ol

Designing Cards and Drivers

for the Macintosh Family
by Apple Computer, Inc.

Third Edition

4

Designing Cards and Drivers
for the Macintosh Family

Third Edition

A
vv

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

& APPLE COMPUTER, INC.

© 1992, Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc. Printed in the

~ United States of America.

Apple Computer, Inc.
20525 Mariani Avenue
Cupettino, CA 95014-6299
408-996-1010

Apple, the Apple logo, APDA, -
AppleLink, AppleTalk, A/UX,
EtherTalk, LaserWriter, Macintosh,
MPW, and SANE are trademarks of
Apple Computer, Inc., registered in
the United States and other countries.

Applecolor, Apple Desktop Bus,
A/ROSE, QuickDraw, and SuperDrive
are trademarks of Apple Computer,
Inc.

Adobe Tlustrator and PostScript are
registered trademarks of Adobe
Systems Incorporated.

HyperCard is a trademark of Claris
Corporation.

IBM is a registered trademark of
International Business Machines
Corporation.

ITC Garamond and ITC Zapf
Dingbats are registered trademarks of
International Typeface Corporation.

Microsoft is a registered trademark of
Microsoft Corporation.

Motorola is a registered trademark of
Motorola Corporation.

NuBus is a trademark of Texas
Instruments.

Sony is a registered trademark of
Sony Corporation.

Simultaneously published in the
United States and Canada.

ISBN 0-201-60855-3
1234506789-MU-9695949392
First printing, April 1992

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR
REPRESENTATION, EITHER
EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND
REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU
OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent,
or employee is authorized to
make any modification, extension,
or addition to this warranty.

Some states do not allow the
exclusion or limitation of implied
warranties or liability for incidental
or consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you specific legal rights, and
you may also have other rights
which vary from state to state.

Preface

Introduction

Contents

Figures and tables / xix

About This Book / xxxi
Design philosophy / xxxii
Conventions used in this book / xxxii

The Courier font / xxxiv
About the mechanical drawings and design guides / xxxv
About the Macintosh technical documentation / xxxv
How to get more information / xxxvii

APDA / xxxviii

User groups / xxxviii

Apple Developer Services / xxxix

Expansion Strategy for the Macintosh Family / 1

Limiting the number of expansion interfaces / 2

NuBus expansion / 3

Processor-direct slot (PDS) expansion / 3
The 68000 and 68020 Direct Slot expansion interfaces / 4
The 68030 Direct Slot expansion interface / 5
The 68040 Direct Slot expansion interface / 5

Recommended strategy for 68030 and 68040 Direct Slot expansion
card design / 6

Converting your designs / 7
Application-specific expansion / 7
Slot strategy summary / 7

Part I The NuBus Expansion Interface / 9

About Part I / 10
Addressing design philosophy / 11
NuBus use and licensing requirements / 12

1 Overview of Macintosh Computers With the
NuBus Interface / 13

Major features / 14
Hardware architecture / 18
RAM / 28
ROM / 28
Device 1/0 / 29
Address/data bus / 30
Macintosh IIsi NuBus interface / 31
NuBus interface architecture / 31
Processor bus-to-NuBus state machine / 32
NuBus-to-processor bus state machines / 34

2 NuBus Overview / 37
NuBus features / 38
NuBus elements / 39
NuBus '90 features / 41
NuBus signal classifications / 41
NuBus timing / 44
NuBus terminology / 44

3 NuBus Data Transfer / 51

Utility signals / 52
Clock signals / 52
Reset signal / 52
Power fail warning signal / 53
Nonmaster request signal / 53
Serial bus signals / 54
Card slot identification signals / 54

Signal line determinacy / 55

iv Designing Cards and Drivers for the Macintosh Family

Data-transfer signals / 56
Control signals / 56
Address/data signals / 57
Bus parity signals / 57
Cache-coherency signals / 58
Data-transfer specifications / 58
Single data cycle transactions / 59
Read transactions / 60
Write transactions / 61
Acknowledge cycles / 63
Attention cycles / 63
Interrupt operations / 65
By write transaction / 65
By slots sharing a single NuBus /NMRQ line / 65
By a dedicated /NMRQ line from each slot / 65
1X block data transfers / 66
1X block read / 67
1X block write / 68
1X block transfer errors / 70
2X block data transfers / 70
Signal protocol for 2X block transfers / 71
2X block-transfer flow control / 72
2X block read transfer / 72
2X block write transfer / 75
2X block write transfer with delayed status indication / 79
Cache coherency / 81
Cache line states and sizes / 82
Read and write miss / 82
Snooping / 83
Cache-coherency transactions / 83
ReadShared / 84
ReadExclusive / 84
ReadInvalidate / 85
ReadNosnoop / 85
WriteExclusive / 85
WriteInvalidate / 85
WriteNosnoop / 86
AttentionShared / 86
AttentionExclusive / 86
AttentionInvalidate / 86

Contents

Non-cache-coherent transactions to caching modules / 87
Cache-coherent states / 87
Cache-coherent masters / 90
Arbitration by cache-coherent modules / 92
Nonaligned microprocessor accesses / 93
Nonaligned reads / 94
Nonaligned writes / 94
Data caching / 94
Compliance categories / 94

4 NuBus Arbitration / 97

Arbitration overview / 98
Arbitration logic mechanism / 99
Arbitration timing overview / 101
Locking / 101

Bus locking / 103

Resource locking / 104
Bus parking / 105

5 NuBus Card Electrical Design Guide / 107

Electrical requirements / 108
Logical and electrical state relationships / 108
DC and AC specifications for line drive / 108
/PFW interaction with the power supply / 110
NuBus connector pin assignments / 111
Power supply specifications / 113
NuBus power budget / 114

Timing requirements / 116
Utility and data-transfer timing / 116
Arbitration timing / 117

vi Designing Cards and Drivers for the Macintosh Family

6 NuBus Card Physical Design Guide / 119

Card description / 120

NuBus connector description / 122

NuBus expansion card internal connectors / 125

Recommended heat dissipation guidelines / 127

NuBus slot ordering / 127

Physical implementation of the Macintosh IIsi NuBus adapter kit / 128

7 NuBus Card Memory Access / 131
NuBus address space / 132
Address allocations for Macintosh computers with NuBus / 134
Slot allocations / 136
NuBus bit and byte structure / 136
Byte smearing / 138

8 NuBus Card Firmware / 141

An introduction to the firmware / 142
The Slot Manager and the declaration ROM / 142
sResources / 143
How sResources are implemented / 144
The sRsrcType entry / 145

How to configure the sRstcType fields for video card
sResources / 147

sRsrcType fields for a video card functional sResource / 147
sRsrcType fields for a video card board sResource / 148

How QuickDraw interacts with the Slot Manager and declaration
ROM / 149

Summary of firmware design objectives / 150

Obtaining card identification and sRstcType values from
MacDTS / 151

Data types / 152

Contents vii

Firmware structure / 153

The format block / 156
ByteLanes / 158
Reserved / 159
TestPattern / 159
Format / 159
RevisionLevel / 159
CRC / 160
Length / 160
DirectoryOffset / 160

The sResource directory / 161

sResource structure / 162

Apple-defined sResource entries / 163
sRstcType / 165
sRsrcName / 166
sRsrclcon / 166
sRsrcDrvrDir / 166
sRsrcLoadRec / 167
sRsrcBootRec / 168
sRsrcFlags / 169
sRstcHWDevId / 169
MinorBaseOS / 170
MinorLength / 170
MajorBaseOS / 170
MajorLength / 170
sRsrcCicn / 170
sRsrclcl8 / 170
sRsrclcl4 / 171
sMemory / 171

The board sResource / 174
BoardId / 175
PRAMInitData / 176
Primarylnit / 176
STimeOut / 178
VendorInfo / 178
Secondarylnit / 179

NuBus block-transfer mode sResource entries / 180

viii ~ Designing Cards and Drivers for the Macintosh Family

Additional firmware requirements of video cards / 182
Identifying direct devices / 183
Identifying 32-bit addressable configurations / 183
Icons / 184
Apple-defined video sResource entries / 185
sGammaDir / 185
sRsrcVidNames / 185
Gamma table data / 186
Video mode name directory / 186
Video card name / 187
Resolution / 187
Sample code / 187
Macintosh Coprocessor Platform / 188

NuBus Card Driver Design / 189

Storing the driver code for a NuBus card / 190
Specific and generic drivers / 190
Card-specific drivers / 190
Card-generic drivers / 191
The sDriver record / 193
Installing a driver at startup / 193
Calling a driver / 195
Slot device interrupts / 197
SIntInstall / 198
SIntRemove / 198
PollRoutine / 198
Video drivers / 200
Video declaration ROM inhformation / 201
Video driver routines / 202
Video driver data structures / 204
Control routines / 205
Status routines / 211
Gamma correction in Macintosh computers / 213
How gamma correction works / 213
The gamma table data structure / 215
Using gamma correction / 216
Video driver example / 216
Summary / 217
Data types / 217

Contents

ix

X

Interrupt queue routines / 218
Advanced control routines / 218
Status routines / 219
Assembly-language information / 219
Data structures / 219
Interrupt queue routines / 220

10 NuBus Design Examples / 221

NuBus Test Card / 222

Overview of operation / 222

Programming model / 222

Byte swapping and the NTC / 223

Programming the NTC / 225
Word read (Macintosh computer RAM) / 225
Halfword 0 write / 226

Hardware organization / 226
NuBus address/data buffers / 227
Address and Data registers / 227
Address comparison / 227
SLAVE PAL / 227
ARB PAL / 227
MASTER PAL / 228
MISC PAL / 228
NBDRVR PAL / 228

Slave operation / 230

Master operation / 230

SCSI-NuBus Test Card / 231

Software overview / 231

Hardware overview / 231
NuBus transceivers (ALS651’s) / 234
Slot Decode (F86/F30) / 235
NuBus state machine (stNUBUS1 PAL) / 235
NuBus signal generator (stNUBUS2 PAL) / 235
Decode and timing (stMISC PAL) / 235
SCSI chip (NCRS380) / 235
Pseudo-ROM / 236
RAM / 236

PAL descriptions / 236

Designing Cards and Drivers for the Macintosh Family

A simple disk controller / 236

System configuration / 236
Controller card block diagram / 237
Floppy disk controller logic / 239

NuBus interface logic / 239
Programmed I/O operations / 240
On-card DMA operations / 241

Memory map and the declaration ROM / 242

11 The Macintosh II Video Card / 245

Video card overview / 246
Functional operation / 247
Processor-to-video card interface / 248
Timing generation / 248
Frame Buffer Controller / 248
Video RAM / 249
Color look-up table / 252
Horizontal and vertical scan timing / 252
Declaration ROM operation / 255
Configuration data / 255
The driver / 256
The primary initialization code / 257
Firmware interfaces / 257
Card connectors / 259
Video connector / 259
External-signal connector / 260

Part I The Processor-Direct Slot Expansion Interface / 261

About Part IT / 262

Contents

xi

12 Overview of Macintosh PDS Computers / 265

Major features / 266

Hardware architecture / 268
RAM / 275
ROM / 276
Device I/0 / 276

PDS expansion interface / 276
The 68000 Direct Slot / 277
The 68020 Direct Slot / 277
The 68030 Direct Slot / 278
The 68040 Direct Slot / 279
Additional support for expansion / 279

13 Electrical Design Guide for 68000 Direct Slot Expansion
Cards / 281

68000 Direct Slot expansion for the Macintosh SE / 282

Electrical description of the Macintosh SE expansion
connector / 282

Functional description of the MC68000 signals in the
Macintosh SE / 288

Accessing the Macintosh SE electronics from an expansion card / 290
Accessing 1/O devices from an expansion card / 290
Accessing RAM from an expansion card / 291
Deviating from the normal RAM access method / 294

Available Macintosh SE address space / 296

Power consumption guidelines for Macintosh SE PDS expansion
cards / 298

68000 Direct Slot expansion for the Macintosh Portable / 299

Electrical description of the Macintosh Portable expansion
connector / 299

Functional description of the MC68HCO000 signals in the Macintosh
Portable / 301

Power consumption guidelines for Macintosh Portable PDS
expansion cards / 302

xii Designing Cards and Drivers for the Macintosh Family

14 Electrical Design Guide for 68020 Direct Slot Expansion
Cards / 303

68020 Direct Slot expansion for the Macintosh LC / 304
Electrical description of the expansion connector / 304

Load/drive limits of the PDS expansion connector signals for the
Macintosh LC/ 307

Electrical design guidelines for the Macintosh LC 68020 Direct Slot
expansion card / 310

Address decode and memory mapping / 310

Addressing guidelines / 311

Electrical design considerations / 311

Accessing 1/0 and memory devices from the Macintosh LC
expansion card / 312

Power consumption guidelines for Macintosh LC PDS expansion
cards / 313

15 Electrical Design Guide for 68030 Direct Slot Expansion
Cards / 315

68030 Direct Slot expansion / 316
68030 Direct Slot expansion card compatibility issues / 316
Electrical description of the Macintosh SE/30 and the Macintosh IIsi
68030 Direct Slot / 317
Electrical description of the Macintosh IIfx 68030 Direct Slot / 327
Functional description of the MC68030 signals / 335
Macintosh SE/30 and Macintosh IIsi 68030 Direct Slot machine-
specific signals / 338
Machine-specific signals for the Macintosh IIfx 68030 Direct
Slot / 339
Electrical design guidelines for Macintosh SE/30 and Macintosh IIsi PDS
expansion cards / 340

Memory and 1/O access from a Macintosh SE/30 expansion
card / 340

Memory and 1/0 access from Macintosh IIsi expansion cards / 343
RAM access from a PDS expansion card in the
Macintosh 1Isi / 344
Pseudoslot design guidelines for Macintosh SE/30 and Macintosh Ilsi
expansion cards / 349
Interrupt handling for the Macintosh SE/30 and Macintosh IIsi 68030
Direct Slot / 351

Contents

xiii

Design hints for Macintosh SE/30 and Macintosh Ilsi expansion
cards / 352

Power consumption guidelines for Macintosh SE/30 and Macintosh
IIsi PDS expansion cards / 353

Macintosh TIfx expansion card design / 354

Pseudoslot design guidelines for Macintosh IIfx PDS
expansion cards / 355

Memory cycle termination in the Macintosh IIfx / 355
Interrupt handling for the Macintosh 1Ifx 68030 Direct Slot / 356
Bus master priority scheme for the Macintosh 1Ifx / 356
Effect of Macintosh IIfx clock speeds on PDS expansion card
design / 357
Using the Macintosh IIfx cache memory / 358
Additional design hints / 358
Power consumption guidelines for Macintosh IIfx PDS expansion
cards / 359
Macintosh IIsi PDS adapter card / 359
Macintosh Ilsi adapter card cache signals / 361

Power consumption guidelines for the Macintosh IIsi
adapter card / 362

16 Electrical Design Guide for 68040 Direct Slot Expansion
Cards / 363
68040 Direct Slot expansion / 364
Electrical description of the 68040 Direct Slot / 364
Design considerations for 68040 Direct Slot expansion cards / 372
Bus master priority scheme / 373
Memory and 1/O access for expansion cards / 374
Pseudoslot design guidelines for PDS expansion cards / 376
Timing considerations / 377
08040 Direct Slot interrupt handling / 377
Cache management / 379
Cache management by ROM / 379
Cache management by applications / 380

Design hints for PDS expansion cards in Macintosh Quadra—family
computers / 380

Power consumption guidelines for 68040 Direct Slot expansion
cards / 381

xiv Designing Cards and Drivers for the Macintosh Family

17

18

Physical Design Guide for Macintosh PDS Expansion
Cards / 383
Physical guidelines for Macintosh SE expansion cards / 384
The 68000 Direct Slot 96-pin connector for the Macintosh SE / 386
External connections for the Macintosh SE / 389
Physical guidelines for Macintosh Portable expansion cards / 392
Physical guidelines for Macintosh LC expansion cards / 395
Macintosh LC external access opening / 401
Expansion card installation for the Macintosh LC / 401
Physical guidelines for Macintosh SE/30 expansion cards / 401

The 68030 Direct Slot 120-pin connector for the
Macintosh SE/30 / 408

External connection for a Macintosh SE/30 expansion card / 410
Physical guidelines for Macintosh IIfx PDS expansion cards / 412
Physical guidelines for Macintosh IIsi Direct Slot expansion cards / 413

Physical implementation of the Macintosh IIsi 68030 Direct Slot
adapter kit / 413

