iigs-sprite-compiler/SpriteCompiler/Problem/SpriteGeneratorSuccessorFunction.cs
2016-12-16 22:52:14 -06:00

366 lines
14 KiB
C#

namespace SpriteCompiler.Problem
{
using SpriteCompiler.AI;
using SpriteCompiler.Helpers;
using System;
using System.Collections.Generic;
using System.Linq;
public static class StateHelpers
{
public static SpriteByte? TryGetStackByte(this SpriteGeneratorState state, IDictionary<ushort, SpriteByte> data)
{
SpriteByte top;
if (state.S.IsScreenOffset && data.TryGetValue((ushort)state.S.Value, out top))
{
return top;
}
return null;
}
public static SpriteWord? TryGetStackWord(this SpriteGeneratorState state, IDictionary<ushort, SpriteByte> data)
{
return TryGetStackWord(state, data, 0);
}
public static SpriteWord? TryGetStackWord(this SpriteGeneratorState state, IDictionary<ushort, SpriteByte> data, int offset)
{
// When we get a word, it's permissible for either the high or low byte to not exist, but not both
SpriteByte high;
SpriteByte low;
// Make sure the range is within bounds
if (state.S.IsScreenOffset && (state.S.Value + offset) > 0)
{
// Try to get the high byte
byte high_data = 0x00;
byte high_mask = 0xFF;
ushort high_offset = (ushort)(state.S.Value + offset);
if (data.TryGetValue(high_offset, out high))
{
high_data = high.Data;
high_mask = high.Mask;
}
// Try to get the low byte
byte low_data = 0x00;
byte low_mask = 0xFF;
ushort low_offset = (ushort)(state.S.Value + offset - 1);
if (data.TryGetValue(low_offset, out low))
{
low_data = low.Data;
low_mask = low.Mask;
}
// At least some data need to be visible
if (high_mask != 0xFF || low_mask != 0xFF)
{
var word_data = (ushort)(low_data + (high_data << 8));
var word_mask = (ushort)(low_mask + (high_mask << 8));
return new SpriteWord(word_data, word_mask, low_offset);
}
}
return null;
}
public static Tuple<CodeSequence, SpriteGeneratorState> Apply(this SpriteGeneratorState state, CodeSequence code)
{
return Tuple.Create(code, code.Apply(state));
}
}
public sealed class SpriteGeneratorSuccessorFunction : ISuccessorFunction<CodeSequence, SpriteGeneratorState>
{
public IEnumerable<Tuple<CodeSequence, SpriteGeneratorState>> Successors(SpriteGeneratorState state)
{
// Get the list of remaining bytes by removing the closed list from the global sprite dataset
var open = state.RemainingBytes();
// If the open list is empty, there can be only one reaons -- we're in an 8-bit
// mode.
if (!open.Any())
{
yield return state.Apply(new LONG_M());
yield break;
}
// Get the first byte -- if we are expanding a state we can safely assume there
// is still data to expand.
var firstByte = open.First();
// Identify the first run of solid bytes
var firstSolid = FirstSolidRun(open);
// In an initial state, the stack has not been set, but the accumulator contains a screen
// offset address. There are three possible options
//
// 1. Set the stack to the accumulator value. This is optimal when there are very few
// data bytes to set and the overhead of moving the stack negates any benefit from
// using stack push instructions
//
// 2. Set the stack to the first offset of the open set. This can be optimal if there are a few
// bytes and moving the stack forward a bit can allow the code to reach them without needing
// a second stack adjustment.
//
// 3. Set the stack to the first, right-most offset that end a sequence of solid bytes
if (!state.S.IsScreenOffset && state.A.IsScreenOffset)
{
// If the first byte is within 255 bytes of the accumulator, propose setting
// the stack to the accumulator value
var delta = firstByte.Offset - state.A.Value;
if (delta >= 0 && delta < 256)
{
yield return state.Apply(new MOVE_STACK(0));
}
// If the first byte offset is not equal to the accumulator value, propose that
if (delta > 0)
{
yield return state.Apply(new MOVE_STACK(delta));
}
// Find the first edge of a solid run....TODO
if (firstSolid != null && firstSolid.Count >= 2)
{
yield return state.Apply(new MOVE_STACK(firstSolid.Last.Offset - state.A.Value));
}
yield break;
}
// If the first byte is 256 bytes or more ahead of the current stack location,
// then we need to advance
var firstByteDistance = firstByte.Offset - state.S.Value;
if (state.S.IsScreenOffset && firstByteDistance >= 256)
{
// Go to the next byte, or the first solid edge
yield return state.Apply(new MOVE_STACK(firstByteDistance));
yield break;
}
var bytes = open.ToDictionary(x => x.Offset, x => x);
// Get the current byte and current word that exist at the current stack location
var topByte = state.TryGetStackByte(bytes);
var topWord = state.TryGetStackWord(bytes);
// If the top of the stack is a solid work, we can always emit a PEA regardless of 8/16-bit mode
if (topWord.HasValue && topWord.Value.Mask == 0x000)
