NuBusFPGA/nubus-to-ztex-gateware/fb_video.py

174 lines
7.9 KiB
Python

import os
import math
from migen import *
from migen.genlib.cdc import MultiReg
from litex.soc.interconnect.csr import *
from litex.soc.interconnect import stream
from litex.soc.cores.code_tmds import TMDSEncoder
from litex.build.io import SDROutput, DDROutput
from litex.soc.cores.video import *
video_timing_hwcursor_layout = [
# Synchronization signals.
("hsync", 1),
("vsync", 1),
("de", 1),
("hwcursor", 1),
("hwcursorx", 5),
("hwcursory", 5),
# Extended/Optional synchronization signals.
("hres", hbits),
("vres", vbits),
("hcount", hbits),
("vcount", vbits),
]
# FB Video Timing Generator ---------------------------------------------------------------------------
# Same as the normal one except (a) _enable isn't a CSR
class FBVideoTimingGenerator(Module, AutoCSR):
def __init__(self, default_video_timings="800x600@60Hz", hwcursor=False):
# Check / Get Video Timings (can be str or dict)
if isinstance(default_video_timings, str):
try:
self.video_timings = vt = video_timings[default_video_timings]
except KeyError:
msg = [f"Video Timings {default_video_timings} not supported, availables:"]
for video_timing in video_timings.keys():
msg.append(f" - {video_timing} / {video_timings[video_timing]['pix_clk']/1e6:3.2f}MHz.")
raise ValueError("\n".join(msg))
else:
self.video_timings = vt = default_video_timings
# MMAP Control/Status Registers.
self.enable = Signal() # external control signal
self._hres = CSRStorage(hbits, vt["h_active"])
self._hsync_start = CSRStorage(hbits, vt["h_active"] + vt["h_sync_offset"])
self._hsync_end = CSRStorage(hbits, vt["h_active"] + vt["h_sync_offset"] + vt["h_sync_width"])
self._hscan = CSRStorage(hbits, vt["h_active"] + vt["h_blanking"])
self._vres = CSRStorage(vbits, vt["v_active"])
self._vsync_start = CSRStorage(vbits, vt["v_active"] + vt["v_sync_offset"])
self._vsync_end = CSRStorage(vbits, vt["v_active"] + vt["v_sync_offset"] + vt["v_sync_width"])
self._vscan = CSRStorage(vbits, vt["v_active"] + vt["v_blanking"])
self._hres_start = Signal(hbits, reset = 0)
self._hres_end = Signal(hbits, reset = vt["h_active"])
self._vres_start = Signal(hbits, reset = 0)
self._vres_end = Signal(hbits, reset = vt["v_active"])
# Video Timing Source
if (hwcursor):
self.source = source = stream.Endpoint(video_timing_hwcursor_layout)
_hwcursor_x = Signal(12) # 12 out of 16 is enough
_hwcursor_y = Signal(12) # 12 out of 16 is enough
self.hwcursor_x = Signal(12)
self.hwcursor_y = Signal(12)
self.specials += MultiReg(self.hwcursor_x, _hwcursor_x)
self.specials += MultiReg(self.hwcursor_y, _hwcursor_y)
else:
self.source = source = stream.Endpoint(video_timing_layout)
# # #
# Resynchronize Horizontal Timings to Video clock domain.
self.hres = hres = Signal(hbits)
self.hsync_start = hsync_start = Signal(hbits)
self.hsync_end = hsync_end = Signal(hbits)
self.hscan = hscan = Signal(hbits)
self.specials += MultiReg(self._hres.storage, hres)
self.specials += MultiReg(self._hsync_start.storage, hsync_start)
self.specials += MultiReg(self._hsync_end.storage, hsync_end)
self.specials += MultiReg(self._hscan.storage, hscan)
# Resynchronize Vertical Timings to Video clock domain.
self.vres = vres = Signal(vbits)
self.vsync_start = vsync_start = Signal(vbits)
self.vsync_end = vsync_end = Signal(vbits)
self.vscan = vscan = Signal(vbits)
self.specials += MultiReg(self._vres.storage, vres)
self.specials += MultiReg(self._vsync_start.storage, vsync_start)
self.specials += MultiReg(self._vsync_end.storage, vsync_end)
self.specials += MultiReg(self._vscan.storage, vscan)
self.hres_start = hres_start = Signal(hbits)
self.hres_end = hres_end = Signal(hbits)
self.vres_start = vres_start = Signal(vbits)
self.vres_end = vres_end = Signal(vbits)
self.specials += MultiReg(self._hres_start, hres_start)
self.specials += MultiReg(self._hres_end, hres_end)
self.specials += MultiReg(self._vres_start, vres_start)
self.specials += MultiReg(self._vres_end, vres_end)
# Generate timings.
hactive = Signal()
vactive = Signal()
fsm = FSM(reset_state="IDLE")
fsm = ResetInserter()(fsm)
self.submodules.fsm = fsm
self.comb += fsm.reset.eq(~self.enable)
fsm.act("IDLE",
NextValue(hactive, 0),
NextValue(vactive, 0),
NextValue(source.hres, hres),
NextValue(source.vres, vres),
NextValue(source.hcount, 0),
NextValue(source.vcount, 0),
NextState("RUN")
)
self.comb += source.de.eq(hactive & vactive) # DE when both HActive and VActive.
self.sync += source.first.eq((source.hcount == 0) & (source.vcount == 0)),
self.sync += source.last.eq( (source.hcount == hscan) & (source.vcount == vscan)),
fsm.act("RUN",
source.valid.eq(1),
If(source.ready,
# Increment HCount.
NextValue(source.hcount, source.hcount + 1),
# Generate HActive / HSync.
If(source.hcount == hres_start, NextValue(hactive, 1)), # Start of HActive.
If(source.hcount == hres_end, NextValue(hactive, 0)), # End of HActive.
If(source.hcount == hsync_start, NextValue(source.hsync, 1)), # Start of HSync.
If(source.hcount == hsync_end, NextValue(source.hsync, 0)), # End of HSync.
# End of HScan.
If(source.hcount == hscan,
# Reset HCount.
NextValue(source.hcount, 0),
# Increment VCount.
NextValue(source.vcount, source.vcount + 1),
# Generate VActive / VSync.
If(source.vcount == vres_start, NextValue(vactive, 1)), # Start of VActive.
If(source.vcount == vres_end, NextValue(vactive, 0)), # End of HActive.
If(source.vcount == vsync_start, NextValue(source.vsync, 1)), # Start of VSync.
If(source.vcount == vsync_end, NextValue(source.vsync, 0)), # End of VSync.
# End of VScan.
If(source.vcount == vscan,
# Reset VCount.
NextValue(source.vcount, 0),
)
)
)
)
# fixme: likely more efficient to have two bits (X, Y) to check if we're in the area, rather than two compare...
# could also handle the offsets w/o two subtractions
# but how to deal with changing value ??? copy them at the beginning of frame ?
if (hwcursor):
h_offset = Signal(hbits)
v_offset = Signal(vbits)
self.comb += [
h_offset.eq(source.hcount - hres_start),
v_offset.eq(source.vcount - vres_start),
]
self.sync += source.hwcursor.eq((h_offset >= _hwcursor_x) &
(h_offset < (_hwcursor_x+32)) &
(v_offset >= _hwcursor_y) &
(v_offset < (_hwcursor_y+32)))
self.sync += source.hwcursorx.eq(_hwcursor_x - h_offset)
self.sync += source.hwcursory.eq(_hwcursor_y - v_offset)