Update SCSI.

This commit is contained in:
Sorgelig 2022-03-08 06:59:58 +08:00
parent ea9c50291c
commit e4ca3f4533
5 changed files with 307 additions and 275 deletions

View File

@ -266,13 +266,13 @@ end
// the status register is controlled by the on screen display (OSD) // the status register is controlled by the on screen display (OSD)
wire [31:0] status; wire [31:0] status;
wire [1:0] buttons; wire [1:0] buttons;
wire [31:0] sd_lba[2]; wire [31:0] sd_lba;
wire [1:0] sd_rd; wire [1:0] sd_rd;
wire [1:0] sd_wr; wire [1:0] sd_wr;
wire [1:0] sd_ack; wire [1:0] sd_ack;
wire [7:0] sd_buff_addr; wire [7:0] sd_buff_addr;
wire [15:0] sd_buff_dout; wire [15:0] sd_buff_dout;
wire [15:0] sd_buff_din[2]; wire [15:0] sd_buff_din;
wire sd_buff_wr; wire sd_buff_wr;
wire [1:0] img_mounted; wire [1:0] img_mounted;
wire [31:0] img_size; wire [31:0] img_size;
@ -297,14 +297,14 @@ hps_io #(.CONF_STR(CONF_STR), .VDNUM(2), .WIDE(1)) hps_io
.buttons(buttons), .buttons(buttons),
.status(status), .status(status),
.sd_lba(sd_lba), .sd_lba('{sd_lba,sd_lba}),
.sd_rd(sd_rd), .sd_rd(sd_rd),
.sd_wr(sd_wr), .sd_wr(sd_wr),
.sd_ack(sd_ack), .sd_ack(sd_ack),
.sd_buff_addr(sd_buff_addr), .sd_buff_addr(sd_buff_addr),
.sd_buff_dout(sd_buff_dout), .sd_buff_dout(sd_buff_dout),
.sd_buff_din(sd_buff_din), .sd_buff_din('{sd_buff_din,sd_buff_din}),
.sd_buff_wr(sd_buff_wr), .sd_buff_wr(sd_buff_wr),
.img_mounted(img_mounted), .img_mounted(img_mounted),
@ -687,16 +687,14 @@ dataController_top dc0
// block device interface for scsi disk // block device interface for scsi disk
.img_mounted(img_mounted), .img_mounted(img_mounted),
.img_size(img_size), .img_size(img_size),
.io_lba0(sd_lba[0]), .io_lba(sd_lba),
.io_lba1(sd_lba[1]),
.io_rd(sd_rd), .io_rd(sd_rd),
.io_wr(sd_wr), .io_wr(sd_wr),
.io_ack(sd_ack), .io_ack(sd_ack),
.sd_buff_addr(sd_buff_addr), .sd_buff_addr(sd_buff_addr),
.sd_buff_dout(sd_buff_dout), .sd_buff_dout(sd_buff_dout),
.sd_buff_din0(sd_buff_din[0]), .sd_buff_din(sd_buff_din),
.sd_buff_din1(sd_buff_din[1]),
.sd_buff_wr(sd_buff_wr) .sd_buff_wr(sd_buff_wr)
); );

View File

@ -81,15 +81,13 @@ module dataController_top(
// connections to io controller // connections to io controller
input [1:0] img_mounted, input [1:0] img_mounted,
input [31:0] img_size, input [31:0] img_size,
output [31:0] io_lba0, output [31:0] io_lba,
output [31:0] io_lba1,
output [1:0] io_rd, output [1:0] io_rd,
output [1:0] io_wr, output [1:0] io_wr,
input [1:0] io_ack, input [1:0] io_ack,
input [7:0] sd_buff_addr, input [7:0] sd_buff_addr,
input [15:0] sd_buff_dout, input [15:0] sd_buff_dout,
output [15:0] sd_buff_din0, output [15:0] sd_buff_din,
output [15:0] sd_buff_din1,
input sd_buff_wr input sd_buff_wr
); );
@ -169,11 +167,11 @@ module dataController_top(
// SCSI // SCSI
ncr5380 scsi( ncr5380 scsi(
.clk(clk32), .clk(clk32),
.ce(clk8_en_p),
.reset(!_cpuReset), .reset(!_cpuReset),
.bus_cs(selectSCSI), .bus_cs(selectSCSI),
.bus_we(!_cpuRW),
.bus_rs(cpuAddrRegMid), .bus_rs(cpuAddrRegMid),
.ior(!_cpuUDS),
.iow(!_cpuLDS),
.dack(cpuAddrRegHi[0]), // A9 .dack(cpuAddrRegHi[0]), // A9
.wdata(cpuDataIn[15:8]), .wdata(cpuDataIn[15:8]),
.rdata(scsiDataOut), .rdata(scsiDataOut),
@ -181,16 +179,14 @@ module dataController_top(
// connections to io controller // connections to io controller
.img_mounted( img_mounted ), .img_mounted( img_mounted ),
.img_size( img_size ), .img_size( img_size ),
.io_lba0 ( io_lba0 ), .io_lba ( io_lba ),
.io_lba1 ( io_lba1 ),
.io_rd ( io_rd ), .io_rd ( io_rd ),
.io_wr ( io_wr ), .io_wr ( io_wr ),
.io_ack ( io_ack ), .io_ack ( io_ack ),
.sd_buff_addr(sd_buff_addr), .sd_buff_addr(sd_buff_addr),
.sd_buff_dout(sd_buff_dout), .sd_buff_dout(sd_buff_dout),
.sd_buff_din0(sd_buff_din0), .sd_buff_din(sd_buff_din),