External connections for the Macintosh IIsi PDS expansion
card / 414

Design considerations for Macintosh Ilsi PDS expansion cards / 415
Macintosh IIsi adapter cards / 415
Physical guidelines for 68040 Direct Slot expansion cards / 417

Processor-Direct Slot Design Example / 419

Disk controller overview / 420

System configuration / 420

Interface card block diagram / 421

Floppy disk controller logic / 423

Macintosh SE interface logic / 423
Programmed I/O operations / 424
DMA operations / 426

Address allocation / 427

Contents

XV

Part Il Application-Specific Expansion Interfaces / 429
About Part III / 430

19 Application-Specific Expansion Interfaces for Macintosh
Computers / 431
Major features / 432
Hardware architecture / 434
RAM / 441
ROM / 441
Device I/0 / 441

20 RAM Expansion Interface / 443

Macintosh Portable RAM expansion / 444
Macintosh Portable RAM expansion address space / 444
RAM expansion cards for the Macintosh Portable / 447
RAM expansion cards for the backlit Macintosh Portable / 450

RAM expansion-slot timing for the backlit Macintosh
Portable / 451

Design considerations for RAM expansion in the backlit Macintosh
Portable / 453

Macintosh Classic RAM expansion / 453
Macintosh Classic RAM expansion address space / 453

Electrical description of the RAM expansion cards for the Macintosh
Classic / 454

Physical design guide for a Macintosh Classic RAM expansion
card / 457

RAM expansion for the PowerBook 140 and PowerBook 170 / 459

Expansion connector signals for the PowerBook 140 and
PowerBook 170 / 460

RAM expansion card design guide for the PowerBook 140 and
PowerBook 170 / 465

Macintosh PowerBook 100 RAM expansion / 467
RAM address space for the PowerBook 100 / 467
PowerBook 100 RAM expansion connector signals / 469
Design hints for the PowerBook 100 RAM expansion card / 473
PowerBook 100 RAM expansion card design guide / 474

xvi Designing Cards and Drivers for the Macintosh Family

21 ROM Expansion Interfacé / 475

Macintosh Portable ROM expansion / 476
ROM expansion address space in the Macintosh Portable / 476
ROM expansion cards for the Macintosh Portable / 476

Design considerations for ROM expansion in the
Macintosh Portable / 479

Macintosh Portable EDisks (electronic disks) / 480
The EDisk driver for the Macintosh Portable / 481
Data checksumming / 481
EDisk driver operation / 482
EDisk header format / 482
FPU/ROM expansion for the Macintosh Classic II computer / 484

Electrical description of the Macintosh Classic II FPU/ROM
expansion slot / 485

ROM expansion address space in the Macintosh Classic II
computer / 489

Physical design guidelines for the Macintosh Classic 1T FPU/ROM
expansion card / 491

Macintosh Classic II FPU/ROM expansion connector power
budget / 492

22 Modem Expansion Interface / 493
Macintosh Portable modem card / 494
Modem card hardware interface for the Macintosh Portable / 494

Modem connector electrical interface for the Macintosh
Portable / 496

Physical design guide for a Macintosh Portable modem card / 498
Modem power-control interface for the Macintosh Portable / 498
Power-up/power-down timing / 499
Ring detection / 501
Modem card power requirements / 501
Telephone network interface / 501

Contents xvii

xviii

Modem expansion cards for the PowerBook-family computers / 502

Modem card hardware interface for the PowerBook-family
computers / 502

Modem connector electrical interface for the PowerBook-family
computers / 505

Physical design guide for the PowerBook-family modem expansion
card / 507

Modem power-control interface for the PowerBook family / 509
Modem operation for the PowerBook family / 510
Power-up/power-down timing / 510
Ring detection / 513
Modem card power requirements / 513
Telephone network interface / 513
Standards information for reference / 514
Compatibility and modulation / 514
Transmit carrier frequencies / 514
Guard tone frequencies and transmit levels (CCITT only) / 515
Answer tone frequency / 515
Received signal frequency tolerance / 515

23 Macintosh Ilci Cache Memory Expansion / 517

Cache memory expansion overview / 518

How the cache works / 519

Using the cache / 519
Gaining access to the cache card / 520
Electrical description of the cache connector / 521
Electrical design guidelines for the cache card / 527
Mechanical design guidelines for the cache card / 528
Power consumption guidelines / 530

A EM], Heat Dissipation, and Product Safety Guidelines / 531

EMI guidelines for expansion cards / 532
Without external I/O connections / 532
With external I/O connections / 533
Heat dissipation guidelines / 534
Heat dissipation guidelines for NuBus cards / 534
Heat dissipation guidelines for PDS cards / 535
Product safety / 536

Designing Cards and Drivers for the Macintosh Family

Sample Video Card Firmware / 539

Video Card Driver Example / 563

PAL Listing for the NuBus Test Card / 591

PAL Listing for the SCSI-NuBus Test Card / 601

Glossary / 605

Index / 613

Foldouts / 623

Contents

Xix

Figures and tables

Preface About This Book / xxxi

Table P-1

Macintosh technical documentation / xxxvi

1 Overview of Macintosh Computers With the NuBus Interface / 13

Figure 1-1
Figure 1-2

Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8

Figure 1-9

Table 1-1

Block diagram of the Macintosh II computer / 21

Block diagram of the Macintosh IIx and Macintosh Ilcx
computers / 22

Block diagram of the Macintosh Ilci computer / 23

Block diagram of the Macintosh IIfx computer / 24

Block diagram of the Macintosh IIsi computer / 25

Block diagram of the Macintosh Quadra 700 computer / 26

Block diagram of the Macintosh Quadra 900 computer / 27

Bus interface architecture for the Macintosh II, Macintosh
[Ix, and Macintosh IIcx computers / 33

NuBus-to—processor bus translation / 35

Major features of Macintosh computers with the NuBus
interface / 14

2 NuBus Overview / 37

Figure 2-1
Figure 2-2
Figure 2-3

Table 2-1
Table 2-2

Table 2-3
Table 2-4

Simplified NuBus diagram / 40
NuBus signal timing / 44
Cycle and transaction relationships / 50

Design objectives and features / 38

Signal classifications in the original NuBus
implementation / 42

Classes of NuBus "90 signals / 43

NuBus expansion interface terminology / 45

xx Designing Cards and Drivers for the Macintosh Family

3 NuBus Data Transfer / 51

4

5

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8

Table 3-1
Table 3-2
Table 3-3
Table 3-4

Table 3-5
Table 3-6

Table 3-7
Table 3-8

Words, halfwords, and bytes / 59

Timing of NuBus read transaction / 61

Timing of NuBus write transaction / 62

Timing of NuBus 1X block read transaction / 67
Timing of NuBus 1X block write transaction / 69
Timing of NuBus 2X block read transaction / 73
Timing of NuBus 2X block write transaction / 76
Timing of NuBus 2X block write with delayed status
indication / 79

Transfer mode coding / 57

Transfer status coding / 63

Attention cycle coding / 64

Block size and starting address coding for 1X block
transfers / 66

Block size and starting address coding for 2X block
transfers / 72

Cache-coherent transactions / 83

Cache-coherent transaction encodings / 88
Cache-coherent master actions / 91

NuBus Arbitration / 97

Figure 4-1
Figure 4-2
Figure 4-3

Figure 4-4
Figure 4-5

Sample arbitration contest / 99

Typical bus arbitration logic / 100

NuBus arbitration and transaction timing, single master
and two masters / 102

Sample bus lock / 103

Read-modify-write indivisible bus operation / 105

NuBus Card Electrical Design Guide / 107

Figure 5-1
Figure 5-2

Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5

Data-transfer timing diagram / 116
Detailed arbitration timing / 118

Logical state definitions / 108

NuBus line drive requirements and load allowances / 109
Connector pin assignments / 111

NuBus "90 connector pin assignments / 112

NuBus "90 signals on the Macintosh Quadra family-NuBus
connectors / 113

Figures and tables

xxi

Table 5-6
Table 5-7

Table 5-8
Table 5-9

Power supply specifications / 113

Recommended current and capacitance limits for a
NuBus card / 114

Data-transfer timing parameters / 117

Bus arbitration timing parameters / 118

6 NuBus Card Physical Design Guide / 119

Figure 6-1
Figure 6-2
Figure 6-3

Figure 6-4

Figure 6-5

A 96-pin plug connector for a NuBus expansion card / 124
A 96-pin socket connector on main logic board / 125
Internal connector cabling slot for NuBus expansion

card / 126

NuBus slot ordering on Macintosh Ilci, Macintosh

Quadra 700, Macintosh Ilcx, Macintosh Quadra 900, and
Macintosh TIfx computers / 128

Installing a NuBus card and adapter on the Macintosh IIsi
main logic board / 129

7 NuBus Card Memory Access / 131

Figure 7-1
Figure 7-2
Figure 7-3

Table 7-1
Table 7-2

Table 7-3
Table 7-4

NuBus address space / 132
Byte-lane mapping / 138
Effect of byte smearing / 139

NuBus slot IDs and slot spaces for Macintosh
computers / 133

24-t0-32-bit address translations / 134
NuBus address mapping / 135

Slot allocations / 136

8 NuBus Card Firmware / 141

Figure 8-1
Figure 8-2

Figure 8-3
Figure 8-4
Figure 8-5

Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9

Example of sRsrcType fields for a functional
sResource / 148

Example of sRsrcType fields for a board

sResource / 149

Formats of sBlock and SExecBlock data types / 152
Firmware structure of the Macintosh II Video Card / 154
Firmware structure of the Macintosh II EtherTalk
Interface Card / 155

Format block structure / 156

Format block examples / 158

sResource directory structure / 161

sResource structure / 162

xxii Designing Cards and Drivers for the Macintosh Family

9

10

Figure 8-10
Figure 8-11
Figure 8-12

Figure 8-13
Figure 8-14
Figure 8-15

Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5
Table 8-6
Table 8-7
Table 8-8
Table 8-9

The sRsrcType format / 165

Typical spriver directory / 167

sMemory resource list for a generic Macintosh
Coprocessor Platform card / 173

Typical board sResource / 175

sPRAMInit record structure / 176

General block-transfer information / 181

Data types / 152

Possible ByteLanes values / 159

Apple-defined sResource ID numbers / 164
sDriver directory ID numbers / 167

sMemory resource list / 171

Apple-defined board sResource ID numbers / 174
VendorInfo ID numbers / 178

Block-transfer information fields / 182
Apple-defined video sResource ID numbers / 185

NuBus Card Driver Design / 189

Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5

Table 9-1
Table 9-2

Card-specific driver / 191

Card-generic driver / 192

sDriver record / 193

Color response without gamma correction / 213
Color response with gamma correction / 214

Video mode list spID values / 201
Video parameter record / 202

NuBus Design Examples / 221

Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4

Table 10-1
Table 10-2
Table 10-3
Table 10-4

Master transaction timing, normal and locked / 229
Schematic of SCSI-NuBus Test Card / 232
SCSI-NuBus timing diagram / 234

Floppy disk controller block diagram / 238

Master register interpretation / 223
Register addresses / 223

RAM access signals / 240

Device select decode addresses / 242

Figures and tables

xxiii

11 The Macintosh II Video Card / 245

Figure 11-1 Video card block diagram / 247

Figure 11-2 Access to video RAM space / 251

Figure 11-3 Horizontal and vertical scan timing for high-resolution
RGB monitor / 253

Figure 11-4 Horizontal and vertical scan timing for the RS-170
monitor / 254

Figure 11-5 Firmware levels / 258

Table 111 Pin assignments for the video output connector / 259
Table 11-2 Pin assignments for the external-signal connector / 260

12 Overview of Macintosh PDS Computers / 265

Figure 12-1 Block diagram of the Macintosh SE computer / 271
Figure 12-2 Block diagram of the Macintosh Portable computer / 272
Figure 123 Block diagram of the Macintosh SE/30 computer / 273
Figure 12-4 Block diagram of the Macintosh LC computer / 374

Table 12-1 ~ Major features of Macintosh computers with processor-
direct slots / 266

13 Electrical Design Guide for 68000 Direct Slot Expansion
Cards / 281

Figure 13-1 ~ Macintosh SE 68000 Direct Slot connector pinout / 284

Figure 13-2 Timing of video and MC68000 accesses to RAM in the
Macintosh SE / 292

Figure 13-3 Timing for reading and writing RAM from a Macintosh SE
expansion card / 294

Figure 13-4 Macintosh SE address space / 297

Figure 13-5 Macintosh Portable 68000 Direct Slot connector
pinout / 300

Table 13-1 ~ Macintosh SE 68000 Direct Slot signals, loading or driving
limits / 285

Table 132 MC68000 signal descriptions / 288

Table 13-3 ~ Macintosh SE 68000 Direct Slot power budget / 298

Table 13-4 ~ MCG68HC000 signal descriptions / 301

Table 13-5 Macintosh Portable 68000 Direct Slot power budget / 302

xxiv Designing Cards and Drivers for the Macintosh Family

14

15

Electrical Design Guide for 68020 Direct Slot Expansion
Cards / 303

Figure 14-1 Macintosh LC 68020 Direct Slot connector pinout / 305
Figure 14-2 Macintosh LC expansion card selection logic / 312

Table 14-1 PDS expansion connector signal descriptions for the
Macintosh LC / 306

Table 14-2 Non-processor-direct expansion connector signals for the
Macintosh LC / 307

Table 14-3 Macintosh LC 68020 Direct Slot signals, loading or driving
limits / 308

Table 144 Macintosh LC memory map summary / 310

Table 14-5 Macintosh LC 68020 Direct Slot power budget / 313

Electrical Design Guide for 68030 Direct Slot Expansion
Cards / 315

Figure 15-1 Macintosh SE/30 and Macintosh IIsi 68030 Direct Slot
connector pinout / 318

Figure 15-2 Macintosh IIfx 68030 Direct Slot expansion connector
pinout / 329

Figure 15-3 Macintosh IIsi RAM burst-write timing / 345

Figure 154 Macintosh IIsi RAM random-write timing / 346

Figure 15-5 Macintosh IIsi RAM burst-read timing / 347

Figure 15-6 Macintosh IIsi RAM random-read timing / 348

Figure 15-7 Macintosh IIsi main logic board expansion
connector / 360

Table 15-1 Macintosh SE/30 and Macintosh IIsi 68030 Direct Slot
connector signals / 319

Table 15-2 Macintosh SE/30 68030 Direct Slot signals, loading or
driving limits / 324

Table 15-3 Macintosh IIsi 68030 Direct Slot signals, loading or driving
limits / 326

Table 15-4 Macintosh [Ifx 68030 Direct Slot connector signals / 330

Table 15-5 Macintosh IIfx 68030 Direct Slot signals, loading or
driving limits / 333

Table 156 68030 Direct Slot common signals / 336

Table 157 Macintosh SE/30 and Macintosh IIsi 68030 Direct Slot
machine-specific signals / 339

Figures and tables

XXV

Table 15-8 Macintosh IIfx machine-specific signals on the 68030
Direct Slot / 340

Table 159 Macintosh SE/30 32-bit physical address spaces / 342

Table 15-10 ~ Macintosh IIsi 32-bit physical address spaces / 344

Table 15-11 24-to-32-bit logical address translation map / 350

Table 15-12 Pseudoslot address ranges for Macintosh SE/30 and
Macintosh IIsi expansion cards / 351

Table 15-13 Power budget for a Macintosh SE/30 and Macintosh IIsi
expansion card / 354

Table 15-14 Macintosh IIfx bus master priority scheme / 356

Table 15-15 Macintosh IIsi custom adapter card signals / 361

16 Electrical Design Guide for 68040 Direct Slot Expansion
Cards / 363

Figure 16-1 68040 Direct Slot expansion connector pinout / 365

Table 16-1 68040 Direct Slot connector signals / 366

Table 162 Restricted 68040 microprocessor signals on the Macintosh
Quadra 700 and Macintosh Quadra 900 PDS
connectors / 370

Table 16-3 68040 Direct Slot signals, loading or driving limits / 371

Table 16-4 Bus master priority scheme for the Macintosh Quadra-
family computers / 374

Table 16-5 Macintosh Quadra 700 and Macintosh Quadra 900 32-bit
physical address spaces / 375

Table 16-6 Macintosh Quadra 700 and Macintosh Quadra 900 VIA2
interrupt lines / 378

