks, most updates to the blitter
|
||||
; reduce to storing a constant value and have an amortized cost of just a single store.
|
||||
;
|
||||
; The utility of these routines is that they also handle setting just a range of lines
|
||||
; within a single bank.
|
||||
;
|
||||
; X = number of lines * 2, 0 to 32
|
||||
; Y = starting line * $1000
|
||||
; A = value
|
||||
;
|
||||
; Set M to 0 or 1
|
||||
SetConst ; Need a blank line here, otherwise the :tbl local variable resolveds backwards
|
||||
jmp (:tbl,x)
|
||||
:tbl da :bottom-00,:bottom-03,:bottom-06,:bottom-09
|
||||
da :bottom-12,:bottom-15,:bottom-18,:bottom-21
|
||||
da :bottom-24,:bottom-27,:bottom-30,:bottom-33
|
||||
da :bottom-36,:bottom-39,:bottom-42,:bottom-45
|
||||
da :bottom-48
|
||||
:top sta $F000,y
|
||||
sta $E000,y
|
||||
sta $D000,y
|
||||
sta $C000,y
|
||||
sta $B000,y
|
||||
sta $A000,y
|
||||
sta $9000,y
|
||||
sta $8000,y
|
||||
sta $7000,y
|
||||
sta $6000,y
|
||||
sta $5000,y
|
||||
sta $4000,y
|
||||
sta $3000,y
|
||||
sta $2000,y
|
||||
sta $1000,y
|
||||
sta: $0000,y
|
||||
:bottom rts
|
||||
|
||||
; SetDPAddrs
|
||||
;
|
||||
; A = absolute address (largest)
|
||||
; Y = offset
|
||||
;
|
||||
; Initializes a bank of direct page offsets
|
||||
SetDPAddrs
|
||||
lda #$0800
|
||||
sta $F000,y
|
||||
lda #$0700
|
||||
sta $E000,y
|
||||
lda #$0600
|
||||
sta $D000,y
|
||||
lda #$0500
|
||||
sta $C000,y
|
||||
lda #$0400
|
||||
sta $B000,y
|
||||
lda #$0300
|
||||
sta $A000,y
|
||||
lda #$0200
|
||||
sta $9000,y
|
||||
lda #$0100
|
||||
sta: $8000,y
|
||||
|
||||
lda #$0800
|
||||
sta $7000,y
|
||||
lda #$0700
|
||||
sta $6000,y
|
||||
lda #$0600
|
||||
sta $5000,y
|
||||
lda #$0500
|
||||
sta $4000,y
|
||||
lda #$0400
|
||||
sta $3000,y
|
||||
lda #$0300
|
||||
sta $2000,y
|
||||
lda #$0200
|
||||
sta $1000,y
|
||||
lda #$0100
|
||||
sta: $0000,y
|
||||
rts
|
||||
|
||||
; SetAbsAddrs
|
||||
;
|
||||
; A = absolute address (largest)
|
||||
; Y = offset
|
||||
; X = number of lines
|
||||
;
|
||||
; Stores a value and decrements by $1000 for each line
|
||||
SetAbsAddrs sec
|
||||
jmp (:tbl,x)
|
||||
:tbl da :bottom-00,:bottom-03,:bottom-09,:bottom-15
|
||||
da :bottom-21,:bottom-27,:bottom-33,:bottom-39
|
||||
da :bottom-45,:bottom-51,:bottom-57,:bottom-63
|
||||
da :bottom-69,:bottom-75,:bottom-81,:bottom-87
|
||||
da :bottom-93
|
||||
:top sta $F000,y
|
||||
sbc #$1000
|
||||
sta $E000,y
|
||||
sbc #$1000
|
||||
sta $D000,y
|
||||
sbc #$1000
|
||||
sta $C000,y
|
||||
sbc #$1000
|
||||
sta $B000,y
|
||||
sbc #$1000
|
||||
sta $A000,y
|
||||
sbc #$1000
|
||||
sta $9000,y
|
||||
sbc #$1000
|
||||
sta $8000,y
|
||||
sbc #$1000
|
||||
sta $7000,y
|
||||
sbc #$1000
|
||||
sta $6000,y
|
||||
sbc #$1000
|
||||
sta $5000,y
|
||||
sbc #$1000
|
||||
sta $4000,y
|
||||
sbc #$1000
|
||||
sta $3000,y
|
||||
sbc #$1000
|
||||
sta $2000,y
|
||||
sbc #$1000
|
||||
sta $1000,y
|
||||
sbc #$1000
|
||||
sta: $0000,y
|
||||
:bottom rts
|
||||
|
||||
; Fill up a full bank with blitter templates. Currently we can fit 16 lines per bank, so need
|
||||