.sd_buff_din1(sd_buff_din1),
.sd_buff_wr(sd_buff_wr) .sd_buff_wr(sd_buff_wr)
); );

View File

@ -215,7 +215,8 @@ module floppy
wire lstrbEdge = lstrb == 1'b0 && lstrbPrev == 1'b1; wire lstrbEdge = lstrb == 1'b0 && lstrbPrev == 1'b1;
assign readData = (driveReadAddr == `DRIVE_REG_RDDATA0 || driveReadAddr == `DRIVE_REG_RDDATA1) ? diskDataIn : assign readData = _enable ? 8'hFF :
(driveReadAddr == `DRIVE_REG_RDDATA0 || driveReadAddr == `DRIVE_REG_RDDATA1) ? diskDataIn :
{ driveRegsAsRead[driveReadAddr], 7'h00 }; { driveRegsAsRead[driveReadAddr], 7'h00 };
// write drive registers // write drive registers

View File

@ -45,38 +45,38 @@
module ncr5380 module ncr5380
( (
input clk, input clk,
input ce,
input reset, input reset,
/* Bus interface. 3-bit address, to be wired /* Bus interface. 3-bit address, to be wired
* appropriately upstream (to A4..A6) plus one * appropriately upstream (to A4..A6) plus one
* more bit (A9) wired as dack. * more bit (A9) wired as dack.
*/ */
input bus_cs, input bus_cs,
input bus_we,
input [2:0] bus_rs, input [2:0] bus_rs,
input dack, input ior,
input iow,
input dack,
output dreq,
input [7:0] wdata, input [7:0] wdata,
output [7:0] rdata, output [7:0] rdata,
// connections to io controller // connections to io controller
input [1:0] img_mounted, input [DEVS-1:0] img_mounted,
input [31:0] img_size, input [31:0] img_size,
output [31:0] io_lba0, output reg [31:0] io_lba,
output [31:0] io_lba1, output [DEVS-1:0] io_rd,
output [1:0] io_rd, output [DEVS-1:0] io_wr,
output [1:0] io_wr, input [DEVS-1:0] io_ack,
input [1:0] io_ack,
input [7:0] sd_buff_addr, input [7:0] sd_buff_addr,
input [15:0] sd_buff_dout, input [15:0] sd_buff_dout,
output [15:0] sd_buff_din0, output reg [15:0] sd_buff_din,
output [15:0] sd_buff_din1, input sd_buff_wr
input sd_buff_wr
); );
parameter DEVS = 2;
assign dreq = scsi_req & dma_en;
reg [7:0] mr; /* Mode Register */ reg [7:0] mr; /* Mode Register */
reg [7:0] icr; /* Initiator Command Register */ reg [7:0] icr; /* Initiator Command Register */
@ -86,21 +86,20 @@ module ncr5380
/* Data in and out latches and associated /* Data in and out latches and associated
* control logic for DMA * control logic for DMA
*/ */
wire [7:0] din; reg [7:0] din;
reg [7:0] dout; reg [7:0] dout;
reg dphase;
reg dma_en; reg dma_en;
/* --- Main host-side interface --- */ /* --- Main host-side interface --- */
/* Register & DMA accesses decodes */ /* Register & DMA accesses decodes */
reg dma_rd;
reg dma_wr; reg dma_wr;
reg reg_wr; reg reg_wr;
reg dma_ack;
wire i_dma_rd = bus_cs & dack & ~bus_we; wire i_dma_rd = bus_cs & dack & ior;
wire i_dma_wr = bus_cs & dack & bus_we; wire i_dma_wr = bus_cs & dack & iow;
wire i_reg_wr = bus_cs & ~dack & bus_we; wire i_reg_wr = bus_cs & ~dack & iow;
always @(posedge clk) begin always @(posedge clk) begin
reg old_dma_rd, old_dma_wr, old_reg_wr; reg old_dma_rd, old_dma_wr, old_reg_wr;
@ -109,13 +108,13 @@ module ncr5380
old_dma_wr <= i_dma_wr; old_dma_wr <= i_dma_wr;
old_reg_wr <= i_reg_wr; old_reg_wr <= i_reg_wr;
dma_rd <= 0;
dma_wr <= 0; dma_wr <= 0;
dma_ack <= 0;
reg_wr <= 0; reg_wr <= 0;
if(~old_dma_wr & i_dma_wr) dma_wr <= 1; if(~old_dma_wr & i_dma_wr) dma_wr <= 1;
else if(~old_dma_rd & i_dma_rd) dma_rd <= 1; if(~old_reg_wr & i_reg_wr) reg_wr <= 1;
else if(~old_reg_wr & i_reg_wr) reg_wr <= 1; if((old_dma_wr & ~i_dma_wr) | (old_dma_rd & ~i_dma_rd)) dma_ack <= dma_en;
end end
/* System bus reads */ /* System bus reads */
@ -130,31 +129,6 @@ module ncr5380
bus_rs == `RREG_RST ? 8'hff : bus_rs == `RREG_RST ? 8'hff :
8'hff; 8'hff;
/* DMA handhsaking logic. Two phase logic, in phase 0
* DRQ follows SCSI _REQ until we see DACK. In phase 1
* we just wait for SCSI _REQ to go down and go back to
* phase 0. We assert SCSI _ACK in phase 1.