Table 16-7 Macintosh Quadra 700 and Macintosh Quadra 900
interrupt mapping / 378

17 Physical Design Guide for Macintosh PDS Expansion Cards / 383

Figure 17-1 ~ Macintosh SE expansion card design guide / 384

Figure 17-2 An expansion card in the Macintosh SE assembly / 385

Figure 17-3 An expansion card and the Macintosh SE main logic
board / 386

Figure 17-4 A 96-pin plug connector for a Macintosh SE expansion
card / 387

Figure 17-5 Macintosh SE connector and mounting supports for an
expansion card / 388

Figure 17-6 Detail of 96-pin socket connector used on Macintosh SE
main logic board / 389

xxvi Designing Cards and Drivers for the Macintosh Family

18

Figure 17-7
Figure 17-8
Figure 17-9
Figure 17-10

Figure 17-11
Figure 17-12

Figure 17-13
Figure 17-14
Figure 17-15
Figure 17-16
Figure 17-17
Figure 17-18
Figure 17-19

Figure 17-20
Figure 17-21

Figure 17-22
Figure 17-23
Figure 17-24
Figure 17-25

Figure 17-26

Connector card mounting on Macintosh SE chassis / 391
Internal expansion cable routing for Macintosh SE / 392
Expansion connector location on Macintosh Portable
main logic board / 393

The Macintosh Portable 68000 Direct Slot expansion
card / 394

Macintosh LC expansion card design guide / 396
Macintosh LC expansion card component location and
height restrictions / 397

Design guide for Macintosh LC expansion card shield
plate / 398

Positioning the expansion card on the Macintosh LC main
logic board / 399

Plastic supports for Macintosh LC expansion cards / 400
Smallest allowable Macintosh SE/30 expansion card / 402
Largest allowable Macintosh SE/30 expansion card / 403
Largest allowable component heights for a Macintosh
SE/30 expansion card / 404

Expansion connector on the Macintosh SE/30 main logic
board / 405

An expansion card in the Macintosh SE/30 assembly / 406
Orientation of Macintosh SE/30 mounting

hardware / 407

A 120-pin plug connector for a Macintosh SE/30
expansion card / 408

Detail of 120-pin socket connector used on Macintosh
SE/30 main logic board / 409

Internal expansion cable routing for Macintosh

SE/30 / 411

Installing a PDS card and adapter on the Macintosh IIsi
main logic board / 414

Macintosh IIsi PDS adapter card outline / 416

Processor-Direct Slot Design Example / 419

Figure 18-1
Figure 18-2

Table 18-1
Table 18-2

Floppy disk controller block diagram / 422
Disk controller PIO timing / 425

Bus control signals / 423
Device select decode addresses / 427

Figures and tables xxvii

19 Application-Specific Expansion Interfaces for Macintosh
Computers / 431

Figure 19-1
Figure 19-2
Figure 19-3

Figure 19-4

Table 19-1

Block diagram of the Macintosh Classic computer / 437
Block diagram of the Macintosh Classic II computer / 438
Block diagram of the Macintosh PowerBook 100
computer / 439

Block diagram of the Macintosh PowerBook 140 and
Macintosh PowerBook 170 computers / 440

Major features of Macintosh computers with application-
specific expansions / 432

20 RAM Expansion Interface / 443

Figure 20-1
Figure 20-2

Figure 20-3
Figure 20-4
Figure 20-5
Figure 20-6
Figure 20-7

Figure 20-8

Figure 20-9

Figure 20-10
Figure 20-11
Figure 20-12

Figure 20-13

Macintosh Portable memory map / 446

Macintosh Portable RAM expansion connector

pinout / 448

Macintosh Portable RAM expansion card design

guide / 450

RAM expansion-slot timing for the backlit Macintosh
Portable / 452

Macintosh Classic RAM expansion connector

pinout / 455

RAM expansion card design guide for the Macintosh
Classic / 458

Macintosh Classic RAM expansion card

configuration / 459

Location and pin orientation of modem and RAM
expansion connectors on the PowerBook 140 and
PowerBook 170 computers / 460

RAM expansion connector pinout for the PowerBook 140
and PowerBook 170 computers / 461

RAM expansion card design guide for the PowerBook 140
and PowerBook 170 computers / 466

PowerBook 100 memory map / 468

Location and pin orientation of modem and RAM
expansion connectors on the PowerBook 100

computer / 469

RAM expansion connector pinout for the PowerBook 100
computer / 470

xxviii Designing Cards and Drivers for the Macintosh Family

21

22

Table 20-1
Table 20-2

Table 20-3
Table 20-4

Table 20-5

Macintosh Portable RAM expansion connector

signals / 449

RAM expansion connector signal differences for the
backlit Macintosh Portable / 450

Macintosh Classic RAM expansion connector signals / 456
RAM expansion connector signals for the PowerBook 140
and PowerBook 170 computers / 462

PowerBook 100 RAM expansion connector signals / 471

ROM Expansion Interface / 475

Figure 21-1
Figure 21-2
Figure 21-3

Figure 21-4

Table 21-1
Table 21-2

Table 21-3
Table 21-4

Macintosh Portable ROM expansion connector
pinout / 477

Macintosh Portable ROM expansion card design
guide / 479

Macintosh Classic II FPU /ROM expansion connector
pinout / 487

Design guide for a Macintosh Classic IT FPU/ROM
expansion card / 491

Macintosh Portable ROM expansion connector
signals / 478

Macintosh Classic IT FPU/ROM expansion slot
signals / 488

Macintosh Classic Il ROM address allocations / 490
Macintosh Classic II memory map summary / 490

Modem Expansion Interface / 493

Figure 22-1
Figure 22-2

Figure 22-3
Figure 22-4
Figure 22-5
Figure 22-6

Figure 22-7
Figure 22-8

Modem interface for the Macintosh Portable / 495
Pinout of modem connector on the Macintosh
Portable / 496

Modem card design guide for the Macintosh
Portable / 498

Cold-start timing diagram for the Macintosh
Portable / 500

Warm-start timing diagram for the Macintosh
Portable / 500

Modem interface for the PowerBook 140 and
PowerBook 170 computers / 503

Modem interface for the PowerBook 100 computer / 504
Modem card design guide for the PowerBook
family / 508

Figures and tables

XXix

Figure 22-9

Figure 22-10

Figure 22-11

Table 22-1
Table 22-2

Modem cold-start timing diagram for the PowerBook
family / 511

Modem warm-start timing diagram for the PowerBook
family / 511

Complete power-up/power-down sequence and timing
diagram for the PowerBook family / 512

Modem connector signal descriptions / 496
Modem connector signals for the PowerBook
family / 505

23 Macintosh Ilci Cache Memory Expansion / 517

Figure 23-1
Figure 23-2

Table 23-1
Table 23-2
Table 23-3
Table 23-4

Table 23-5

Macintosh Ilci cache connector pinout / 522
Cache card design guide / 529

Cache memory address space / 520

Cache control trap / 520

Macintosh Ilci cache connector signal descriptions / 523
Macintosh Ilci cache connector signals, loading or driving
limits / 525

Comparison of current limits for a Macintosh Ilci cache
card and a NuBus card / 530

Foldouts / 621

Foldout 1
Foldout 2

Foldout 3

Foldout 4

Foldout 5
Foldout 6
Foldout 7
Foldout 8

Foldout 9

Design guide for Macintosh family standard NuBus

cards / 623

Design guide for Macintosh Quadra—family NuBus and
PDS expansion cards / 625

NuBus card clearance requirements for Macintosh 1I,
Macintosh IIx, Macintosh IIfx, and Macintosh

Quadra 900 computers / 627

NuBus card clearance requirements for Macintosh Ilcx,
Macintosh IIci, and Macintosh Quadra 700

computers / 629

Design guide for oversized Macintosh Quadra 900 NuBus
card / 631

Connector shield for Macintosh II-family computer / 633
NuBus Test Card (NTC) schematic diagram / 635
Connector card design guide for Macintosh PDS
computers / 637

Design guide for Macintosh IIfx PDS expansion

card / 639

xxx Designing Cards and Drivers for the Macintosh Family

Preface About This Book

The purpose of this book is to provide you, the developer, with the
information that you need to develop expansion cards and device
drivers for the Apple Macintosh family of computers. The introduction
to this book discusses the Macintosh-family expansion strategy. It will
give you an insight into Apple’s plans for current and future hardware
expansion for the Macintosh computer family. Following the
introduction, the book is divided into three parts.

Part I defines the specifications of the NuBus™ expansion interface,
provides electrical and mechanical guidelines for designing NuBus
expansion cards, and supplies information that is vital to the design
of driver software.

Part II is devoted to the processor-direct slot (PDS) expansion
interface. This part defines the design criteria and provides electrical
and mechanical guidelines for designing expansion cards for Macintosh
computers with processor-direct slots.

Part III gives design specifications and provides electrical and
mechanical guidelines for expansion interfaces that have only one
specific purpose.

XXXi

Design philosophy

In keeping with the Macintosh design philosophy, it is incumbent upon you, the card
designer and driver writer, to make the installation of the card and its use by applications
as transparent as possible. To the greatest extent possible, an application should rely on
only a few high-level calls (if any) and not have to use low-level calls. To do otherwise
jeopardizes the broadest potential use of your product.

Conventions used in this book

The following visual cues are used throughout this manual to identify different types
of information:

& Note: A note like this contains information that is interesting but is not essential for an
understanding of the main text.

A\ Important A note like this contains information that is essential for an
understanding of the main text. A

A Warning A warning like this indicates a potential problem. a

When new or specialized terms are defined, they appear in boldface. Those terms are also
defined in the glossary at the back of the book. The glossary contains additional terms of
interest that are not boldfaced in the text.

Hexadecimal numbers are preceded by a dollar sign ($). For example, the hexadecimal
equivalent of decimal number 16 is written as $10.

xxxii Designing Cards and Drivers for the Macintosh Family

In Part I, a NuBus word consists of 32 bits and a NuBus halfword consists of 16 bits. In
Part I, a word consists of 16 bits and a longword consists of 32 bits. The two parts
follow a different convention for their terminology to be consistent with the outside
documentation to which each part is related: the Texas Instruments specification of the
NuBus for Part I and the Motorola documentation for the MC68000, MC68020, MC68030,
and MC68040 microprocessors for Part II.

Address ranges are given as “lower address through higher address” or “lower address-
higher address’; in either form the range is inclusive of the given endpoints. For example,
an access range in memory is given in text as “$00 0000 through $3F FFFF,” and in a table
as “$00 0000-$3F FFFF.”

A preceding slash is used to designate an active-low signal, for example, /ACK. A range of
signals is designated like this, with the highest-numbered signal first: /AD31-/ADO. If there
is more than one subrange in a set, the subranges are enclosed in angle brackets like this:
</AD31-/AD29, /AD7-/AD0>.

Macintosh resource types are designated by enclosing them in single straight quotation
marks, for example, ' INIT'.

The term processor is often used instead of microprocessor or CPU. Processor usually refers
to the primary microprocessor on the main logic board, and coprocessor refers to an
auxiliary processor such as the MC68882 floating-point unit on the main logic board or
another processor on an expansion card.

The terms processor-direct slot, PDS, 68000 Direct Slot, 68020 Direct Slot, 68030 Direct
Slot, and 68040 Direct Slot are all used to identify the processor-direct expansion
interface associated with some Macintosh computers. Other documents may use a term
such as processor dependent slot to identify this interface.

Preface About This Book xxxiii

The following abbreviations are used:

K 1024

GB gigabyte
Kbit kilobit
KB kilobyte
kQ kilohm
Mbit megabit
MB megabyte

MA microampere
s microsecond
mA milliampere
ms millisecond
ns nanosecond
Q ohm

pF picofarad
RMS root mean square

The distinction between boards and cards is as follows: boards are a permanent part of
the computer (for example, the main logic board), whereas cards are insertable and can be
added or exchanged for functional expansion or reconfiguration of the system.

The Courier font

Throughout the book, the names of specific software structures or fields within a
structure are in the Courier font.

For example, suppose you see this sentence:

In the example of the SExecBlock data type, the RevisionLevel field is always 02,
the reserved field is always 00, and the cPuID field identifies the processor—01 for
the 68000, 02 for the 68020, 03 for the 68030, and 04 for the 68040.

The word SExecBlock is in the Courier font to indicate that it is the name of a
structure. The words RevisionLevel, reserved, and CPUID are in the Courier
font to indicate that they are fields within the SExecBlock structure.

xxxiv Designing Cards and Drivers for the Macintosh Family

About the mechanical drawings and design guides

Mechanical drawings of cards and connectors are provided in several chapters and in
foldouts in the back of the book. Some of these drawings are design guides used within
Apple Computer and were correct at the time of publication; they are, however, subject
to change in the future.

About the Macintosh technical documentation

Apple Computer, Inc., provides a suite of technical books that explain the hardware and
software of the Macintosh family of computers.

The original Macintosh documentation consisted of the first three volumes of Inside
Macintosh. Shortly after the introduction of the Macintosh Plus (with the 128 KB ROM),
Volume IV of Inside Macintosh was released as a delta guide. That is, Volume IV covered
only those aspects of the Macintosh Plus that were different from those in earlier
Macintosh computers. Later, a fifth volume was added, called Inside Macintosh, Volume V.
It is also a delta guide, covering the new and different features of the Macintosh SE and
the Macintosh II computers. The latest volume, Inside Macintosh, Volume VI, describes
the System 7 environment.

As the variety and the sophistication of Macintosh computers evolve, so does the
documentation. To provide information that is comprehensive—and that provides
answers to specific questions—Apple provides a whole family of books. Each of these
books gives complete information about a single subject and may include some
information that also appears in Inside Macintosh. Guide to the Macintosh Family
Hardware, second edition, and this book are two of the books in this family.

For programmers and developers who are new to the Macintosh world, Apple has created
two introductory books: Technical Introduction to the Macintosh Family and
Programmer’s Introduction to the Macintosh Family.

In addition to the books about the Macintosh itself, there are books on related subjects.
Examples are a book about the user interface, a book about Apple’s floating-point
numerics, and the reference books for the Macintosh Programmer’s Workshop.

Table P-1 gives a brief description of many of the books in the Macintosh
technical documentation.

Preface About This Book xxxv

m Table P-1 Macintosh technical documentation

Technical documentation

Reference material

Inside Macintosh
Inside Macintosh, Volumes I-1II

Inside Macintosh, Volume IV
Inside Macintosh, Volume V

Inside Macintosh, Volume VI

Inside Macintosh X-Ref, revised edition

Introductory books

Technical Introduction o the
Macintosh Family

Programmer’s Introduction to the
Macintosh Family

Single-subject books

Designing Cards and Drivers for the
Macintosh Family

Guide to the Macintosh Family Hardware

Complete reference to the Macintosh
Toolbox and Operating System for the
original 64 KB ROM

Delta guide to the Macintosh Plus
(128 KB ROM)

Delta guide to the Macintosh SE and
Macintosh II (256 KB ROM)

Description of System 7

A single general index to eleven technical
reference books for the Apple Macintosh family
of computers: Inside Macintosh, Volumes I-VI;
Inside the Macintosh Communications Toolbox;
Programmers Introduction to the Macintosh
Family; Technical Introduction to the Macintosh
Family; Designing Cards and Drivers for the
Macintosh Family, second edition; and Guide to
the Macintosh Family Hardware, second edition

Introduction to the Macintosh software and
hardware; explains concepts and terminology
that are specific to the Macintosh family

of computers.

Introduction to programming the Macintosh
system for programmers who are new to it

Hardware and device-driver reference for the
expansion capabilities of the Macintosh
computer family

Hardware reference and developer’s guide for
the Macintosh computer family

(continued)

xxxvi Designing Cards and Drivers for the Macintosh Family

m Table P-1 Macintosh technical documentation (continued)

Technical documentation Reference material

Related books

Human Interface Guidelines: Detailed guidelines for developers

The Apple Desktop Interface implementing the Macintosh user interface
Apple Numerics Manual Description of the Standard Apple Numerics

Macintosh Programmer’s Workshop
3.0 Reference

Apple Developer Notes

Macintosh IIsi, LC,and Classic
DeveloperNotes, APDA publication
number M0991LI/A

Macintosh Classic II,
MacintoshPowerBook Family, and
Macintosh Quadra Family Developer
Notes, APDA publication number
RO143LI/A

Environment (SANE), an IEEE-standard
floating-point environment supported by all
Apple computers

Workshop (MPW), Apple’s software computers
development environment for all Macintosh

Interim hardware reference and
developer’s guide for the Macintosh
IIsi, Macintosh LC, and Macintosh
Classic computers; obsolete when the
information has been incorporated
into the third edition of Guide to the
Macintosh Family Hardware

Interim hardware reference and
developer’s guide for the Macintosh
Classic II, Macintosh PowerBook,
and Macintosh Quadra computers;
obsolete when the information has
been incorporated into the third
edition of Guide to the Macintosh
Family Hardware

How to get more information

Several organizations exist that provide support for Macintosh hardware and software
developers. This section tells you how to contact APDA, Apple user groups, and Apple

Developer Services.