; a total of 13 banks to hold the 208 lines for full-screen support
|
||||
;
|
||||
; A = high word of bank table
|
||||
; Y = index * 4 of the bank to initialize
|
||||
BuildBank
|
||||
|
||||
:bankArray equ tmp0
|
||||
:target equ tmp2
|
||||
:nextBank equ tmp4
|
||||
|
||||
stx :bankArray
|
||||
sta :bankArray+2
|
||||
|
||||
stz :target
|
||||
iny
|
||||
iny
|
||||
lda [:bankArray],y
|
||||
sta :target+2
|
||||
|
||||
iny ; move to the next item
|
||||
iny
|
||||
iny ; middle byte
|
||||
cpy #4*13 ; if greater than the array length, wrap back to zero
|
||||
bcc :ok
|
||||
ldy #1
|
||||
:ok lda [:bankArray],y ; Get the middle and high bytes of the address
|
||||
sta :nextBank
|
||||
|
||||
:next
|
||||
jsr :BuildLine2
|
||||
lda :target
|
||||
clc
|
||||
adc #$1000
|
||||
sta :target
|
||||
bcc :next
|
||||
|
||||
phb
|
||||
pei :target+1
|
||||
plb
|
||||
plb
|
||||
|
||||
; Change the patched value to one of DP_ENTRY, TWO_LYR_ENTRY or ONE_LYR_ENTRY based on the capabilities
|
||||
; that the engine needs.
|
||||
|
||||
lda #$F000+{DP_ENTRY} ; Set the address from each line to the next
|
||||
ldy #CODE_EXIT+1
|
||||
ldx #15*2
|
||||
jsr SetAbsAddrs
|
||||
|
||||
ldy #DP_ADDR
|
||||
jsr SetDPAddrs
|
||||
|
||||
ldy #$F000+CODE_EXIT ; Patch the last line with a JML to go to the next bank
|
||||
lda #{$005C+{DP_ENTRY}*256}
|
||||
sta [:target],y
|
||||
ldy #$F000+CODE_EXIT+2
|
||||
lda :nextBank
|
||||
sta [:target],y
|
||||
|
||||
ldy #$8000+CODE_EXIT ; Patch one line per bank to enable interrupts
|
||||
lda #{$004C+{ENABLE_INT}*256}
|
||||
sta [:target],y
|
||||
|
||||
plb
|
||||
rts
|
||||
|
||||
; This is the relocation subroutine, it is responsible for copying the template to a
|
||||
; memory location and patching up the necessary instructions.
|
||||
;
|
||||
; X = low word of address (must be a multiple of $1000)
|
||||
; A = high word of address (bank)
|
||||
:BuildLine
|
||||
stx :target
|
||||
sta :target+2
|
||||
|
||||
:BuildLine2
|
||||
lda #CODE_LEN ; round up to an even number of bytes
|
||||
inc
|
||||
and #$FFFE
|
||||
beq :nocopy
|
||||
dec
|
||||
dec
|
||||
tay
|
||||
:loop lda base,y
|
||||
sta [:target],y
|
||||
|
||||
dey
|
||||
dey
|
||||
bpl :loop
|
||||
|
||||
:nocopy lda #0 ; copy is complete, now patch up the addresses
|
||||
sep #$20
|
||||
|
||||
ldx #0
|
||||
lda :target+2 ; patch in the bank for the absolute long addressing mode
|
||||
:dobank ldy BankPatches,x
|
||||
sta [:target],y
|
||||
inx
|
||||
inx
|
||||
cpx #BankPatchNum
|
||||
bcc :dobank
|
||||
|
||||
ldx #0
|
||||
:dopage ldy PagePatches,x ; patch the page addresses by adding the page offset to each
|
||||
lda [:target],y
|
||||
clc
|
||||
adc :target+1
|
||||
sta [:target],y
|
||||
inx
|
||||
inx
|
||||
cpx #PagePatchNum
|
||||
bcc :dopage
|
||||
|
||||
:out
|
||||
rep #$20
|
||||
rts
|
||||
|
||||
; Start of the template code. This code is replicated 16 times per bank and spans
|
||||
; 13 banks for a total of 208 lines, which is what is required to render 26 tiles
|
||||
; to cover the full screen vertical scrolling.
|
||||
|
Loading…
x
Reference in New Issue
Block a user