*/
always@(posedge clk or posedge reset) begin
if (reset) begin
dphase <= 0;
end else begin
if (!dma_en) begin
dphase <= 0;
end else if (dphase == 0) begin
/* Be careful to do that in bus phase 1,
* not phase 0, or we would incorrectly
* assert bus_hold and lock up the system
*/
if ((dma_rd || dma_wr) && scsi_req) begin
dphase <= 1;
end
end else if (!scsi_req) begin
dphase <= 0;
end
end
end
/* Data out latch (in DMA mode, this is one cycle after we've /* Data out latch (in DMA mode, this is one cycle after we've
* asserted ACK) * asserted ACK)
*/ */
@ -241,119 +215,94 @@ module ncr5380
/* BSY logic (simplified arbitration, see notes) */ /* BSY logic (simplified arbitration, see notes) */
wire scsi_bsy = wire scsi_bsy =
icr[`ICR_A_BSY] | icr[`ICR_A_BSY] |
scsi2_bsy | |target_bsy |
scsi6_bsy | //scsi2_bsy |
//scsi6_bsy |
mr[`MR_ARB]; mr[`MR_ARB];
/* Remains of simplified arbitration logic */ /* Remains of simplified arbitration logic */
wire icr_aip = mr[`MR_ARB]; wire icr_aip = mr[`MR_ARB];
wire icr_la = 0; wire icr_la = 0;
reg dma_ack;
always @(posedge clk) if(ce) dma_ack <= dphase;
/* Other ORed SCSI signals */ /* Other ORed SCSI signals */
wire scsi_sel = icr[`ICR_A_SEL]; wire scsi_sel = icr[`ICR_A_SEL];
wire scsi_rst = icr[`ICR_A_RST]; wire scsi_rst = icr[`ICR_A_RST];
wire scsi_ack = icr[`ICR_A_ACK] | dma_ack; wire scsi_ack = icr[`ICR_A_ACK] | dma_ack;
wire scsi_atn = icr[`ICR_A_ATN]; wire scsi_atn = icr[`ICR_A_ATN];
/*
wire scsi_cd = scsi2_cd;
wire scsi_io = scsi2_io;
wire scsi_msg = scsi2_msg;
wire scsi_req = scsi2_req;
assign din = scsi2_dout; /* Mux target signals */
reg scsi_cd, scsi_io, scsi_msg, scsi_req;
assign io_lba = io_lba_2; always begin
assign sd_buff_din = sd_buff_din_2; integer i;
*/ scsi_cd = 0;
/* Other trivial lines set by target */ scsi_io = 0;
scsi_msg = 0;
scsi_req = 0;
din = 8'h55;
io_lba = 0;
sd_buff_din = 0;
wire scsi_cd = (scsi2_bsy) ? scsi2_cd : scsi6_cd; for (i = 0; i < DEVS; i = i + 1) begin
wire scsi_io = (scsi2_bsy) ? scsi2_io : scsi6_io; if (target_bsy[i]) begin
wire scsi_msg = (scsi2_bsy) ? scsi2_msg : scsi6_msg; scsi_cd = target_cd[i];
wire scsi_req = (scsi2_bsy) ? scsi2_req : scsi6_req; scsi_io = target_io[i];
scsi_msg = target_msg[i];
scsi_req = target_req[i];
din = target_dout[i];
io_lba = target_lba[i];
sd_buff_din = target_buff_din[i];
end
end
end
assign din = scsi2_bsy ? scsi2_dout : // input signals from targets
scsi6_bsy ? scsi6_dout : wire [DEVS-1:0] target_bsy;
8'h55; wire [DEVS-1:0] target_msg;
wire [DEVS-1:0] target_io;
wire [DEVS-1:0] target_cd;
wire [DEVS-1:0] target_req;
wire [7:0] target_dout[DEVS];
wire [31:0] target_lba[DEVS];
wire [15:0] target_buff_din[DEVS];
// input signals from target 2 generate
wire scsi2_bsy, scsi2_msg, scsi2_io, scsi2_cd, scsi2_req; genvar i;
wire [7:0] scsi2_dout; for (i = 0; i < DEVS; i = i + 1) begin : target
// connect a target
scsi #(.ID(3'd6 - i[2:0])) target
(
.clk ( clk ),
.rst ( scsi_rst ),
.sel ( scsi_sel ),
.atn ( scsi_atn ),
// connect a target .ack ( scsi_ack ),
scsi #(.ID(2)) scsi2
(
.clk ( clk ),
.rst ( scsi_rst ),
.sel ( scsi_sel ),
.atn ( scsi_atn ),
.ack ( scsi_ack ), .bsy ( target_bsy[i] ),
.msg ( target_msg[i] ),
.cd ( target_cd[i] ),
.io ( target_io[i] ),
.req ( target_req[i] ),
.dout ( target_dout[i] ),
.bsy ( scsi2_bsy ), .din ( dout ),
.msg ( scsi2_msg ),
.cd ( scsi2_cd ),
.io ( scsi2_io ),
.req ( scsi2_req ),
.dout ( scsi2_dout ),
.din ( dout ), // connection to io controller to read and write sectors