Preface About This Book xxxvii

APDA

APDA offers convenient worldwide access to over three hundred development tools,
resources, and training products, and to information for anyone interested in developing
applications on Apple platforms. Customers receive the quarterly APDA Tools Catalog,
featuring the most current version of Apple development tools and the most popular
third-party development tools. Ordering is easy; there are no membership fees, and
application forms are not required for most of our products. APDA offers convenient
payment and shipping options, including site licensing.

To order products or get additional information, contact

APDA

Apple Computer, Inc.

20525 Mariani Avenue, M/S 33-G
Cupertino, CA 95014-6299

800-282-2732 (United States)
800-637-0029 (Canada)
408-562-3910 (International)
Fax: 1-408-562-3971

Telex: 171-576

AppleLink address: APDA

User groups

Apple user groups are associations of individuals who share information about Apple
computers and related products. For information about Apple user groups in your area,
call this toll-free number:

800-538-9696

Ask for extension 500.

xxxviii Designing Cards and Drivers for the Macintosh Family

Apple Developer Services

Apple’s goal is to provide developers with the resources they need to create new Apple-
compatible products. Apple offers two programs: the Partners Program, for developers
who intend to resell Apple-compatible products; and the Associates Program, for
developers who do not intend to resell Apple-compatible products and for other people
involved in the development of Apple-compatible products.

As an Apple Partner or Associate, you will receive monthly mailings including a newsletter,
Apple IT and Macintosh Technical Notes, pertinent Developer Program information, and
all the latest news relating to Apple products. You will also receive the Macintosh Services
Directory and automatic membership in APDA. You'll have access to developer AppleLink
and to Apple’s Developer Hotline for general developer information.

As an Apple Partner, you'll be eligible for discounts on equipment and you'll receive
technical assistance from the staff of Apple’s Developer Technical Support department.

For more information about Apple’s developer support programs, contact Apple
Developer Programs at the following address:

Apple Developer Programs
Apple Computer, Inc.

20525 Mariani Avenue, M/S 51-W
Cupertino, CA 95014-6299

Preface About This Book xxxix

Introduction Expansion Strategy for the
Macintosh Family

Apple has decided on an expansion strategy that limits the Apple
Macintosh family of computers to three distinctly different internal
architectural expansion configurations: the NuBus™ expansion
interface, the processor-direct slot (PDS) expansion interface, and the
application-specific expansion interface. Limiting the expansion
architecture to three categories ensures that expansion card developers,
both internal and external to Apple, have some degree of predictability
and stability in their expansion card designs. Since Apple depends upon
you, the third-party hardware developer, to create the expansion cards
that enhance many Macintosh computers, it is important that you are
aware of this expansion strategy. This section gives you the information
you will need to make good decisions on what cards to develop, and for
what Macintosh models, both present and future.

Limiting the number of expansion interfaces

Apple’s implementation of NuBus represents a mature expansion mechanism that has been
adopted as the primary expansion vehicle for the Macintosh family of modular computers
and can be supported across a variety of Macintosh products.

Macintosh computers such as the Macintosh SE, the Macintosh SE/30, and the Macintosh
LC use the processor-direct slot (PDS) expansion interface. The Macintosh IIfx, the
Macintosh Quadra 700, and the Macintosh Quadra 900 all have a processor-direct slot, but
their primary expansion interface is the NuBus. The Macintosh IIsi has only one expansion
slot, but it is unique in that it supports either a NuBus card or a PDS card, depending on
which adapter card is installed. The Macintosh Portable also has a processor-direct slot,
but its usefulness is somewhat limited in comparison to that of the compact computers.
You can think of the PDS as an extension of the microprocessor used in a particular
Macintosh model. Because of this dependency on the microprocessor, the slot
configuration changes whenever a newer, more powerful processor is adopted. For
example, the MC68000 microprocessor in the Macintosh SE uses a 96-pin PDS connector,
while the PDS connector in the Macintosh SE/30 has been expanded to 120 pins to take
advantage of the enhanced features of the MC68030 microprocessor. Therefore, in
addition to NuBus, the minimum number of processor-direct slot expansion interfaces
that you have to support is determined by the number of different microprocessors that
are implemented in the Macintosh family of computers.

Apple plans to limit the number of expansion interfaces by adopting a slot specification for
each microprocessor that is sufficiently comprehensive to apply to most of the Macintosh
computers that use the same microprocessor. You may find, however, that because of
electrical and physical design constraints, a card designed for one Macintosh will not work
in another Macintosh even though both computers use the same microprocessor.

The application-specific category refers to expansion interfaces that are dedicated to a
singular, unique purpose. Usually computers that provide this feature also have NuBus or a
processor-direct slot as their primary means of expansion. For example, in addition to its
processor-direct slot, the Macintosh Portable includes three other expansion connectors:
one for a ROM card, one for a RAM card, and one for a modem card. Although NuBus is
the primary means of expansion for the Macintosh IIci, this machine includes an
expansion interface connector designed specifically for a cache memory card. In some
specific applications, you might find that the expansion connector is physically identical
to the connector used for the processor-direct slot, but it will probably not provide the
same functions.

2 Designing Cards and Drivers for the Macintosh Family

NuBus expansion

The NuBus is Apple’s primary expansion interface for Macintosh computer products. It is
available in configurations of up to six identical slot connectors. The NuBus is a truly
powerful expansion vehicle providing features such as a small pin count, a large area for
card implementation, a versatile bus protocol, high data-transfer rates, variably sized
data transfers, and parallel bus arbitration.

The NuBus hardware requires a large space within the Macintosh case and usually requires
some additional circuitry. Therefore NuBus is inappropriate for compact designs

such as the Macintosh SE and the Macintosh SE/30. These designs are better suited for
PDS expansion.

Newer, more powerful Macintosh computers, such as the Macintosh Quadra 700 and the
Macintosh Quadra 900, support slave block-transfer modes and other NuBus
enhancements that were not supported on earlier Macintosh models. These enhancements
will not affect the capabilities of your current card designs, but will add more usability to
future designs.

Apple is committed to the NuBus expansion interface being the primary expansion
system for the Macintosh family and will continue to support it in the foreseeable future.
For a detailed description of the NuBus specification, as well as guidelines for designing
NuBus expansion cards, see Part I, “The NuBus Expansion Interface.”

Processor-direct slot (PDS) expansion

Apple uses the processor-direct slot (PDS) expansion interface on compact, or small-
footprint, Macintosh computers such as the Macintosh SE, the Macintosh SE/30, and the
Macintosh LC, or any design for which NuBus is inappropriate. The Macintosh IIfx, the
Macintosh Quadra 700, and the Macintosh Quadra 900 also include a processor-direct slot,
but their primary means of expansion is the NuBus interface. A PDS implementation
brings the microprocessor address, control, and data lines, along with clock, power, and a
few model-specific signals, to a single expansion connector on the main logic board. The
Macintosh Portable has a processor-direct slot, but only limited power is available from
the expansion connector.

Introduction ~ Expansion Strategy for the Macintosh Family

An advantage of the PDS interface is that it provides an expansion mechanism that does
not burden the average user, who may not need the extensive expansion capabilities of
the NuBus configuration. Also, you can design a PDS expansion card with a smaller form
factor than a NuBus card, and since no additional circuitry is usually required for PDS
expansion, it costs less to implement than NuBus. Finally, a PDS expansion card has direct
access to the microprocessor, resulting in a speed advantage that allows support of some
tasks that cannot be done with a NuBus card.

A disadvantage of the PDS expansion interface is its inability to support the bus structure
across Macintosh products that use different microprocessors. Because the PDS
expansion interface is an extension of the microprocessor, the configuration of the slot
connector will change whenever a newer, more powerful microprocessor is used in the
Macintosh family. Other disadvantages include difficulty in extending the bus, the
inability to support more than one card, and the requirement that processor activity must
be suspended during bus activity.

Apple hopes to limit the number of PDS configurations that you must support. The goal is
to have the PDS specification remain constant within a microprocessor family and to
have a common physical form factor and electrical characteristics without compromising
the Macintosh design. Part II, “The Processor-Direct Slot Expansion Interface,” defines
the PDS specifications and gives detailed electrical and physical guidelines for designing
PDS expansion cards.

The 68000 and 68020 Direct Slot expansion interfaces

The Macintosh SE was the first Macintosh computer offering processor-direct slot
expansion. The expansion interface to the MC68000 microprocessor in the Macintosh SE
is a 96-pin connector. The 68000 Direct Slot expansion interface is flexible enough to allow
you to design coprocessor cards such as accelerators or to extend the I/O capabilities of
the computer. The 96-pin expansion connector on the Macintosh Portable is physically
identical to that of the Macintosh SE, but the pinout and signals available are different.

The 68020 Direct Slot expansion interface in the Macintosh LC is also a 96-pin connector
that is physically identical to that found in the Macintosh SE. However, the pinout and
signals are different, so that cards designed for the Macintosh SE or the Macintosh
Portable will not work in the Macintosh LC, and vice versa.

4 Designing Cards and Drivers for the Macintosh Family

The 68030 Direct Slot expansion interface

Both the Macintosh SE/30 and the Macintosh IIfx have a 120-pin expansion connector to
satisfy the requirements of the MC68030 microprocessor used in these machines. Once a
Direct Slot adapter card is installed in the Macintosh IIsi, it also provides a 120-pin
expansion connector. The additional pins allow you to take full advantage of the
increased functionality of the processor, including its 32-bit address and data bus
capabilities. Although it is possible that the physical form factor could change on future
68030-based machines due to space limitations, the electrical characteristics should
remain the same. Due to the difference in physical form factors and electrical
characteristics, cards you design for other processors will not work in the 68030 Direct
Slot, and vice versa.

The 68040 Direct Slot expansion interface

The Macintosh Quadra 700 and the Macintosh Quadra 900 each have a 140-pin expansion
connector to satisfy the requirements of the powerful MC68040 microprocessor used in
these machines. The electrical characteristics of the processor-direct expansion
connectors of the Macintosh Quadra 700 and the Macintosh Quadra 900 are identical so
that cards designed for one 68040-based computer will work in the other one as well.
Physically, the size of the processor-direct expansion card for the Macintosh Quadra 700
is the same size as a standard NuBus card, but you can design an oversized expansion card
for the Macintosh Quadra 900. Any processor-direct expansion cards that have been
designed for 68000-based, 68020-based, or 68030-based Macintosh computers will not
work in the Macintosh Quadra 700 and the Macintosh Quadra 900. Likewise, PDS
expansion cards designed for the Macintosh Quadra family will not work in other
Macintosh models.

Introduction ~ Expansion Strategy for the Macintosh Family

Recommended strategy for 68030 and 68040 Direct Slot expansion card design

The 68030 and 68040 Direct Slot electrical specifications contain several types of signals
including power, data lines, address lines, control lines, clocks, and machine-specific
signals. Most of these signals are classified as common, meaning that they will be available
on all Macintosh computers that use the 68030 or 68040 Direct Slots. Others, however, are
classified as machine specific, meaning that they may or may not be present on different
Macintosh computers that use the 68030 or 68040 Direct Slots. The intent is, with each
new version of the Macintosh, to identify those signals that are common to all machines,
to flag those signals that are machine specific, and to provide you with guidelines to
know when to use the machine-specific signals. Detailed signal descriptions are provided
in Chapter 15, “Electrical Design Guide for 68030 Direct Slot Expansion Cards,” and
Chapter 16, “Electrical Design Guide for 68040 Direct Slot Expansion Cards.”

Because of the scarcity of open areas in the memory maps of new Macintosh PDS
computers, you should design your expansion card to occupy an address location
corresponding to the 32-bit physical address ranges used by NuBus expansion cards
resident in Macintosh computers with the NuBus interface. This method of emulating
NuBus address space is called pseudosiot design. If you follow the pseudoslot method and
design your PDS expansion card along the lines of a NuBus card, the existing Slot Manager
ROM firmware controls your card as if it were a NuBus card, the only difference being that
the electrical signals arrive through the 68030 or 68040 PDS expansion interface, not the
NuBus expansion interface. This means that you can use the same device driver for both
your PDS expansion card and its NuBus equivalent. Chapter 15 provides more detailed
information on pseudoslot expansion card design.

If you don’t take advantage of pseudoslot design, you have to do several things
differently. Apple has reserved a range of physical address spaces in the memory maps for
68030 and 68040 Direct Slot cards that do not emulate the NuBus address space. To gain
access to the reserved address space, the Macintosh must be in 32-bit mode, and your
card driver must be able to switch between 24-bit and 32-bit modes. This means that your
card driver must also include specific information to allow access to the card’s address
space and that the Slot Manager routines cannot be used.

6 Designing Cards and Drivers for the Macintosh Family

Converting your designs

PDS expansion cards are electrically and mechanically different from NuBus expansion
cards. NuBus expansion cards will not work in PDS expansion card slots, and PDS
expansion cards will not work in NuBus slots. However, by using the pseudoslot design
features in your PDS expansion card, you can easily convert your 68030 or 68040 Direct
Slot expansion card to a NuBus card, or vice versa. The fundamental design, with the
exception of the bus interface circuitry, can be converted. This is one of the major
advantages of using pseudoslot design.

Application-specific expansion

The Macintosh computers that offer application-specific expansion usually have a NuBus
or a processor-direct slot as their primary means of expanding the system. By providing an
interface that is dedicated to a specific function, you free up a NuBus slot or the
processor-direct slot to accept cards that perform a variety of functions such as
coprocessing, networking, and so on. The application-specific expansion interface may
or may not directly access the processor. The cache memory expansion connector on the
Macintosh Ilci does, but the ROM, RAM, and modem expansion connectors on the
Macintosh Portable, the Macintosh Classic, the Macintosh Classic II, the Macintosh
PowerBook 100, the Macintosh PowerBook 140, and the Macintosh PowerBook 170 do
not. Part III, “Application-Specific Expansion Interfaces,” gives detailed electrical and
physical guidelines for designing application-specific expansion cards.

Slot strategy summary

In summary, the preferred expansion mechanism for the Macintosh family is NuBus. The
processor-direct slot is used on Macintosh computers with and without NuBus to provide
general system expansion. The application-specific expansion interface provides a
mechanism for specific functions such as memory expansion.

By designing NuBus cards, you will have access to the rapidly growing installed base of
Macintosh computers with NuBus expansion slots. By porting your NuBus design to the
68030 or 68040 Direct Slot via the pseudoslot method, you need to supply only one driver
for both the 68030 and 68040 Direct Slot cards and NuBus cards, and you can design cards
that will be usable in future Macintosh computers without NuBus.

Introduction Expansion Strategy for the Macintosh Family

Part] The NuBus Expansion Interface

About Part I

The Apple implementation of NuBus is the subject of Part I of this book. NuBus was
originally a Texas Instruments product described in their NuBus specification, document
number TI-2242825-0001*A, copyright 1983. The NuBus specification has since become an
ANSI (American National Standards Institute) standard. ANSI has published the latest
NuBus standard (referred to in this publication as NuBus '90) and distributed it for
comment. At the time of this publication, NuBus 90 is a draft standard, and some
features in it may change.

Several features of the original NuBus standard, most notably block data transfer and
system parity valid, are not supported in the full line of Macintosh computers. Other
features of the NuBus "90 draft standard, such as cache coherency, are not currently
implemented in any of the Macintosh computers with NuBus. These features have been
documented in this section, however, to provide a complete discussion of NuBus. The
instances where NuBus features are explained but not implemented are labeled.

Part [contains 11 chapters specifically dedicated to the NuBus expansion interface.
Following are brief descriptions of the major topics covered in each chapter.

Chapter 1 provides block diagrams of each Macintosh computer that offers a NuBus
expansion interface, compares major features, and gives an overview of computer
operation. The chapter then describes the NuBus interface architecture and the state
machines used to implement it.

Chapter 2 describes NuBus features, provides a simplified diagram of the NuBus
hardware, defines many NuBus terms, classifies the signals used to implement
communication over the bus, and discusses the most basic timing and transaction
cycle relationships.

Chapter 3 details each signal, its timing, and its line characteristics. The chapter defines
various types of bus cycles, then describes the sequential combination of bus cycles to
perform transactions.

