MacPlus_MiSTer/sdram.sv

182 lines
5.7 KiB
Systemverilog
Raw Normal View History

2017-10-22 01:22:56 +00:00
//
//
// sdram controller implementation for the MiST/MiSTer boards
//
// Copyright (c) 2015 Till Harbaum <till@harbaum.org>
// Copyright (c) 2017 Sorgelig
//
// This source file is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This source file is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
//
//
// This SDRAM module provides/writes the data in 8 cycles of clock.
// So, with 64MHz of system clock, it can emulate 8MHz asynchronous DRAM.
//
//
module sdram
(
// interface to the MT48LC16M16 chip
2019-07-11 23:05:50 +00:00
inout reg [15:0] sd_data, // 16 bit bidirectional data bus
2017-10-22 01:22:56 +00:00
output reg [12:0] sd_addr, // 13 bit multiplexed address bus
2019-07-11 23:05:50 +00:00
output [1:0] sd_dqm, // two byte masks
2017-10-22 01:22:56 +00:00
output reg [1:0] sd_ba, // two banks
output sd_cs, // a single chip select
output sd_we, // write enable
output sd_ras, // row address select
output sd_cas, // columns address select
// cpu/chipset interface
input init, // init signal after FPGA config to initialize RAM
input clk, // sdram is accessed at 64MHz
input sync,
input [15:0] din, // data input from chipset/cpu
output reg [15:0] dout, // data output to chipset/cpu
input [23:0] addr, // 24 bit word address
input [1:0] ds, // upper/lower data strobe
input oe, // cpu/chipset requests read
input we // cpu/chipset requests write
);
localparam RASCAS_DELAY = 3'd2; // tRCD=20ns -> 3 cycles@128MHz
localparam BURST_LENGTH = 3'b000; // 000=1, 001=2, 010=4, 011=8
localparam ACCESS_TYPE = 1'b0; // 0=sequential, 1=interleaved
localparam CAS_LATENCY = 3'd2; // 2/3 allowed
localparam OP_MODE = 2'b00; // only 00 (standard operation) allowed
localparam NO_WRITE_BURST = 1'b1; // 0= write burst enabled, 1=only single access write
localparam MODE = { 3'b000, NO_WRITE_BURST, OP_MODE, CAS_LATENCY, ACCESS_TYPE, BURST_LENGTH};
// ---------------------------------------------------------------------
// ------------------------ cycle state machine ------------------------
// ---------------------------------------------------------------------
// The state machine runs at 128Mhz synchronous to the 8 Mhz chipset clock.
// It wraps from T15 to T0 on the rising edge of clk_8
localparam STATE_FIRST = 3'd0; // first state in cycle
localparam STATE_CMD_START = 3'd1; // state in which a new command can be started
localparam STATE_CMD_CONT = STATE_CMD_START + RASCAS_DELAY; // command can be continued
localparam STATE_READ = STATE_CMD_CONT + CAS_LATENCY + 4'd1;
// ---------------------------------------------------------------------
// --------------------------- startup/reset ---------------------------
// ---------------------------------------------------------------------
// wait 1ms (32 8Mhz cycles) after FPGA config is done before going
// into normal operation. Initialize the ram in the last 16 reset cycles (cycles 15-0)
reg [4:0] reset;
always @(posedge clk) begin
if(init) reset <= 5'h1f;
else if((stage == STATE_FIRST) && (reset != 0))
reset <= reset - 5'd1;
end
// ---------------------------------------------------------------------
// ------------------ generate ram control signals ---------------------
// ---------------------------------------------------------------------
// all possible commands
localparam CMD_INHIBIT = 4'b1111;
localparam CMD_NOP = 4'b0111;
localparam CMD_ACTIVE = 4'b0011;
localparam CMD_READ = 4'b0101;
localparam CMD_WRITE = 4'b0100;
localparam CMD_BURST_TERMINATE = 4'b0110;
localparam CMD_PRECHARGE = 4'b0010;
localparam CMD_AUTO_REFRESH = 4'b0001;
localparam CMD_LOAD_MODE = 4'b0000;
reg [3:0] sd_cmd; // current command sent to sd ram
// drive control signals according to current command
assign sd_cs = sd_cmd[3];
assign sd_ras = sd_cmd[2];
assign sd_cas = sd_cmd[1];
assign sd_we = sd_cmd[0];
2019-07-11 23:05:50 +00:00
assign sd_dqm = sd_addr[12:11];
2017-10-22 01:22:56 +00:00
reg [1:0] mode;
reg [15:0] din_r;
reg [2:0] stage;
always @(posedge clk) begin
reg [12:0] addr_r;
reg old_sync;
2019-07-11 23:05:50 +00:00
sd_data <= 16'hZZZZ;
2017-10-22 01:22:56 +00:00
if(|stage) stage <= stage + 1'd1;
old_sync <= sync;
if(~old_sync & sync) stage <= 1;
sd_cmd <= CMD_INHIBIT; // default: idle
if(reset != 0) begin
// initialization takes place at the end of the reset phase
if(stage == STATE_CMD_START) begin
if(reset == 13) begin
sd_cmd <= CMD_PRECHARGE;
sd_addr[10] <= 1'b1; // precharge all banks
end
if(reset == 2) begin
sd_cmd <= CMD_LOAD_MODE;
sd_addr <= MODE;
end
end
mode <= 0;
end else begin
// normal operation
if(stage == STATE_CMD_START) begin
if(we || oe) begin
mode <= {we, oe};
// RAS phase
sd_cmd <= CMD_ACTIVE;
sd_addr <= { 1'b0, addr[19:8] };
sd_ba <= addr[21:20];
din_r <= din;
2019-07-11 23:05:50 +00:00
addr_r <= {we ? ~ds : 2'b00, 2'b10, addr[22], addr[7:0] }; // auto precharge
2017-10-22 01:22:56 +00:00
end
else begin
sd_cmd <= CMD_AUTO_REFRESH;
mode <= 0;
end
end
// CAS phase
if(stage == STATE_CMD_CONT && mode) begin
sd_cmd <= mode[1] ? CMD_WRITE : CMD_READ;
sd_addr <= addr_r;
2019-07-11 23:05:50 +00:00
if(mode[1]) sd_data <= din_r;
2017-10-22 01:22:56 +00:00
end
2019-07-11 23:05:50 +00:00
if(stage == STATE_READ && mode[0]) dout <= sd_data;
2017-10-22 01:22:56 +00:00
end
end
endmodule