// to sd card
// connection to io controller to read and write sectors .img_mounted(img_mounted[i]),
// to sd card .img_blocks(img_size),
.img_mounted(img_mounted[1]), .io_lba ( target_lba[i] ),
.img_blocks(img_size[31:9]), .io_rd ( io_rd[i] ),
.io_lba ( io_lba1 ), .io_wr ( io_wr[i] ),
.io_rd ( io_rd[1] ), .io_ack ( io_ack[i] & target_bsy[i] ),
.io_wr ( io_wr[1] ),
.io_ack ( io_ack[1] ),
.sd_buff_addr( sd_buff_addr ),
.sd_buff_dout( sd_buff_dout ),
.sd_buff_din( sd_buff_din1 ),
.sd_buff_wr( sd_buff_wr )
);
// input signals from target 6
wire scsi6_bsy, scsi6_msg, scsi6_io, scsi6_cd, scsi6_req;
wire [7:0] scsi6_dout;
scsi #(.ID(6)) scsi6
(
.clk ( clk ) , // input clk
.rst ( scsi_rst ) , // input rst
.sel ( scsi_sel ) , // input sel
.atn ( scsi_atn ) , // input atn
.ack ( scsi_ack ) , // input ack
.bsy ( scsi6_bsy ) , // output bsy
.msg ( scsi6_msg ) , // output msg
.cd ( scsi6_cd ) , // output cd
.io ( scsi6_io ) , // output io
.req ( scsi6_req ) , // output req
.dout ( scsi6_dout ) , // output [7:0] dout
.din ( dout ) , // input [7:0] din
// connection to io controller to read and write sectors
// to sd card
.img_mounted( img_mounted[0] ),
.img_blocks( img_size[31:9] ),
.io_lba ( io_lba0 ) , // output [31:0] io_lba
.io_rd ( io_rd[0] ) , // output io_rd
.io_wr ( io_wr[0] ) , // output io_wr
.io_ack ( io_ack[0] ) , // input io_ack
.sd_buff_addr( sd_buff_addr ) , // input [8:0] sd_buff_addr
.sd_buff_dout( sd_buff_dout ) , // input [7:0] sd_buff_dout
.sd_buff_din( sd_buff_din0 ) , // output [7:0] sd_buff_din
.sd_buff_wr( sd_buff_wr ) // input sd_buff_wr
);
.sd_buff_addr( sd_buff_addr ),
.sd_buff_dout( sd_buff_dout ),
.sd_buff_din( target_buff_din[i] ),
.sd_buff_wr( sd_buff_wr & target_bsy[i] )
);
end
endgenerate
endmodule endmodule

View File

@ -1,5 +1,4 @@
/* verilator lint_off UNUSED */ /* verilator lint_off UNUSED */
/* verilator lint_off SYNCASYNCNET */
// scsi.v // scsi.v
// implements a target only scsi device // implements a target only scsi device
@ -26,45 +25,73 @@ module scsi
// interface to io controller // interface to io controller
input img_mounted, input img_mounted,
input [23:0] img_blocks, input [31:0] img_blocks,
output [31:0] io_lba, output [31:0] io_lba,
output reg io_rd, output reg io_rd,
output reg io_wr, output reg io_wr,
input io_ack, input io_ack,
input [7:0] sd_buff_addr, input [7:0] sd_buff_addr,
input [15:0] sd_buff_dout, input [15:0] sd_buff_dout,
output reg [15:0] sd_buff_din, output [15:0] sd_buff_din,
input sd_buff_wr input sd_buff_wr
); );
// SCSI device id // SCSI device id
parameter [7:0] ID = 0; parameter [2:0] ID = 0;
`define PHASE_IDLE 3'd0 localparam PHASE_IDLE = 3'd0;
`define PHASE_CMD_IN 3'd1 localparam PHASE_CMD_IN = 3'd1;
`define PHASE_DATA_OUT 3'd2 localparam PHASE_DATA_OUT = 3'd2;
`define PHASE_DATA_IN 3'd3 localparam PHASE_DATA_IN = 3'd3;
`define PHASE_STATUS_OUT 3'd4 localparam PHASE_STATUS_OUT = 3'd4;
`define PHASE_MESSAGE_OUT 3'd5 localparam PHASE_MESSAGE_OUT = 3'd5;
reg [2:0] phase; reg [2:0] phase;
// ---------------- buffer read engine ----------------------- // ------------ sector buffer IO controller read/write -----------------------
// the buffer itself. Can hold one sector // the buffer itself. Can hold two sectors
reg [7:0] buffer_out0 [256]; reg sd_buff_sel;
always @(posedge clk) sd_buff_din[7:0] <= buffer_out0[sd_buff_addr];
reg [7:0] buffer_out1 [256]; wire [7:0] buffer0_dout;