Chapter 4 gives the rules for arbitration to resolve the contention between cards for bus
mastership, so that all cards have access to the bus. ’

Chapter 5 provides an electrical design guide for NuBus expansion cards, focusing on the
electrical requirements of line drivers and receivers.

Chapter 6 provides the physical information you need to design NuBus expansion cards.

Chapter 7 describes how cards in NuBus slots can address memory in a Macintosh computer
with the NuBus interface.

Chapter 8 defines the firmware data structures typically stored on the card in ROM.

10 Designing Cards and Drivers for the Macintosh Family

Chapter 9 describes several driver options, driver installation, and the video driver
declaration ROM and routines. Pseudocode for an actual video card driver is provided.

Chapter 10 contains design examples, including schematics and PAL equations for three
NuBus cards that have been built and tested.

Chapter 11 concludes Part I of the book with a description of the Macintosh II Video Card.

In the back of this book, following Part III, there are five appendixes. Appendix A
provides information on electromagnetic interference (EMI), heat dissipation, and
product safety standards and applies to Part [, Part II, and Part III.

Appendix B contains a sample of the declaration ROM firmware code for the Macintosh II
Video Card, described in Chapter 8.

Appendix C contains a sample video card driver. This sample code supplements
information given in Chapter 9.

Appendix D contains the PAL listings for the NuBus Test Card, described in Chapter 10.
Appendix E contains the PAL listings for the SCSI-NuBus Test Card, described in Chapter 10.

Addressing design philosophy

Whenever possible, use 32-bit addressing conventions and methods. This is your best
guarantee of future software compatibility.

Part I The NuBus Expansion Interface

1

NuBus use and licensing requirements

NuBus is a trademark of Texas Instruments, Inc. Part I of this book describes the
implementation of NuBus by Apple Computer in Macintosh computers. Certain features
of the NuBus interface are not implemented in current Macintosh computers but may be
in future products; note is made of that fact where appropriate.

In addition to the NuBus information in this book, you should also refer to the
Standard for a Simple 32-Bit Backplane Bus: NuBus, ANSI/IEEE Std 1196-1987, and to
the NuBus '90 proposal, Standard for a Simple 32-Bit Backplane Bus: NuBus, ANSI/IEEE
Std 1196-1990. You can order these documents from

IEEE Service Center
445 Hoes Lane
Piscataway, NJ 08854
908-981-0060

Texas Instruments owns patents on the NuBus. If you wish to make devices for computers
with the NuBus interface (including Macintosh computers), you need to obtain a license
directly from Texas Instruments. For further details please send your request to

Texas Instruments, Inc.
12501 Research Boulevard
Austin, TX 78759

Attention: NuBus Licensing
M/S 2151

12 Designing Cards and Drivers for the Macintosh Family

Chapter 1 Overview of Macintosh Computers
With the NuBus Interface

This chapter provides an overview of the structure and
organization of the Macintosh computers that use NuBus as their
primary expansion interface. Included in this category are

the Macintosh II, the Macintosh IIx, the Macintosh Ilcx, the
Macintosh IIci, the Macintosh IIfx, the Macintosh IIsi, the
Macintosh Quadra 700, and the Macintosh Quadra 900. All use an
I/0 bus based on the Texas Instruments NuBus to allow expansion
beyond the capabilities of the ports (connectors) on the back of
the machines; NuBus slots allow a wide variety of devices to be
connected. Read this chapter to place the NuBus interface in
context within the total computing machine.

Major features

Table 1-1 compares the major features of the Macintosh computers with NuBus.

m Table1-1 Major features of Macintosh computers with the NuBus interface
Feature Macintosh II Macintosh Ix Macintosh Ilcx Macintosh IIci
Processor MC68020 MC68030 MC68030 MC68030
32-bit address bus 32-bit address bus 32-bit address bus 32-bit address bus
32-bit data bus 32-bit data bus 32-bit data bus 32-bit data bus
Processor clock 15.6672 MHz 15.6672 MHz 15.6672 MHz 25 MHz
Coprocessor MC68881 floating- MC68882 floating- MC68882 floating- MC68882 floating-
point unit point unit point unit point unit
Memory 24-0-32-bit address ~ MC68030 has a built-in MC68030 has a built-in - MC68030 has a built-in
management translation by Address paged Memory PMMU that allows true PMMU that allows true
Management Unit management Unit 32-bit address 32-bit address

Video interface

ROM

14 Designing Cards and Drivers for the Macintosh Family

(AMU); or logical-to-
physical address
translation by optional
MC68851 Paged
Memory Management
Unit (PMMU)

NuBus video card
with on-card screen
buffer

Up to 64 MB of DRAM
in eight 30-pin SIMMs

256 KB in four
512 Kbit ROM chips

(PMMU) that allows
true 32-bit address
translation with
hardware page
replacement

NuBus video card
with on-card screen
buffer

Up to 128 MB of
DRAM in eight 30-pin
SIMMs

256 KB standard in
04-pin ROM SIMM,
expandable to

04 MB

translation with
hardware page
replacement

NuBus video card
with on-card screen
buffer

Up to 128 MB of
DRAM in eight 30-pin
SIMMs

256 KB standard in
04-pin ROM SIMM,
expandable to over
64 MB

translation with
hardware page
replacement

Built-in video with
main memory screen
buffer or NuBus video
card

Up to 128 MB of
DRAM in eight 30-pin
SIMMs; optional
DRAM parity with 9-bit
SIMMs

512 KB standard in
four 1 Mbit ROM
chips, optional 64-pin
ROM SIMM allows
expansion to 64 MB

(continued)

m Table 1-1

Major features of Macintosh computers with the NuBus interface (continued)

Feature Macintosh IIfx Macintosh Ilsi Macintosh Quadra 700 Macintosh Quadra 900
Processor MC68030 MC68030 MC68040 MC68040
32-bit address bus 32-bit address bus 32-bit address bus 32-bit address bus
32-bit data bus 32-bit data bus 32-bit data bus 32-bit data bus
Processor clock 40 MHz 20 MHz 25 MHz bus clock 25 MHz bus clock
50 MHz CPU clock 50 MHz CPU clock
Coprocessor MC68882 floating- Optional MC68882 MC68040 has a built-in MC68040 has a built-in
point unit available on NuBus high-performance high-performance
and 68030 Direct Slot floating-point unit floating-point unit
expansion card
adapters
Memory MC68030 has a built-in MC68030 has a built-in - MC68040 has a built-in MC68040 has a built-in
management PMMU that allows true PMMU that allows true PMMU that allows true PMMU that allows true
32-bit address 32-bit address 32-bit address 32-bit address

Video interface

ROM

translation with
hardware page
replacement

NuBus video card
with on-card screen
buffer

Up to 128 MB of
DRAM in 64-pin
SIMMs; 32 KB of
SRAM, fast RAM cache;
optional DRAM parity
with 9-bit SIMMs

translation with
hardware page
replacement

Built-in video with
main memory screen
buffer or NuBus video
card

1 MB soldered to
main logic board; up
to 64 MB in 64-pin
SIMMs; 4 MB DRAM

translation with
hardware page
replacement

Built-in video with
VRAM or NuBus video
card

Up to 20 MB of DRAM
in 30-pin SIMMs

translation with
hardware page
replacement

Built-in video with
VRAM or NuBus video
card

Up to 64 MB of DRAM
in 30-pin SIMMs,
arranged in four

separate memory
banks

512 KB standard in 512 KB standard in 1 MB ROM SIMM, 1 MB ROM SIMM,

one ROM SIMM one ROM SIMM expandable to 4 MB expandable to 4 MB
(continued)

Chapter 1 ~ Overview of Macintosh Computers With the NuBus Interface 15

® Table1-1 Major features of Macintosh computers with the NuBus interface (continued)

Macintosh II

Macintosh IIx

Feature Macintosh Ticx Macintosh Ici
Expansion slots Six NuBus slots Six NuBus slots Three NuBus slots Three NuBus slots,
one cache card
connector
Keyboard and mouse Two Apple Desktop ~ Two ADB ports Two ADB ports Two ADB ports
interface Bus (ADB) ports
Serial ports Two mini 8-pin TwoO mini 8-pin Two mini 8-pin Two mini 8-pin
connectors connectors connectors connectors
supporting RS-422 supporting RS-422 supporting RS-422 supporting RS-422
‘ and AppleTalk and AppleTalk and AppleTalk and AppleTalk
Floppy disk support Integrated Woz Super Woz Integrated SWIM chip controls ~ SWIM chip controls

SCSI ports

Sound

Battery

16 Designing Cards and Drivers for the Macintosh Family

Machine (IWM) chip
controls two internal
800 KB, 3.5" floppy
disk drives (one
standard, one
optional)

One internal 50-pin,
one external DB-25

Apple Sound Chip

Long-life lithium
battery

Machine (SWIM) chip
controls two internal
1.4 MB, 3.5" Apple
SuperDrives (one

standard, one optional)

One internal 50-pin,
one external DB-25

Apple Sound Chip

Long-life lithium
battery

one internal 1.4 MB,
3.5" SuperDrive and
one optional exterhal
1.4 MB SuperDrive

One internal 50-pin,
one external DB-25

Apple Sound Chip

Long-life lithium
battery

one internal 1.4 MB,
3.5" SuperDrive and
one optional external
1.4 MB SuperDrive

One internal 50-pin,
one external DB-25

Apple Sound Chip

Long-life lithium
battery

(continued)

m Table 1-1

Major features of Macintosh computers with the NuBus interface (continued)

Feature

Macintosh IIsi

Expansion slots

Keyboard and mouse
interface

Serial ports

Floppy disk support

SCSI ports

Sound

Battery

Macintosh IIfx

Six NuBus slots or one

processor-direct slot
and five NuBus slots

Two ADB ports

Two mini 8-pin
connectors
supporting RS-422
and AppleTalk

SWIM chip controls
two 1.4 MB, 3.5"
SuperDrives (one
internal and one
optional external)

One internal 50-pin,

one external DB-25

Apple Sound Chip

Long-life lithium
battery

Chapter 1

One NuBus slot or
one processor-direct
slot

One ADB port
Two mini 8-pin

connectors
supporting RS-232,

RS-422, and AppleTalk

SWIM chip controls
one internal 1.4 MB,
3.5" SuperDrive and
one optional external

800 KB or 1.4 MB disk

drive

One internal 50-pin,
one external DB-25

Apple Sound Chip

Long-life lithium
battery

Macintosh Quadra 700 Macintosh Quadra 900

Two NuBus slots or
one processor-direct
slot and one NuBus
slot

Two ADB ports

Two mini 8-pin
connectors
supporting RS-232,

RS-422, and AppleTalk

SWIM chip controls
one internal 1.4 MB,
3.5" SuperDrive

One internal 50-pin,
one external DB-25

Enhanced Apple
Sound Chip, DFAC
(Digitally Filtered
Audio Chip), and
Sporty chip, which

provide Apple Sound

Chip compatibility

Long-life lithium
battery

Overview of Macintosh Computers With the NuBus Interface

Five NuBus slots or
one processor-direct
slot and four NuBus
slots

One ADB port

Two mini 8-pin
connectors
supporting RS-232,
RS-422, and AppleTalk
SWIM chip controls
one internal 1.4 MB,
3.5" SuperDrive

Two internal 50-pin,
one external DB-25

Enhanced Apple
Sound Chip, DFAC,
and Sporty chip,
which provide Apple
Sound Chip
compatibility

Long-life lithium
battery

17

Hardware architecture

The following discussion is brief and intended only to show the place of the NuBus in the
computer architecture. For a complete description of hardware operation, see the Guide to the
Macintosh Family Hardware, second edition (which supersedes the Macintosh Family Hardware
Reference). Also useful are the Macintosh IIsi, LC, and Classic Developer Notes and the Macintosh
Classic II, Macintosh PowerBook Family, and Macintosh Quadra Family Developer Notes. The
Technical Introduction to the Macintosh Family contains a higher-level overview.

Block diagrams of the Macintosh computers that offer a NuBus expansion interface are
shown in Figures 1-1 through 1-7. The Macintosh II (Figure 1-1) contains a Motorola
MC68020 microprocessor driven by a 15.6672 megahertz (MHz) clock. The Macintosh IIx
and the Macintosh Ilcx (Figure 1-2) contain the Motorola MC68030 microprocessor, which
is also driven by a 15.6672 MHz clock. The Macintosh Iici (Figure 1-3), the Macintosh IIfx
(Figure 1-4), and the Macintosh IIsi (Figure 1-5) use the MC68030 microprocessor as well,
but the Macintosh IIsi is driven by a 20 MHz clock, the Macintosh Ilci is driven by a

25 MHz clock, and the Macintosh IIfx is driven by a 40 MHz clock. The two latest
computers to offer a NuBus expansion interface include the Macintosh Quadra 700
(Figure 1-6) and the Macintosh Quadra 900 (Figure 1-7). Both use the more powerful
MC68040 microprocessor, running at 25 MHz.

All Macintosh computers that provide a NuBus expansion interface use similar integrated
circuits (ICs) that enable the microprocessor to communicate with external devices.
These ICs are shown in the block diagrams of Figures 1-1 through 1-7 and include

m a Versatile Interface Adapter (VIAD) for communicating with the ADB transceiver,
which, in turn, communicates with the mouse and keyboard.

m another Versatile Interface Adapter (VIA2) for handling interrupts from the NuBus
slots (used only in the Macintosh II, Macintosh IIx, Macintosh Ilcx, Macintosh
Quadra 700, and Macintosh Quadra 900).

m a SCSI (Small Computer System Interface) chip for high-speed data transfer with
the internal hard disk and any other SCSI device (integrated into the SCSI DMA chip
on the Macintosh IIfx). The SCSI chip is used in all Macintosh II models except the
Macintosh IIsi. On machines that use it, the SCSI chip is a 53C80 chip or derivative;
however, the Macintosh Quadra 700 and the Macintosh Quadra 900 use a 53C96.

m a Serial Communications Controller (SCC) for serial communications. In the
Macintosh IIsi, a new custom chip, Combo, combines the functions of the SCC and
the SCSI controller in a single device. This Combo chip includes a 53C80 device and is
completely software compatible with the SCC and SCSI chips it replaces.

18 Designing Cards and Drivers for the Macintosh Family

m an Apple custom chip, called the IWM (Integrated Woz Machine), for controlling
800 KB, 3.5-inch floppy disk drives in the Macintosh II; another Apple custom chip,
called the SWIM (Super Woz Integrated Machine), replaces the IWM chip in the
Macintosh IIx, Macintosh IIcx, Macintosh Ilci, Macintosh IIsi, Macintosh IIfx,
Macintosh Quadra 700, and Macintosh Quadra 900. SWIM controls the 1.4 MB,
3.5-inch SuperDrives as well as 800 KB floppy disk drives.

m the Apple Sound Chip (ASC) sound generator; another Apple custom chip, the
Enhanced Apple Sound chip, replaces the ASC in the Macintosh Quadra 700 and the
Macintosh Quadra 900. The Enhanced Apple Sound chip continues to provide ASC
compatibility.

In addition, the Macintosh IIfx includes several Apple custom ICs that enable the
microprocessor to communicate with external devices. These ICs are shown in Figure 1-4
and include

m 2 SCSI DMA chip, which not only provides all of the functions of the SCSI chip used in
the other Macintosh II computers, but can also transfer data to and from the main
processor by direct-memory access (DMA) (The DMA capability is not supported by
current system software.)

m an SCC IOP (I/O processor) chip that provides an intelligent interface to the Serial
Communications Controller

m 2 SWIM-ADB IOP chip that provides an intelligent interface to the SWIM-ADB controller

m an FMC (fast memory controller) that supports high-speed cache memory, main RAM,
and ROM

m an OSS (Operating System Support) chip that handles interrupts and device decodes,
functions that are performed by the VIAs and the GLU chips in the other Macintosh
computers

In earlier Macintosh IT computers, a NuBus expansion card was the only way to provide
video display. The Macintosh Ilci and the Macintosh IIsi also provide the option of using
a NuBus video card, but their primary video interface is built into the computers. Video
signals are generated by the Apple custom RBV (RAM-based video) chip and are driven
through the VDAC (video digital-to-analog converter) and CLUT (color look-up table).

The Macintosh IIsi computer uses a microcontroller, which integrates the functions of the
ADB (Apple Desktop Bus) controller, RTC (real-time clock), PRAM (parameter RAM), soft
power control, power-on reset, keyboard reset, and NMI (nonmaskable interrupt). In
older Macintosh models, these functions were provided by separate devices on the main
logic board. Some new functions supported by the ADB microcontroller include
programmable wake-up and file server mode.