{
yield return state.Apply(new PEA(topWord.Value.Data));
}
// First set of operations for when the accumulator is in 8-bit mode. We are basically limited
// to either
//
// 1. Switching to 16-bit mode
// 3. Using a PHA to push an 8-bit solid or masked value on the stack
// 4. Using a STA 0,s to store an 8-bit solid or masked value on the stack
if (!state.LongA)
{
// The byte to be stored at the top of the stack has some special methods available
if (topByte.HasValue)
{
var datum = topByte.Value;
// Solid byte
if (datum.Mask == 0x00)
{
if (state.A.IsLiteral && ((state.A.Value & 0xFF) == datum.Data))
{
yield return state.Apply(new PHA_8());
}
else
{
yield return state.Apply(new LOAD_8_BIT_IMMEDIATE_AND_PUSH(datum.Data));
yield return state.Apply(new STACK_REL_8_BIT_IMMEDIATE_STORE(datum.Data, 0));
}
}
// Masked byte
else
{
yield return state.Apply(new STACK_REL_8_BIT_READ_MODIFY_PUSH(datum.Data, datum.Mask));
}
}
// Otherwise, just store the next byte closest to the stack
if (state.S.IsScreenOffset)
{
var addr = state.S.Value;
// We can LDA #$XX / STA X,s for any values within 256 bytes of the current address
foreach (var datum in open.Where(WithinRangeOf(addr, 256)))
{
var offset = (byte)(datum.Offset - addr);
// Easy case when mask is empty
if (datum.Mask == 0x00)
{
if (datum.Data == (state.A.Value & 0xFF))
{
yield return state.Apply(new STACK_REL_8_BIT_STORE(offset));
}
else
{
yield return state.Apply(new STACK_REL_8_BIT_IMMEDIATE_STORE(datum.Data, offset));
}
}
// Otherwise there is really only one choice LDA / AND / ORA / STA sequence
else
{
yield return state.Apply(new STACK_REL_8_BIT_READ_MODIFY_WRITE(datum.Data, datum.Mask, offset));
}
}
}
if (state.AllowModeChange)
{
yield return state.Apply(new LONG_M());
}
}
// Now consider what can be done when the accumulator is 16-bit. All of the stack
// manipulation happens here, too.
if (state.LongA)
{
// Handle the special case of a value sitting right on top of the stack
if (topWord.HasValue)
{
var datum = topWord.Value;
// First, the simple case -- the data has no mask
if (datum.Mask == 0x000)
{
if (state.A.IsLiteral && state.A.Value == datum.Data)
{
yield return state.Apply(new PHA_16());
}
else
{
// Only consider this if the value appear in the sprite more than once
if (SpriteGeneratorState.DATASET_SOLID_WORDS[topWord.Value.Data] > 1)
{
yield return state.Apply(new LOAD_16_BIT_IMMEDIATE_AND_PUSH(topWord.Value.Data));
}
}
}
}
// If the stack is set, find the next word to store (just one to reduce branching factor)
if (state.S.IsScreenOffset)
{
var addr = state.S.Value;
var local = open.Where(WithinRangeOf(addr, 256)).ToList();
var words = local
.Where(x => SpriteGeneratorState.DATASET_BY_OFFSET.ContainsKey(x.Offset + 1))
.Select(x => new { Low = x, High = SpriteGeneratorState.DATASET_BY_OFFSET[x.Offset + 1] })
.ToList();
foreach (var word in words)
{
var offset = (byte)(word.Low.Offset - addr);
var data = (ushort)(word.Low.Data + (word.High.Data << 8));
var mask = (ushort)(word.Low.Mask + (word.High.Mask << 8));
// Easy case when mask is empty
if (mask == 0x0000)
{
if (data == state.A.Value)
{
yield return state.Apply(new STACK_REL_16_BIT_STORE(offset));
}
else
{
yield return state.Apply(new STACK_REL_16_BIT_IMMEDIATE_STORE(data, offset));
}
}
// Otherwise there is really only one choice LDA / AND / ORA / STA sequence
else
{
yield return state.Apply(new STACK_REL_16_BIT_READ_MODIFY_WRITE(data, mask, offset));
}
}
}
if (state.AllowModeChange)
{
yield return state.Apply(new SHORT_M());
}
}
Done:
var z = 0; z += 1;
}
private static bool IsSolidPair(Tuple<SpriteByte, SpriteByte> pair)
{
return
(pair.Item1.Offset == (pair.Item2.Offset - 1)) &&
pair.Item1.Mask == 0x00 &&
pair.Item2.Mask == 0x00;
}
private class SolidRun
{
private readonly SpriteByte first;
private readonly SpriteByte last;
public SolidRun(SpriteByte first, SpriteByte last)
{
this.first = first;
this.last = last;
}
public SpriteByte First { get { return first; } }
public SpriteByte Last { get { return last; } }
public int Count { get { return last.Offset - first.Offset + 1; } }
}
private SolidRun FirstSolidRun(IEnumerable<SpriteByte> open)
{
bool trigger = false;
SpriteByte first = default(SpriteByte);
SpriteByte last = default(SpriteByte);
foreach (var item in open)
{
if (item.Mask == 0x00 && !trigger)
{
first = item;
trigger = true;
}
if (item.Mask != 0x00 && trigger)
{
return new SolidRun(first, last);
}
last = item;
}
// If we get to the end and are still sold, great
if (last.Mask == 0x00 && trigger)
{
return new SolidRun(first, last);
}
return null;
}
private Func<SpriteByte, bool> WithinRangeOf(int addr, int range)
{
return x => (x.Offset >= addr) && ((x.Offset - addr) < range);
}
}
}