always @(posedge clk) sd_buff_din[15:8] <= buffer_out1[sd_buff_addr]; scsi_dpram buffer0
(
.clock(clk),
// ---------------- buffer write engine ---------------------- .address_a({sd_buff_sel, sd_buff_addr}),
// the buffer itself. Can hold one sector .data_a(sd_buff_dout[7:0]),
reg [7:0] buffer_in0 [256]; .wren_a(sd_buff_wr),
always @(posedge clk) if(sd_buff_wr & io_ack) buffer_in0[sd_buff_addr] <= sd_buff_dout[7:0]; .q_a(sd_buff_din[7:0]),
reg [7:0] buffer_in1 [256]; .address_b(data_cnt[9:1]),
always @(posedge clk) if(sd_buff_wr & io_ack) buffer_in1[sd_buff_addr] <= sd_buff_dout[15:8]; .data_b(din),
.wren_b(buffer0_wr),
.q_b(buffer0_dout)
);
wire [7:0] buffer1_dout;
scsi_dpram buffer1
(
.clock(clk),
.address_a({sd_buff_sel, sd_buff_addr}),
.data_a(sd_buff_dout[15:8]),
.wren_a(sd_buff_wr),
.q_a(sd_buff_din[15:8]),
.address_b(data_cnt[9:1]),
.data_b(din),
.wren_b(buffer1_wr),
.q_b(buffer1_dout)
);
reg old_io_ack;
always @(posedge clk) begin
old_io_ack <= io_ack;
if (phase == PHASE_IDLE)
sd_buff_sel <= 0;
else
if (old_io_ack & ~io_ack) sd_buff_sel <= !sd_buff_sel;
end
// ----------------------------------------------------------- // -----------------------------------------------------------
@ -77,20 +104,25 @@ reg [7:0] status;
`define MSG_CMD_COMPLETE 8'h00 `define MSG_CMD_COMPLETE 8'h00
// drive scsi signals according to phase // drive scsi signals according to phase
assign msg = (phase == `PHASE_MESSAGE_OUT); assign msg = (phase == PHASE_MESSAGE_OUT);
assign cd = (phase == `PHASE_CMD_IN) || (phase == `PHASE_STATUS_OUT) || (phase == `PHASE_MESSAGE_OUT); assign cd = (phase == PHASE_CMD_IN) || (phase == PHASE_STATUS_OUT) || (phase == PHASE_MESSAGE_OUT);
assign io = (phase == `PHASE_DATA_OUT) || (phase == `PHASE_STATUS_OUT) || (phase == `PHASE_MESSAGE_OUT); assign io = (phase == PHASE_DATA_OUT) || (phase == PHASE_STATUS_OUT) || (phase == PHASE_MESSAGE_OUT);
assign req = (phase != `PHASE_IDLE) && !ack && !io_rd && !io_wr && !io_ack;
assign bsy = (phase != `PHASE_IDLE);
assign dout = (phase == `PHASE_STATUS_OUT)?status: wire io_busy = (phase == PHASE_DATA_OUT && (io_rd | io_ack) && data_cnt[9] == sd_buff_sel) ||
(phase == `PHASE_MESSAGE_OUT)?`MSG_CMD_COMPLETE: (phase == PHASE_DATA_IN && (io_wr | io_ack) && data_cnt[9] == sd_buff_sel) ||
(phase == `PHASE_DATA_OUT)?cmd_dout: (phase != PHASE_DATA_OUT && phase != PHASE_DATA_IN && (io_rd | io_wr | io_ack));
assign req = (phase != PHASE_IDLE) && !ack && !io_busy;
assign bsy = (phase != PHASE_IDLE);
assign dout = (phase == PHASE_STATUS_OUT)?status:
(phase == PHASE_MESSAGE_OUT)?`MSG_CMD_COMPLETE:
(phase == PHASE_DATA_OUT)?cmd_dout:
8'h00; 8'h00;
// de-multiplex different data sources // de-multiplex different data sources
wire [7:0] cmd_dout = wire [7:0] cmd_dout =
cmd_read?buffer_dout: cmd_read?(data_cnt[0] ? buffer1_dout : buffer0_dout):
cmd_inquiry?inquiry_dout: cmd_inquiry?inquiry_dout:
cmd_read_capacity?read_capacity_dout: cmd_read_capacity?read_capacity_dout:
cmd_mode_sense?mode_sense_dout: cmd_mode_sense?mode_sense_dout:
@ -112,23 +144,30 @@ wire [7:0] inquiry_dout =
(data_cnt == 32'd26)?"S":(data_cnt == 32'd27)?"T": (data_cnt == 32'd26)?"S":(data_cnt == 32'd27)?"T":
(data_cnt == 32'd28)?"2":(data_cnt == 32'd29)?"2": (data_cnt == 32'd28)?"2":(data_cnt == 32'd29)?"2":
(data_cnt == 32'd30)?"5":(data_cnt == 32'd31)?"N" + ID: // TESTING. ElectronAsh. (data_cnt == 32'd30)?"5":(data_cnt == 32'd31)?"N" + {5'd0, ID}: // TESTING. ElectronAsh.