Chapter 1 ~ Overview of Macintosh Computers With the NuBus Interface

19

The floating-point numeric coprocessors (MC68881 for the Macintosh II and MC68882 for
the other Macintosh computers) use the coprocessor interfaces of their respective
microprocessors. Note that a floating-point coprocessor is not included with the
Macintosh IIsi as a standard feature; however, the FPU is available on the 68030 Direct
Slot and NuBus adapter cards. The floating-point units in the Macintosh Quadra family are
integrated into the MC68040 main processor. There are some differences between the
floating-point unit in the MC68040 and the MC68881 and MC68882 FPUs used with the
68020-based and 68030-based Macintosh computers. However, the ROM software in the
Macintosh Quadra 700 and the Macintosh Quadra 900 includes new code to support these
differences.

In the Macintosh Quadra family, many new custom ICs have been introduced with their
new architecture. These ICs are shown in the block diagrams of the Macintosh Quadra 700
(Figure 1-6) and the Macintosh Quadra 900 (Figure 1-7).

m Along with the Enhanced Apple Sound chip, which replaces the ASC, the DFAC
(Digitally Filtered Audio Chip) and the Sporty chip provide the sound interface.
DFAC is a custom analog chip that provides most of the sound input functions,
and the Sporty chip is a custom analog chip that provides sound output functions.

m The Caboose is a custom processor that manages the keyswitch, system power, the
real-time clock, and PRAM (parameter RAM). The Caboose is used only in the
Macintosh Quadra 900.

m The Direct Access Frame Buffer (DAFB) is an integrated circuit that connects directly
to the system bus and controls the video RAM-based frame buffer.

m The Memory Control Unit (MCU) is a custom integrated circuit that connects to the
system bus and controls access to ROM. The MCU also supports the 68040 processor’s
burst-mode data transfers.

m The Relayer and the Junction Data Bus (JDB) chips are two integrated circuits that
make up the I/O adapter, connecting the data and control signals from the system
bus and the I/O bus.

m The custom integrated circuit YANCC (Yet Another NuBus Controller Chip) controls
the NuBus interface.

m Sonic is the Ethernet controller.

‘20 Designing Cards and Drivers for the Macintosh Family

m Figure 1-1 Block diagram of the Macintosh I computer

A31-23,
L0 NuChip-l _ H_NUB_uSonneitori _
§ ; g H HEE H § H H
A22-2 [NuBus
7 trans- AD31-0) _ E
FPU D310 ceivers Hi :
A4-1 T HHIHE HHIBHIBH
MC68881 — L
-l & $9 $A $B §C SD SE
A7-0 <
A25-2 Address
Add
au 1A31-8 AMU/ bl;-SeSS MUXs RAM
D31-0 1to8MB
MC68020 PMMU Aglt‘: o
2l
l-J bus Desktop
D310 | Atoz ot ROM Bus ports
< 256 KB j ADB @
|
Sl > ®
T D31-24 VIAl1) in%esemfpt' RTC
= Interrupt AlZ9 >
= switch |] ~VEL
/NMI VAR et Slot
A12-9 Dat-24 VIA2 interi'upts
A31-24,22, » f — |
S | NS ERT = SIOTS o
T [_> interrupts GLU
IYYYY! T_ e SCSIIRQ
_ Internal hard disk
/PWRIRQ DET] . n ezr(l)ameaéor is Externl
Power AG-4 ssitesnatiaeiies SCSI port
switch .
D31-24 Internal floppy Internal floppy
disk connector disk connector
A129 WM FRE
/SCCIRQ Channcl A by PO
anne - ort
D324l oo Drivers | Gmodeny)
Channel B ; Port B
A21 | Channel B | receivers printen) @
Internal External
/SND | | Sony speaker sound jack
D31-24 ASC sound IC
All-0 || Sony
sound IC

Chapter 1

Overview of Macintosh Computers With the NuBus Interface

m Figure 1-2 Block diagram of the Macintosh IIx and Macintosh Ilcx computers

22 Designing Cards and Drivers for the Macintosh Family

A31-23,10 NuChip _l .NuBus connectors
A22-2 | NuBus | AD31-0
z D310 | trans-
FPU Ad-1 ¢ o celvers
MC 68882 g\ HE LR RRR] LR
2 99 SA SB SC SD SE
Tex —
A7-0 Macintosh IIx —I
A25-3 Address
CPU Address bus MUXs RAM
AS1-8 D310 1t0 8 MB
MC68030 Data bus
D31-0
D31-0
'} Al8-2 2 ROM Apple Desktop
- 256 KB Bus ports
a¢ ADB
§ /VIAIIRQ ©
3 DG ®
= Interrupt |/NMI A129 Vial 1 sec int RIC
switch
/VIA2IRQ ot
GLU L2 22 VBL int int:n?upts
20,16-13,1,0 A12-9 VIA2 I
e - —
:I SLOTS int GLU
DRQ SCSIRQ Internal hard disk
SCSI connector SE()I(Stfmait
Abd [Feesiesssssessessssaesses pO
Internal floppy
Internal floppy disk connector q EXt(ejmliil],
disk tor (Macintosh II | Oppy disK po
SWIM 1| ,,,C,?ﬁ?ff or (::::S::::gC:X| only) (Macintosh Ilcx only)
A12‘9 I l ; LXXXXXIXX) ;
Serial
0o1ts
/SCCIRQ Channel A - Port A p
Dnvgrs —‘(modem) @
scc Channel B an | PotB_ e
A2l receivers (printeD) @
Internal External
speaker sound jack
/SND | | Sony ®
ASC sound IC
| | Sony
sound IC

m Figure 1-3 Block diagram of the Macintosh Ilci computer

A31-0

oo — Device-select signals
RABI1-0| MPU | Raa1i0
RAM [| PGC [| RAM
bank B (optional) bank A
—T_—
FPU D31-0 -
Bus
MC68882 Adl buffers RD31-0 - RBV
A410 _
[T —
IPL2-0 ™| Registers and
D31-0 interrupts "
v A31-0 D31-24 <Yideo (0-8 bits) \ ‘g o
Sync signals
MCE803() [ync Sig ey
3 Ad2 VDAC R, G, and B yea)
] — I/O and NuBus interrupts
D31-0
ROM
A22-0 512 KB Internal speaker
CPU S External sound jack
. on:
signals D31-24 Left channel oun dYIC ‘
ASC Right channel| Sony
ALL0 sound IC
RAM cache
Apple Desktop
connector D31-24 - > RTC Bus ports
VIA1
A12-9 - > ADB S
il D310 ®
D312 Internal hard disk
A31-0 31 connector External
SCSI [eiieeseasaasnsessesses] SCSI port
A64 I (Fessevsessses)
= Internal floppy disk Ef)lctemal
t oppy
D51—24 connector disk port
A2 SWIM ==)
Serial
D31-24 Channel A - Port A (modem) p.czx.ts
Drivers O
d .
A21 SCC Channel B recirilvers Port B (printer) ‘
NuBus connectors
A31- NuChip30
= - AD31-0
A22-2 NuBus
trans-
D31-0 ceivers

Chapter 1

$C $D $E

Overview of Macintosh Computers With the NuBus Interface

23

m Figure 1-4 Block diagram of the Macintosh IIfx computer

D31-0 D31-0
ROM 2 ALS4 : Cache data
512KB 3o | RAM
A22-4 ’
D310
2A§_04, é Cache tag
CPU A31-0 o D310 ——
MC68030 , P FMC e
CPU signals
v Processor-
direct slot
Fast/slow buffers
DP24
DP31-0) DP31-0 |
|_PA31-0 PA31-0 >
DP31-24 <—1/0 and NuBus s ;ggﬂgi External
AP31-0 0Sss interrupts Sony sound jack
sound IC
’ : DP31-24 ASC u
AP11-0 _ L1 Sony
sound IC
AP12-9
DP3L0 DP31-24 VIAL RTC
— U "
APE] MC68882 Tnternal hard disk
connector External
- SCSI port
AP310 DMA Apple Desktop
- Bus ports
ADB D
DP31-0 I transceiver Internal floppy @
disk connectors @
APS1 10P [ssseeseess]
SWIM .
] Serial
; ports
_ P d
DP31-24 oy ChannelA Drivgrs ort A (modem) ‘
AP5-1 Iop 8530 Channel B | recirilvers PortB(printer) @
. NuBus connectors
DP25, CGTO — A A
24,7-1 : HIHBIBH B IEH B
AP31_24 BIU30 /ACK, /TMO, /NUCLK | i|ii
AD31-0
DP31_8 . BIU2 : H HE R .
AP23-2 — . e
~ -l $9 $A $B $C $D SE

2% Designing Cards and Drivers for the Macintosh Family

m Figure 1-5 Block diagram of the Macintosh IIsi computer

A31-0
Bank A
Bank B 8 256K x 4
(4 SIMMs) RAM RAM DRAMs
0-64 MB 1MB soldered in
Sync signals
DO-31 Fﬁéfsf (l:;s RBV | video
Lo RDO-31 (80 bits)
_ CPU interrupts - Pe-| Registers and
A31-0 D31-24 NMI | interrupts
s
CPU A22-0 | ROM 1O and —T
D31-0 5-32 MB NuBus
MC68030 interrupts
Video (8-0 bits))
D31-0 Sync signals Vldio
A4-2 po
CPU = VDAC RGB
signals (i)
Processor- Sony
direct slot D31-24 Left channel sound IC Internal speaker ‘
- Al11-0 — Right channel Sony External sound jack
Asc sound IC @
A31-0 —_ FIFO and o Internal sound jack
3 D31-0 al lOgiC sound IC @
D31-24 Apgle Desktop
A12-9 o Vil ADB ‘%’“5
Power =
and clock Internal hard disk
connector External
scc ::::::::::::I:::::::::::m SCSI port
D31-24
A »-| 85C80 Serial
Combo Channel A . Port A (modem) & ors
chip Dnv(eirs
an :
SCSI Channel B | receivers Port B (printer) @
Internal floppy disk External
D31-24 connector dﬂ(llppyrt
— 18K poi
A12-9 Seeseeees
Chapter 1~ Overview of Macintosh Computers With the NuBus Interface 25

m Figure 1-6 Block diagram of the Macintosh Quadra 700 computer

A31-0 | Memory RamM [~ RaM
Control 0-16 MB
sostemb Unit 4 MB (4 SIMMs)
ystem bus D31-0
1 |
CPU A22-2 ROM
Address bus —
MC68040 A31-0 1 MB
Data bus Bidirectional IO.S MB SIMMs [0.5 MB SIMMs
D31-0 DD, bus L _BDID _Iyram | H vram
transceivers soldered SIMM
NuBus 05MB 0.5MB
connectors
YANCC A310 [DAFB | | Video
NuBus frame port
controller buffer CLUT/DAC
controller
Bidirectional|,
132 233 bu S
$E $D |transceivers S PR | Internal hard
BA74 SCSI - disk connector
Prpcessor— External
direct slot A31-0 e VXXX XXX KRR SCSI port
System bus Bidirectional c l‘JIsIt):m Eﬁ?g’;"
- tran?clésiv ets data bus control e
1/0 bus adapter adapter
Internal
Enhanced - Spo
AL 10D31-24 ASC % %tgéo || cgstgtrg Right channel [[speaker
- amplifier Left channel Sound out
jack
L DFAC
10D31-24 sound —© Mic (sound
Ethernet 1OA12-9 e ___I input IC in jack)
f}‘lmic 10D31-0
Ethernet Apple Desktop
controller | I0A31-0 GI ADB Bus ports
> 10D31-24 ADB =
[0A12-9 - VIAL transceiver O
AAUL RTC @
10D31-24 Internal floppy disk
I0A12-9 | SWIM connector
Serial
Channel A s Port A (modem) S
_ rivers ————‘
A2-1 L sCC and Port B (printer)
. Channel B | receivers

2

Designing Cards and Drivers for the Macintosh Family

m Figure 1-7 Block diagram of the Macintosh Quadra 900 computer

Processor-
direct slot Al | ROM 1MB W
A31-0 | ~
D31-0 | 4 RAM SIMMs-Bank A |
|
s3io | Memory | | 4 RAM SIMMs-Bank B |
g Control
Unit I - 0-16 MB
| 4 RAM SIMMs-Bank C | per bank
CPU A31-0 1
MC68040 Bidirectional l 4 RAM SIMMs-Bank D |)
D310 D31-0 bus MD31-0 |
transcejvers Vid i
R ideo pof
CLUT/DAC
YANCC A31-0 Bidirectional
NuBus [D310 bus BD31-0
controller transceivers HE
NuBus connectors Lo m F
A.’)l—O‘ DAFB |
1 trame buffer VRAMSIMM |.........
controller - m
- Internal hard
Bus D310 I SCSI #0 disk connectors
transceiver
1Cs = SCSI #1 External
E—— Teassasassieaies X
| | SCSI port
T JDB Relayer Internal CD-ROM
Bldugﬁt;onal ef CUSIOM custom |, O © 1Line
> | databus control inous
transceivers adapter adapter DFAC ——@— —"@ P
sound © Mic
input IC (sound
10A11-0 PR
~_ I0A31-0 - Enhanced Sporty in jack)
Sonic | ASC | | d
Ethernet 10D31-24 custom Audio O Soun
! i;“e 10D31-0 amplifier DAC out jack
AAU interface Internal
speaker
10A1 2_2 VIA1 Call:’})gse Keyswitch connector
[0D31-24 — A eee]
__10A12-9
VIA2 JOD31-24 Internal floppy
disk connector Apple
0A5-1 SWIM Deskiop
10D31-24| IOP Bus port
ws | ——@
transceiver Serial
_ s
1045-1 Channe] A Drivers Port A po()
IOD31-24| JOP SCC el and (I;Zcrl[e? L
annel i
receivers (2 @

Chapter 1 Overview of Macintosh Computers With the NuBus Interface 27

RAM

RAM is the working memory of the system. Its base address is $00. The first 1024 bytes of
RAM (addresses $00 through $3FF) are normally used by the microprocessor as exception
vectors; these are the addresses of the routines that gain control whenever an exception
such as an interrupt or a trap occurs. RAM also contains the system and application heaps,
the stack, and other information used by applications.

On most of the Macintosh computers, the microprocessor’s accesses to RAM are not
interleaved (alternated) with the video display’s accesses during the active portion of a
screen scan line. On these computers, the screen buffer is located in video RAM on the
main logic board or a separate NuBus video card. However, on the Macintosh Ilci and the
Macintosh IIsi, the microprocessor’s accesses to RAM are interleaved with the video
display’s accesses. The screen buffer for these two computers is located in main memory.

Video RAM can be located on the video card in a NuBus slot for most Macintosh
computers. The Macintosh Quadra 700 and the Macintosh Quadra 900 have video RAM
located on the main logic board. In the Macintosh Quadra family of computers, there
can be up to four banks of video RAM. These computers also support VRAM-based
NuBus cards.

In the Macintosh IIci and the Macintosh IIsi, physical memory is not in one contiguous
block, so the MMU of the 68030 joins the blocks of physical memory to present
contiguous logical memory to application software. The address space is decoded by the
same MDU custom chip found in the Macintosh Ilci; the MDU also supports burst-read
mode directly to the 68030.

The physical memory in the Macintosh Quadra family of computers is set up to be
contiguous. The Macintosh Quadra 700 supports up to two banks of memoty, and the
Macintosh Quadra 900 supports up to four banks of memory. When the Macintosh
Quadra—family computer is powered on, the start code in the ROM physically “stitches”
the memory together so that all the bank addresses are contiguous. The Memory Control
Unit in the Macintosh Quadra 700 and the Macintosh Quadra 900 supports all 68040
memory-access types, including burst reads and burst writes.

ROM

ROM is the system’s permanent read-only memory. Its base address is available in the
global variable RoMBase. ROM contains the routines for the User Interface Toolbox and
Macintosh Operating System, and the various system traps.

28 Designing Cards and Drivers for the Macintosh Family

The Macintosh Quadra 700 and Macintosh Quadra 900 are the first Macintosh computers
to have 1 MB of ROM installed on the main logic board. The ROM software for the
Macintosh Quadra family of computers is the latest in a series of ROM designs and is
derived from the ROM for the Macintosh Ilci, Macintosh IIfx, Macintosh IIsi, and
Macintosh LC computers.

Device I/0

Computers in the Macintosh family use memory-mapped I/O, which means that each
device in the system is accessed by reading or writing to specific locations in the address
space of the computer. The address space reserved for device 1/O contains blocks
devoted to each of the devices within the computer. Each device contains logic that
recognizes when it's being accessed, and the device responds in the appropriate manner.