8'h00; 8'h00;
// output of read capacity command // output of read capacity command
//wire [31:0] capacity = 32'd41056; // 40960 + 96 blocks = 20MB //wire [31:0] capacity = 32'd41056; // 40960 + 96 blocks = 20MB
//wire [31:0] capacity = 32'd1024096; // 1024000 + 96 blocks = 500MB //wire [31:0] capacity = 32'd1024096; // 1024000 + 96 blocks = 500MB
reg [31:0] capacity; reg [31:0] capacity;
reg mounted = 0;
always @(posedge clk) begin always @(posedge clk) begin
if (img_mounted) capacity <= img_blocks + 8'd96; if (img_mounted) begin
if (|img_blocks) begin
capacity <= img_blocks;
$display("Image mounted on target %d, size: %d", ID, img_blocks);
mounted <= 1;
end else
mounted <= 0;
end
end end
wire [31:0] capacity_m1 = capacity - 32'd1;
wire [7:0] read_capacity_dout = wire [7:0] read_capacity_dout =
(data_cnt == 32'd0 )?capacity_m1[31:24]: (data_cnt == 32'd0 )?capacity[31:24]:
(data_cnt == 32'd1 )?capacity_m1[23:16]: (data_cnt == 32'd1 )?capacity[23:16]:
(data_cnt == 32'd2 )?capacity_m1[15:8]: (data_cnt == 32'd2 )?capacity[15:8]:
(data_cnt == 32'd3 )?capacity_m1[7:0]: (data_cnt == 32'd3 )?capacity[7:0]:
(data_cnt == 32'd6 )?8'd2: // 512 bytes per sector (data_cnt == 32'd6 )?8'd2: // 512 bytes per sector
8'h00; 8'h00;
@ -140,40 +179,44 @@ wire [7:0] mode_sense_dout =
(data_cnt == 32'd10 )?8'd2: (data_cnt == 32'd10 )?8'd2:
8'h00; 8'h00;
// clock data out of buffer to allow for embedded ram
reg [7:0] buffer_dout;
always @(posedge clk) buffer_dout <= data_cnt[0] ? buffer_in1[data_cnt[8:1]] : buffer_in0[data_cnt[8:1]];
// buffer to store incoming commands // buffer to store incoming commands
reg [3:0] cmd_cnt; reg [3:0] cmd_cnt;
reg [7:0] cmd [9:0]; reg [7:0] cmd [9:0];
/* ----------------------- request data from/to io controller ----------------------- */ /* ----------------------- request data from/to io controller ----------------------- */
// base address of current block. Subtract one when writing since the writing happens assign io_lba = lba;
// after a block has been transferred and data_cnt has thus already been increased by 512
assign io_lba = lba + { 9'd0, data_cnt[31:9] } - // generate an io_rd signal whenever the first byte of a 512 byte block is required
(cmd_write ? 32'd1 : 32'd0); // start fetching the next sector when the 20th byte is read, and it's not the last sector
wire req_rd = ((phase == PHASE_DATA_OUT) && cmd_read && (data_cnt == 0 || (data_cnt[8:0] == 9'd20 && data_cnt[31:9] != ({7'd0, tlen} - 1'd1))) && !data_complete);
// generate an io_wr signal whenever a 512 byte block has been received or when the status
// phase of a write command has been reached
wire req_wr = ((((phase == PHASE_DATA_IN) && (data_cnt[8:0] == 0) && (data_cnt != 0)) || (phase == PHASE_STATUS_OUT)) && cmd_write);
wire req_rd = ((phase == `PHASE_DATA_OUT) && cmd_read && (data_cnt[8:0] == 0) && !data_complete);
wire req_wr = ((((phase == `PHASE_DATA_IN) && (data_cnt[8:0] == 0) && (data_cnt != 0)) || (phase == `PHASE_STATUS_OUT)) && cmd_write);
always @(posedge clk) begin always @(posedge clk) begin
reg old_rd, old_wr; reg old_rd, old_wr;
reg wr_pending, rd_pending;
old_rd <= req_rd; old_rd <= req_rd;
old_wr <= req_wr; old_wr <= req_wr;
if(~old_rd & req_rd) rd_pending <= 1;
if(~old_wr & req_wr) wr_pending <= 1;
if(io_ack) begin if(io_ack) begin
io_rd <= 1'b0; io_rd <= 1'b0;
io_wr <= 1'b0; io_wr <= 1'b0;
end else begin end else begin
// generate an io_rd signal whenever the first byte of a 512 byte block is required and io_wr whenever if (rd_pending && !io_rd) begin
// the last byte of a 512 byte block has been revceived io_rd <= 1;
if(~old_rd & req_rd) io_rd <= 1; rd_pending <= 0;
end
// generate an io_wr signal whenever a 512 byte block has been received or when the status if (wr_pending && !io_wr) begin
// phase of a write command has been reached io_wr <= 1;
if(~old_wr & req_wr) io_wr <= 1; wr_pending <= 0;
end
end end
end end
@ -187,21 +230,25 @@ always @(posedge clk) begin
stb_adv <= (old_ack & ~ack); // on falling edge stb_adv <= (old_ack & ~ack); // on falling edge
end end
reg buffer0_wr, buffer1_wr;
// store data on rising edge of ack, ... // store data on rising edge of ack, ...
always @(posedge clk) begin always @(posedge clk) begin
buffer0_wr <= 0;
buffer1_wr <= 0;
if(stb_ack) begin if(stb_ack) begin
if(phase == `PHASE_CMD_IN) cmd[cmd_cnt] <= din; if(phase == PHASE_CMD_IN) cmd[cmd_cnt] <= din;
if(phase == `PHASE_DATA_IN) begin if(phase == PHASE_DATA_IN) begin
if(data_cnt[0]) buffer_out1[data_cnt[8:1]] <= din; buffer0_wr <= ~data_cnt[0];
else buffer_out0[data_cnt[8:1]] <= din; buffer1_wr <= data_cnt[0];
end end
end end
end end
// ... advance counter on falling edge // ... advance counter on falling edge
always @(posedge clk) begin always @(posedge clk) begin
if(phase == `PHASE_IDLE) cmd_cnt <= 4'd0; if(phase == PHASE_IDLE) cmd_cnt <= 4'd0;
else if(stb_adv && (phase == `PHASE_CMD_IN) && (cmd_cnt != 15)) cmd_cnt <= cmd_cnt + 4'd1; else if(stb_adv && (phase == PHASE_CMD_IN) && (cmd_cnt != 15)) cmd_cnt <= cmd_cnt + 4'd1;
end end
// count data bytes. don't increase counter while we are waiting for data from // count data bytes. don't increase counter while we are waiting for data from
@ -221,7 +268,7 @@ wire [31:0] data_len =
{ 16'd0, tlen }; // inquiry etc have length in bytes { 16'd0, tlen }; // inquiry etc have length in bytes
always @(posedge clk) begin always @(posedge clk) begin
if((phase != `PHASE_DATA_OUT) && (phase != `PHASE_DATA_IN) && (phase != `PHASE_STATUS_OUT) && (phase != `PHASE_MESSAGE_OUT)) begin if((phase != PHASE_DATA_OUT) && (phase != PHASE_DATA_IN) && (phase != PHASE_STATUS_OUT) && (phase != PHASE_MESSAGE_OUT)) begin
data_cnt <= 0; data_cnt <= 0;
data_complete <= 0; data_complete <= 0;
end else begin end else begin
@ -235,14 +282,14 @@ end
// check whether status byte has been sent // check whether status byte has been sent
reg status_sent; reg status_sent;
always @(posedge clk) begin always @(posedge clk) begin
if(phase != `PHASE_STATUS_OUT) status_sent <= 0; if(phase != PHASE_STATUS_OUT) status_sent <= 0;
else if(stb_adv) status_sent <= 1; else if(stb_adv) status_sent <= 1;
end end
// check whether message byte has been sent // check whether message byte has been sent
reg message_sent; reg message_sent;
always @(posedge clk) begin always @(posedge clk) begin
if(phase != `PHASE_MESSAGE_OUT) message_sent <= 0; if(phase != PHASE_MESSAGE_OUT) message_sent <= 0;
else if(stb_adv) message_sent <= 1; else if(stb_adv) message_sent <= 1;
end end
@ -273,18 +320,21 @@ wire cmd_test_unit_ready = (op_code == 8'h00);
wire cmd_read_capacity = (op_code == 8'h25); wire cmd_read_capacity = (op_code == 8'h25);
wire cmd_read_buffer = (op_code == 8'h3b); // fake wire cmd_read_buffer = (op_code == 8'h3b); // fake
wire cmd_write_buffer = (op_code == 8'h3c); // fake wire cmd_write_buffer = (op_code == 8'h3c); // fake
wire cmd_verify6 = (op_code == 8'h13); // fake
wire cmd_verify10 = (op_code == 8'h2f); // fake
// valid command in buffer? TODO: check for valid command parameters // valid command in buffer? TODO: check for valid command parameters
wire cmd_ok = cmd_read || cmd_write || cmd_inquiry || cmd_test_unit_ready || wire cmd_ok = cmd_read || cmd_write || cmd_inquiry || cmd_test_unit_ready ||
cmd_read_capacity || cmd_mode_select || cmd_format || cmd_mode_sense || cmd_read_capacity || cmd_mode_select || cmd_format || cmd_mode_sense ||
cmd_read_buffer | cmd_write_buffer; cmd_read_buffer || cmd_write_buffer || cmd_verify6 || cmd_verify10;
// latch parameters once command is complete // latch parameters once command is complete
reg [31:0] lba; reg [31:0] lba;
reg [15:0] tlen; reg [15:0] tlen;
always @(posedge clk) begin always @(posedge clk) begin
if(cmd_cpl && (phase == `PHASE_CMD_IN)) begin if (old_io_ack & ~io_ack) lba <= lba + 1'd1;
if(cmd_cpl && (phase == PHASE_CMD_IN)) begin
lba <= cmd6_cpl?{11'd0, lba6}:lba10; lba <= cmd6_cpl?{11'd0, lba6}:lba10;
tlen <= cmd6_cpl?{7'd0, tlen6}:tlen10; tlen <= cmd6_cpl?{7'd0, tlen6}:tlen10;
end end
@ -304,16 +354,17 @@ wire [15:0] tlen10 = { cmd[7], cmd[8] };
// on the rising edge // on the rising edge
always @(posedge clk) begin always @(posedge clk) begin
if(rst) begin if(rst) begin
phase <= `PHASE_IDLE; phase <= PHASE_IDLE;
end else begin end else begin
if(phase == `PHASE_IDLE) begin if(phase == PHASE_IDLE) begin
if(sel && din[ID]) // own id on bus during selection? if(sel && din[ID] && mounted) // own id on bus during selection?