For compatibility with MC68000-based Macintosh computers, the Macintosh Operating
System operates by default with 24-bit addressing. In System 7, however, you can choose
to run with 32-bit addressing. New applications can take advantage of the full

32-bit addressing mode for slot access, as explained in Chapter 7, “NuBus Card Memory
Access.” You must not assume the system software is operating in a specific mode. Please
refer to the compatibility guidelines information in Inside Macintosh for more
information about the addressing mode selector.

Separate address spaces are reserved for processor access to cards in NuBus slots. For a
device in NuBus slot number s, the address space in 32-bit mode begins at address

$Fs00 0000 and continues through the highest address, $FsFF FFFF (where s is a constant in
the range $9 through $E for the Macintosh II, the Macintosh IIx, and the Macintosh IIfx;
$A through $E for the Macintosh Quadra 900; $9 through $B for the Macintosh Ilcx;

$C through $E for the Macintosh Ilci; $D and $E for the Macintosh Quadra 700; and

$9 for the Macintosh Ilsi).

The microprocessor can directly access 232 bytes, or 4 GB, of address space. In a
Macintosh computer, this address space is partially accessible when the Macintosh
Operating System is in 24-bit mode and totally accessible when it is in 32-bit mode.

A driver must switch into the machine’s boot mode (either 24-bit or 32-bit mode) before
calling ROM routines. If the operating system has been booted in 24-bit mode, an
application or a driver may switch to 32-bit mode but must switch back to 24-bit mode
before calling most ROM routines. More information about the addressing mode selector
can found in the compatibility guidelines information in Inside Macintosh.

Chapter 1 Overview of Macintosh Computers With the NuBus Interface

If an application needs access to a NuBus card in 32-bit mode (because it needs access to
more than 1 MB of slot space, for example), it can use the system call swapMMUMode to
perform mode switching. Even if a machine is booted with 32-bit addressing, it is usually
still necessary to call swapMMUMode to ensure that the machine is in 32-bit mode. It is not
correct to assume that a machine must boot with 32-bit addressing in order to work with a
given driver. The swapMMUMode call is described in the discussion on operating-system
utilities in Inside Macintosh.

Memory management in the Macintosh II is provided by the Address Management Unit.
The main function of the AMU is to accomplish a 24-to-32-bit memory mapping
translation. A bit in VIA2 controls the mode change. This method offers the direct use of
all 32 bits in one mode and a mapped set of addresses in 24-bit mode. You must replace
the AMU with the MC68851 Paged Memory Management Unit (PMMU) if you are running
virtual operating systems such as A/UX because A/UX runs entirely in 32-bit mode. The
MC68851 PMMU is also capable of ignoring the high 8 bits of the address in order for the
Macintosh Operating System to run in 24-bit mode.

Macintosh computers that use the MC68030 and MC68040 microprocessots do not need
an AMU or a PMMU. The microprocessors in these computers include a built-in memory

management unit that provides all necessary memory management functions, including
24-to-32-bit memory mapping translation and A/UX operating-system support.

Chapter 7, “NuBus Card Memory Access,” shows in detail how cards installed in NuBus
slots address memory.

Address/data bus

The block diagrams in Figures 1-1 through 1-7 show the basic address/data bus
architecture used in the Macintosh computers. Note that the address and data buses are
separate on the microprocessor side of the NuBus interface (transceivers and control),
and that the addresses and data are multiplexed on the NuBus side of the interface. The
NuBus utility, control, arbitration, and slot ID signals are described in detail in Chapter 2.

The 32-bit-wide multiplexed address or data bus connects to the NuBus slot connectors. See
the section “Address/Data Signals” in Chapter 3 for a description of the address/data bus.

30 Designing Cards and Drivers for the Macintosh Family

Macintosh IIsi NuBus interface

The Macintosh IIsi is different from all other Macintosh computers in its expansion
interface. The Macintosh Ilsi offers a NuBus expansion interface and a processor-direct
slot (PDS) expansion interface. However, to install either type of expansion card, you
must first install a special adapter card for the Macintosh Isi.

There is a single 120-pin expansion connector on the main logic board. You can install a
NuBus adapter card or a 68030 Direct Slot adapter card in the expansion connector.
Both NuBus and PDS adapter cards include 68882 floating-point units for numeric
coprocessing. If customers want numeric coprocessing but don’t care about expansion,
they still have to use an adapter card. Both adapter cards are user installable.

A NuBus adapter kit, available from an authorized Apple dealer, allows a customer to
install a NuBus card in the Macintosh IIsi computer and have it function exactly as if it
were in any other Macintosh computer with a NuBus expansion. Information about the
physical and electrical implementation of the NuBus adapter card for the Macintosh IIsi
can be found in Chapters 5 and 6.

NuBus interface architecture

All Macintosh computers that offer the NuBus expansion use a similar interface
architecture to communicate with the NuBus. The most noticeable difference is that as
Macintosh computers have evolved, they have incorporated different NuBus control and
data transceivers into their bus interface design. This section shows how the processor
uses the bus interface control and transceiver logic to communicate with the NuBus.

The Macintosh II, the Macintosh IIx, and the Macintosh Ilcx computers all use the NuChip
custom IC for their bus interface control function, as shown in Figures 1-1 and 1-2. In the
Macintosh Ilci (Figure 1-3) and the Macintosh IIsi adapter card, the bus interface control
function is replaced by a NuChip 30 custom IC. In the Macintosh IIfx (Figure 1-4), two
custom ICs, the BIU30 and the BIU2, perform the control and transceiver functions.

Chapter 1 Overview of Macintosh Computers With the NuBus Interface

31

The Macintosh Quadra 700 (Figure 1-6) and the Macintosh Quadra 900 (Figure 1-7) use
three chips for the interface between the system bus and the NuBus: the YANCC (Yet
Another NuBus Controller Chip) IC and two 16-bit transceiver ICs. The transceiver ICs are
the same type as the ones used in the Macintosh Ilci. The features of the YANCC include

m support for all types of single data transfers in either direction

m a 32-bit buffer for pended writes from the MC68040 to the NuBus

m support for block move transfers between NuBus masters and main memory
m support for pseudoblock transfers between the MC68040 and NuBus slaves

= support for some new functions defined in the latest NuBus specification (refer to
Chapter 2 for more information about these new features)

Unlike the NuBus controllers in previous Macintosh computers, the YANCC generates an
interrupt when there is an error involving the write buffer. Software controls this interrupt
by means of a control and status register in the YANCC.

The NuBus interface in Figures 1-1 through 1-7 shows bidirectional bus interface blocks
between the microprocessor bus and the NuBus. Figure 1-8 shows a further breakdown of
the functional elements comprising the bus interface circuits.

Figure 1-8 shows the bus interface architecture implemented in the Macintosh II, the
Macintosh IIx, and the Macintosh Ilcx. Although other Macintosh machines may vary from
this design, the figure is meant primarily as an example. The bus interface control function
is implemented as four state machines, three of which are shown in Figure 1-8. The fourth
state machine prevents the NuBus from indefinitely awaiting an acknowledge by
generating an acknowledge cycle in response to /START after 256 bus cycles (25.6 ps).

A wait this long occurs when the processor makes an access to nonfunctional addresses,
perhaps because the card being addressed is not present in any of the NuBus slots.

Processdr bus-to—NuBus state machine

The processor bus-to-NuBus state machine (see Figure 1-8) is activated whenever the
microprocessor generates a physical address from $6000 0000 through $FFFF FFFF in the
data or program address spaces (see the memory map, Figure 1-9). The state machine
synchronizes the request with the NuBus clock and presents the same address over the
NuBus. If a slave device on NuBus responds, the data is transferred. If no slave responds,
a NuBus time-out occurs and a bus error (/BERR) signal is sent to the processor. The
processor can then determine the cause of the error.

32 Designing Cards and Drivers for the Macintosh Family

@ Note: A special check is made for access to $FOxx xxxx, which is the main logic board’s
slot address; if attempted, a bus error signal is generated immediately and no NuBus
transaction is attempted.

m Figure 1-8 Bus interface architecture for the Macintosh II, Macintosh IIx, and
Macintosh Ilcx computers

NuBus control signals

/AD31-/AD0
- NuBus address/data bus
A31-A24 /AD31-/AD24 D7-D0
T ——
A23-A16 /AD23-/AD16 D15-D8
—— ——
Processor
Processor A15-A8 /AD15-/AD8 D23-D16 data bus
address bus
- o=
/AD7-/AD(D31-D24
Encoder/ 1
SIZI-SIZ0 | decoder | T |/TMI-/TMO ——
’ Processor
control signals
NuBus slave Processor bus- (for example,
: >
state machine - /START, /ACK, efc. to-NuBus ?ggk/(l:\llggUS,
/CLK —> state machine
')\ /CLK —P> <t ci6M
Y
NuBus-to—-
processor bus
state machine [Processor
M > c((f)ntrol 51gnlzlls
or example,
(processor /BR, /AS, /DSACK")

Chapter 1 ~ Overview of Macintosh Computers With the NuBus Interface 33

NuBus-to-processor bus state machines

Two state machines, the NuBus slave and the NuBus to processor bus, control a
NuBus-to—processor bus data transfer (see Figure 1-8).

The NuBus-to—processor bus state machine controls accesses from the NuBus, through
the processor bus, to RAM, ROM, and I/O. For example, if an address from $0000 0000
through $3FFF FFFF is presented on the NuBus, then the NuBus-to-processor bus state
machine requests the processor bus from the microprocessor and performs a RAM access
to the same address. Similarly, if an access in address space $F080 0000 through

$FOFF FFFF is made on the NuBus, an access in $4x00 0000 through $4xFF FFFF on the
processor bus is made to the ROM (see the map in Figure 1-9). Chapter 7 provides much
more detailed information on memory access. See Table 7-2 in particular.

A Warning The ability to access processor bus I/O devices is not intended for
normal use. Access to anything other than ROM or RAM will probably
not be supported on future systems. a

The Macintosh II, the Macintosh IIx, and the Macintosh Ilcx have only 256 KB of ROM; in these
machines, only 18 bits of addressing is required to specify a ROM location. The hardware
decode logic interprets any physical address whose upper 4 address bits (A31-A28) are equal to
$4 as a ROM access. So there are 32 minus 4, or 28, bits available to access the locations in a
ROM that requires only 18 bits of addressing. This means that 10 address bits are “don’t cares”
and that on the map of physical addresses there are 1024 (210) different addresses (aliases) that
will access the same ROM location. (In some memory architectures, not all of these aliases are
accessible from the main processor.) This act of gaining access to a memory location from
several different addresses is called aliasing. It usually occurs in computer systems when an
incomplete address decoding mechanism is used.

34 Designing Cards and Drivers for the Macintosh Family

The NuBus~to-processor bus state machine also monitors and records when the NuBus
master initiates an attention-resource-lock cycle and controls the subsequent events of a
resource-locked transaction, as described in the section “Bus Locking” in Chapter 4.

The NuBus slave state machine is synchronous to the NuBus and tracks the state changes
on the NuBus.

m Figure 1-9 NuBus-to-processor bus translation

Processor
NuBus 32-bit physical
address space address space
Slots — - Slots
Slot 0 —|
- SEFFF FFFF —
Expansion __|
address — NuBus
— $6000 0000
$SFFF FFFF
(0]
Unused — v
$4000_0000 oM
NuBus
access to RAM
RAM

Chapter 1 Overview of Macintosh Computers With the NuBus Interface

35

Chapter 2 NuBus Overview

This chapter describes NuBus features, provides a simplified diagram of
the NuBus hardware, defines many NuBus terms, classifies the signals
used to implement communication over the bus, and discusses the most
basic timing and transaction cycle relationships.

37

NuBus features

The NuBus is used for expansion of a modular Macintosh computer beyond the
capabilities of the ports (connectors) on the back of the machine.

NuBus is a 32-bit-wide bus chosen by Apple to mechanize the multislot expansion of the
Macintosh computers. Table 2-1 shows the highest-level design objectives and the
supporting features of the NuBus. Apple chose the NuBus over competitors because it
offered cost-effective high performance along with maturity of hardware design and
production.

The latest Macintosh computers with NuBus expansion interfaces, the Macintosh Quadra
700 and the Macintosh Quadra 900, include enhancements to the NuBus implementation,
such as block-transfer modes and new clock and serial bus signals. These changes
correspond to the latest 1990 draft specification of NuBus, the Standard for a Simple
32-Bit Backplane Bus: NuBus, ANSI/IEEE Std 1196-1990.

m Table 2-1 Design objectives and features

Design objective Supporting features

System architecture independent Optimized for 32-bit transfers, but supports 8-bit and
16-bit nonjustified transfers. Not based on the control
structure of a particular microprocessor.

High-speed data transfer 10 MHz clock synchronizes bus arbitration and transfers
of read/write data to a single 32-bit address space
(block transfers are currently implemented only on the
Macintosh Quadra family of computers).

Simplicity of protocol Reads and writes are the only operations used. I/O and
interrupts are memory mapped. Single, large physical
address space allows uniform access to all addressable
cards or other resources.

Small pin count Multiplexed data and address lines. Simplified
connection, only 51 signals plus power and ground lines.
Ease of system configuration Geographical addressing (ID lines) enables interface

system to be free of DIP switches and jumpers.
Distributed, parallel arbitration eliminates jumper wiring
of slots with missing cards (daisy-chaining).

38 Designing Cards and Drivers for the Macintosh Family

NuBus elements

The NuBus is a synchronous bus; all transitions and signal samplings are synchronized to a
central system clock. However, it has many of the features of an asynchronous bus;
transactions may be a variable number of clock periods long. This design provides the
adaptability of an asynchronous bus with the design simplicity of a synchronous bus.

Figure 2-1 is a simplified representation of a typical NuBus system. Keep in mind that the
number of NuBus cards varies for each Macintosh computer: up to six in the Macintosh II,
IIx, and IIfx; five in the Macintosh Quadra 90; three in the Macintosh Ilcx and Ilci; and
two in the Macintosh Quadra 700. In addition to the slot identification (ID), clock,
address/data, and arbitration lines shown in the diagram, there are system reset, parity,
power fail warning, nonmaster request, and data-transfer control lines.

NuBus supports only read and write operations in a single address space, in contrast to
some other bus designs. I/O and interrupts may be accomplished within these read and
write mechanisms. In the Macintosh computers with NuBus, however, interrupts are

detected through the nonmaster request line (see “Interrupt Operations” in Chapter 3).

The cards in NuBus slots are peers; no card or slot is a default master. The exception is
that only one card drives the system clock line; the clock is supplied by the main logic
board. Each slot has an ID code hard-wired into the main logic board of the computer.
This allows cards to differentiate themselves without the computer user having to arrange
jumpers or adjust DIP switches.

The NuBus supports multiprocessing and other sophisticated system architectures with a
few simple mechanisms explained in Chapter 3, “NuBus Data Transfer.”

Chapter 2 NuBus Overview

39

m Figure 2-1 Simplified NuBus diagram

Representative NuBus cards

Slave

Master

Slave

Master

_|
I
! -
1
I
m <
1
i]
! [P}
123 .
I
=
- 8 <F
| el =
! »| =
=
i £ e
! <<
I
! A
e o e
e
1
1
1
1
I L O = T
P EE]l. | zE
_ = % <
1
! A
L
o
1 <t
| _
I
1
I
1
1
!
L O
125 4
i S & g
=8 S K&
1
[s mm
| 2
| = T
I
]
“ A
e e e e e e e

ock
origination

Arbitration

NuBus

Designing Cards and Drivers for the Macintosh Family

40

NuBus 90 features

NuBus 90 is the 1990 proposal of the IEEE standard for the NuBus (Standard for a Simple
32-Bit Backplane Bus: NuBus, ANSI/IEEE Std 1196-1990). Two of the latest Macintosh
computers, the Macintosh Quadra 700 and the Macintosh Quadra 900, provide the
following new features in that proposal:

m On the Macintosh Quadra 900, low current at +5 V is available on the new STDBYPWR
pin when main power is off and the AC cord is plugged in. This signal is not available on
the Macintosh Quadra 700.

m NuBus 90 defines new signals /SBO and /SB1 for a serial bus on the formerly reserved
pins A2 and C2. The serial signals are bused and terminated, but the main circuit board
does not drive them.

m New signals /TM2, /CLK2X, and /CLK2XEN support block transfers at double the
standard rate. The Macintosh Quadra family of computers allows double-rate block
transfers between NuBus cards, but does not support double-rate transfers to or from
the main memory.

m NuBus 90 defines new signals /CMO0, /CM1, /CM2, and /CBUSY to support a cache-
coherency protocol. Pins on the NuBus connector are assigned to those signals, but the
Macintosh Quadra 700 and the Macintosh Quadra 900 do not support them.