phase <= `PHASE_CMD_IN; phase <= PHASE_CMD_IN;
end end
else if(phase == `PHASE_CMD_IN) begin else if(phase == PHASE_CMD_IN) begin
// check if a full command is in the buffer // check if a full command is in the buffer
if(cmd_cpl) begin if(cmd_cpl) begin
$display("New command on target %d: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", ID, cmd[0], cmd[1], cmd[2], cmd[3], cmd[4], cmd[5], cmd[6], cmd[7], cmd[8], cmd[9]);
// is this a supported and valid command? // is this a supported and valid command?
if(cmd_ok) begin if(cmd_ok) begin
// yes, continue // yes, continue
@ -322,39 +373,76 @@ always @(posedge clk) begin
// continue according to command // continue according to command
// these commands return data // these commands return data
if(cmd_read || cmd_inquiry || cmd_read_capacity || cmd_mode_sense || cmd_read_buffer) phase <= `PHASE_DATA_OUT; if(cmd_read || cmd_inquiry || cmd_read_capacity || cmd_mode_sense || cmd_read_buffer) phase <= PHASE_DATA_OUT;
// these commands receive dataa // these commands receive dataa
else if(cmd_write || cmd_mode_select || cmd_write_buffer) phase <= `PHASE_DATA_IN; else if(cmd_write || cmd_mode_select || cmd_write_buffer) phase <= PHASE_DATA_IN;
// and all other valid commands are just "ok" // and all other valid commands are just "ok"
else phase <= `PHASE_STATUS_OUT; else phase <= PHASE_STATUS_OUT;
end else begin end else begin
// no, report failure // no, report failure
status <= `STATUS_CHECK_CONDITION; status <= `STATUS_CHECK_CONDITION;
phase <= `PHASE_STATUS_OUT; phase <= PHASE_STATUS_OUT;
end end
end end
end end
else if(phase == `PHASE_DATA_OUT) begin else if(phase == PHASE_DATA_OUT) begin
if(data_complete) phase <= `PHASE_STATUS_OUT; if(data_complete) phase <= PHASE_STATUS_OUT;
end end
else if(phase == `PHASE_DATA_IN) begin else if(phase == PHASE_DATA_IN) begin
if(data_complete) phase <= `PHASE_STATUS_OUT; if(data_complete) phase <= PHASE_STATUS_OUT;
end end
else if(phase == `PHASE_STATUS_OUT) begin else if(phase == PHASE_STATUS_OUT) begin
if(status_sent) phase <= `PHASE_MESSAGE_OUT; if(status_sent) phase <= PHASE_MESSAGE_OUT;
end end
else if(phase == `PHASE_MESSAGE_OUT) begin else if(phase == PHASE_MESSAGE_OUT) begin
if(message_sent) phase <= `PHASE_IDLE; if(message_sent) phase <= PHASE_IDLE;
end end
else else
phase <= `PHASE_IDLE; // should never happen phase <= PHASE_IDLE; // should never happen
end end
end end
endmodule
module scsi_dpram #(parameter DATAWIDTH=8, ADDRWIDTH=9)
(
input clock,
input [ADDRWIDTH-1:0] address_a,
input [DATAWIDTH-1:0] data_a,
input wren_a,
output reg [DATAWIDTH-1:0] q_a,
input [ADDRWIDTH-1:0] address_b,
input [DATAWIDTH-1:0] data_b,
input wren_b,
output reg [DATAWIDTH-1:0] q_b
);
reg [DATAWIDTH-1:0] ram[0:(1<<ADDRWIDTH)-1];
always @(posedge clock) begin
if(wren_a) begin
ram[address_a] <= data_a;
q_a <= data_a;
end else begin
q_a <= ram[address_a];
end
end
always @(posedge clock) begin
if(wren_b) begin
ram[address_b] <= data_b;
q_b <= data_b;
end else begin
q_b <= ram[address_b];
end
end
endmodule endmodule