NuBus signal classifications

There are some slight changes in the signal definitions in the original NuBus implementation
and NuBus '90. Table 2-2 shows the NuBus signal classifications based on the original
implementation of NuBus in Macintosh computers, and Table 2-3 shows the NuBus '90 signal
classifications. In the first table, NuBus signals can be grouped into six classes based on the
functions that they perform. For the NuBus 90 signal classes (Table 2-3), the signals are
grouped into eight separate classes. There are also power and ground lines.

Chapter 2 NuBus Overview

41

m Table 2-2 Signal classifications in the original NuBus implementation
Classification Signal Signal description Number of pins
Address/data /AD31-/ADO Address/data 32
Arbitration /ARB3-/ARB0 Arbitration 4
/RQST Request 1
Control /START Start 1
/ACK Acknowledge 1
/TMO Transfer mode 0 1
/TM1 Transfer mode 1 1
Parity /SP System parity 1
/SPV System parity valid 1
Slot ID /ID3~/IDO Slot identification 4
Utility /RESET Reset 1
/CLK Clock 1
/PFW Power fail warning 1
/NMRQ Nonmaster request 1
Total signals 51
Power/ground +5V 11
+12V 2
-12v 2
-5.2V (not supplied)f 8
GND Ground 20
Reserved Reserved 2
Total pin count %

T These pins are wired together but not supplied with power from the computer.

42 Designing Cards and Drivers for the Macintosh Family

m Table 2-3 Classes of NuBus '90 signals

Classification Signal Signal description Number of pins
Address/data /AD31-/AD0 Address/data 32
Arbitration /ARB3-/ARB0 Arbitration 4
/RQST Request 1
Cache coherency ~ /CBUSY Cache busy 1
/CM2-/CMO0 Cache maintenance 3
Control ~ /START Start 1
/ACK Acknowledge 1
/TMO Transfer mode 0 1
/TM1 Transfer mode 1 1
/TM2 Transfer mode 2 1
Parity /SP System parity 1
/SPV System parity valid 1
Serial bus /SB1-/SB0 Serial bus signals 2
Slot ID /1D3~/1D0 Slot identification 4
Utility /RESET Reset 1
/CLK Clock 1
/CLK2X Clock2X 1
/CLK2XEN Clock2X enable 1
/PFW Power fail warning 1
/NMRQ Nonmaster request 1
Total signals 60
Power/ground +5V 11
+12V 2
-12V 2
/STDBYPWR? Standby power 1
GND Ground 20
%

Total pin count

1 The /STDBYPWR signal is not supported in the Macintosh Quadra 700.

A Important

The eight lines that were connected to the -5.2V signals in the
original NuBus are now used for new features. Many older
NuBus cards connect those eight lines together; the presence
of such a card in the Macintosh Quadra family of computers
will disable the new features of all installed NuBus cards that
use those lines. All the other features of both the old and new
cards will operate normally. A

Chapter 2 NuBus Overview

8

NuBus timing

The NuBus system clock has a 100-nanosecond (ns) period with a 75 ns high, 25 ns low
duty cycle. Figure 2-2 shows the basic timing for most NuBus signals. The low-to-high
transition of /CLK is used to drive and release signals on the bus. Signals are sampled on
the high-to-low transition of the clock. The asymmetric duty cycle of the clock provides
75 ns for propagation and setup time. Bus skew problems are avoided by having 25 ns
between the sample and drive edges.

m Figure 2-2 NuBus signal timing

Period

(100 ns

/AR — 75ns I

25ns

/SIGNAL __<

U

——

Driving edges)

Sampling edge J

NuBus terminology

Table 2-4 defines terms used throughout Part I that are used to describe the NuBus
expansion interface. The relationships between some of these terms are illustrated in
Figures 2-2 and 2-3. All NuBus signals are active (asserted) when low; a slash preceding a
signal name indicates that it is active-low, for example, /START.

44 Designing Cards and Drivers for the Macintosh Family

m Table 2-4 NuBus expansion interface terminology

Term Definition

1X block transfer A block transfer in which NuBus words are transmitted at a 10
MHz rate. These types of data transfers are only implemented
on the Macintosh Quadra family of computers.

2X block transfer A block transfer in which NuBus words are transmitted at a

Acknowledge (ack) cycle
Active

Arbitration contest

Asserted

Attention cycle

Bus lock

20 MHz rate, sometimes referred to as double-rate block
transfers. The Macintosh Quadra 700 and the Macintosh
Quadra 900 computers allow double-rate block transfers
between NuBus cards, but do not support them to or from
the main memory.

Last cycle of a transaction during which /ACK is asserted by
a slave responding to a master. See Figure 2-3.

For an active-low signal. Synonymous with asserted, low,
and true.

The mechanism used to choose which of two or more cards
requesting control of the bus will become the next bus
master. A complete arbitration contest requires two bus
cycles (at 100 ns each).

The logic state of an active-low signal line when the line is
driven low. All NuBus signal lines are active-low.
Synonymous with active, low, and true.

A particular kind of start cycle, one in which both /START
and /ACK are asserted. There are three types: attention-null,
attention-resource-lock, and attention-cache cycles. See
“Resource Locking” in Chapter 4.

A mechanism for providing continuing tenure (bus
ownership) by a single card. The extended tenure may
include multiple transactions or attention cycles. One type
of attention cycle is an attention-resource-lock (often
shortened to resource lock); therefore a bus lock may or
may not include a resource lock.

(continued)

Chapter 2 NuBus Overview 45

m Table 2-4 NuBus expansion interface terminology (continued)

Term

Definition

Cache coherent

Card

Clock cycle

Copyback

Data cycle

Deasserted

Double-rate block transfer

Doublet

Drive

Driving edge

False

The ability of a bus module to maintain a cache. The cache
contains data and tags that can determine the ownership of
data between multiple processors, and thus maintain
coherency or agreement between data shared by processors
and memory. Refer to Chapter 3 for a discussion of cache
coherency. Cache coherency is supported on Macintosh
computers; however, the NuBus method is not used.

A printed circuit board connected to the bus in parallel with
other cards.

The sequence of events on the NuBus clock from one rising
edge to the next, nominally 100 ns in duration and beginning
at the rising edge. See Figure 2-2.

A function in the NuBus cache-coherency protocol that is
used to free up cache lines to service a read miss or write
miss or to flush data into an I/O buffer. The copyback
function may also be used during context switching.

Any period in which data is known to be valid and
acknowledged. It includes acknowledge cycles, as well as
intermediate data cycles within a block transfer. See
Figure 2-3.

For an active-low signal. Synonymous with 4igh, inactive,
unasserted, false, and released.

A block transfer in which data NuBus words are transmitted
at a 20 MHz rate, also referred to as 2X block transfers. The
Macintosh Quadra 700 and the Macintosh Quadra 900
computers allow double-rate block transfers between NuBus
cards, but do not support them to or from the main
memory.

A 16-bit data item taken as a unit. Synonymous with a
NuBus halfword.

To cause a bus signal line to be in a known, determinate state.

The rising edge (low to high) of the central system clock
(/CLK). See Figure 2-2.

For an active-low signal. Synonymous with high, inactive,
deasserted, unasserted, and released.
(continued)

46 Designing Cards and Drivers for the Macintosh Family

= Table 2-4 NuBus expansion interface terminology (continued)

Term Definition

Global An attribute of NuBus cache-coherency transactions where
the data is shared between multiple cache-coherent
masters.

High For an active-low signal. Synonymous with inactive,
deasserted, unasserted, false, and released.

Inactive For an active-low signal. Synonymous with high, deasserted,
unasserted, false, and released.

Low For an active-low signal. Synonymous with active, asserted,
and true.

Master A card that initiates the addressing of another card or the

processor on the main logic board. The card addressed is at
that time acting as a slave.

Master flow control Used by the bus master to control the flow of data during
2X block transfers.
M,E,S,I Modified, exclusive, shared, invalid. The set of NuBus

cache-line states and protocols used to guarantee cache
coherency on NuBus.

Minor slot space An Apple-specific term that describes the first megabyte of
the 16 MB standard slot space. If a Macintosh computer is
operating in 32-bit mode, it can access all the address space
in both the standard slot and super slot spaces of any slot
card. In 24-bit mode, it can address only 1 MB of each
card’s standard slot space. In 24-bit mode, the computer
hardware translates 24-bit addresses of the form $sx xxxx
into 32-bit addresses of the form $Fs0x xxxx, where sis a
digit in the range $9 through $E.

Open collector A bus driver that drives a line low or doesn’t drive it at all.
Parked The condition when a bus master has completed a

transaction and released /RQST, and before any other card
has asserted /RQST. Bus parking is discussed in Chapter 4.

Period The 100 ns duration of /CLK, the NuBus clock signal
consisting of a 75 ns high state and a 25 ns low state.
See Figure 2-2.

(continued)

Chapter 2 NuBus Overview 47

m Table 24 NuBus expansion interface terminology (continued)

Term Definition

Quadlet A 32-bit data item taken as a unit. Synonymous with a
NuBus word.

Read miss This term is used with the NuBus cache-coherency protocol.
When a processor attempts to read data, and the requested
location within the cache is invalid, the initial read of the
data in the cache fails.

Released For an active-low signal. Synonymous with high, inactive,
deasserted, unasserted, and false.

Sampling edge The falling edge (high to low) of the central system clock
(/CLK). See Figure 2-2.

Slave A card that responds to being addressed by another card

Slave flow control

Slot

Slot ID

acting as a master. The main logic board in Macintosh
computers may be either master or slave. Some cards may
be slave-only in function because they lack the circuitry to
arbitrate in a bus ownership contest.

Used by the addressed slave to control the flow of data
during all transactions.

A connector attached to the bus. A card may be inserted
into any of the slots when more than one is provided
(Macintosh II, Macintosh IIx, and Macintosh IIfx have six
slots; Macintosh Quadra 900 has five slots; Macintosh IIcx
and Macintosh Ilci have three slots; Macintosh Quadra 700
has two slots; and Macintosh IIsi has one slot).

The hex number ($9 through $E in the Macintosh II,
Macintosh IIx, and Macintosh IIfx; $A through $E in the
Macintosh Quadra 900; $9 through $B in the Macintosh
Ilcx; $C through $E in the Macintosh Ilci; $D through $E in
the Macintosh Quadra 700; and $9 in the Macintosh IIsi)
corresponding to each card slot. Each slot ID is established
by the main logic board of the computer and
communicated to the card through the /IDx lines.

48 Designing Cards and Drivers for the Macintosh Family

(continued)

m Table 2-4 NuBus expansion interface terminology (continued)

Term Definition

Snarf An action taken by a cache-coherent master when it
eavesdrops on a write-back transaction and absorbs the
data.

Snooping An action taken by cache-coherent bus modules to monitor

cache-coherent transactions on the bus.

Snooping module A module that snoops a cache-coherent transaction
between a master and a slave.

Standard slot space The upper one-sixteenth of the total address space. These
addresses are in the form $Fsxx xxxx, where F, s, and x are hex
digits of 4 bits each and s represents the specific slot number.
This address space is geographically divided among the NuBus
slots according to slot ID numbers. Each slot space is 16 MB.

Start cycle The first cycle of a transaction during which /START is
asserted. See Figure 2-3. The start cycle is one bus clock
period long; the transfer mode and the address are valid
during this cycle.

Super slot space An Apple-specific term that describes the large portion of
memory in the range $9000 0000 through $EFFF FFFF. NuBus
addresses of the form $sxxx xxxx (that is, $s5000 0000
through $sFFF FFFF) address the super slot space that is
assigned to the card in slot s, where sis an ID digit in the
range $9 through $E. Each super slot space is 256 MB.

Tenure A time period of unbroken bus ownership by a single
master. A master may lock the bus and, during one tenure,
perform several transactions. The concept of bus locking is
further explained in Chapter 4 in the section “Locking.”

Transaction A complete NuBus operation such as read or write. In the
Macintosh computers with NuBus, a transaction is made up
of a start cycle, wait cycles as required by the responding
card, and an acknowledge cycle. Start cycles are one clock
period long and convey address and command information.
Acknowledge cycles are also one clock period long and
convey data and acknowledgment information. See
Figure 2-3.

(continued)

Chapter 2 NuBus Overview 49

m Table 24 NuBus expansion interface terminology (continued)

Tenn

Definition

Tristate
True -
Unasserted

Word

Write-back

Write-back cache

Write miss

Write-through cache

A bus driver that drives a line low or high or doesn't drive it
at all. Also called three-state.

For an active-low signal. Synonymous with active, asserted,
and low.

For an active-low signal. Synonymous with high, deasserted,
false, inactive, and released.

In Part I, word refers to a NuBus word (quadlet) and is 32
bits long; a halfword (doublet) is 16 bits long (usage is
consistent with the Texas Instruments NuBus

specification). The data type “word,” however, is 16 bits
long; this inconsistency results from the difference between
16- and 32-bit microprocessors. Part II of this book refers
to a word as 16 bits and a longword as 32 bits.

An action taken by a snooping module when it returns its
modified data to shared memory.

Also referred to as copyback cache. A cache that does not
propagate all write cycles to memory, but holds the data in
the cache until the cache line holding the data must be
reused.

This term is used with the NuBus cache-coherency protocol.
When a processor attempts to write data, and the
requested location within the cache is invalid or the data is
shared, the initial write to the cache fails.

A cache that propagates all write cycles to memory.

m Figure 2-3 Cycle and transaction relationships

Transaction

Block transaction

e N ' R

%i?;e%/ Adr Data Adr Data Data
Start Acknowledge Start Data Acknowledge
cycle cycle cycle cycle cycle

50 Designing Cards and Drivers for the Macintosh Family

Chapter 3 NuBus Data Transfer

This chapter describes the utility signals, slot ID signals, and data-transfer
signals; it then gives specifications for the process of transferring data
over the NuBus interface from a master to a slave.

A Warning This chapter is intended to give the developer an
overview of the specific features of NuBus. It is not
intended to be used as the sole technical reference for
development of a NuBus card. If you are developing a
NuBus card, please use the NuBus specification as your
technical reference. a

51

Utility signals

This section identifies the signal lines that serve utility functions for the NuBus interface.
The main logic board of a Macintosh computer provides the structure and the slot
connectors; it also provides the clock and reset signal sources and bus time-out circuitry.

Clock signals

The clock signal (/CLK), driven from a single source, synchronizes bus arbitration and data
transfers between system cards. The /CLK signal has an asymmetric duty cycle of 75% high
and a constant nominal frequency of 10 MHz. In general, signals are changed at the rising
(driving) edge of /CLK, and they are sampled at the falling (sampling) edge.

Two additional clock signals have been defined for NuBus "90. These signals are provided
only in the Macintosh Quadra 700 and the Macintosh Quadra 900. The /CLK2X signal
synchronizes 2X block transfers between NuBus cards. The /CLK2X signal has a duty cycle
of 50% and a constant nominal frequency of 20 MHz. During a 2X block transfer, modules
drive new data on the assertion edge of /CLK2X and sample the data on the following
assertion edge.

Clock2X Enable (/CLK2XEN) is a sense line to detect conflicts with the NuBus "90 signals.
If there are no boards that short this line to the other NuBus '90 lines, the line stays low,
enabling the /CLK2X driver.

Reset signal

The reset signal (/RESET) is an open-collector line that is asserted asynchronously to the
NuBus clock. When asserted,/RESET causes a NuBus interface initialization for all cards
(bus reset).

Because of the design of the computer hardware and firmware, there is a slight deviation
of the duration of the /RESET signal from that specified in the IEEE 1196 NuBus
standard. Durations and times are dependent on system clock frequency.

52 Designing Cards and Drivers for the Macintosh Family

As part of the startup code in the ROM, a reset instruction is executed shortly after the
microprocessor comes out of hardware reset (nominally 200 ms). The execution of this
reset instruction causes a subsequent 33 s assertion of /RESET. Thus, for each of the
three ways in which reset occurs, the timing is as follows:

m Initial power-on: Shortly after all power supplies have stabilized, the /RESET line is
driven low for a nominal 200 ms. Then, about 3 us later and because of the startup
code, /RESET is again driven low for 33 ps.

m Pressing the reset button: /RESET is asserted for as long as the button is held
down, plus the nominal 200 ms. As in the power-on case, a subsequent 3 s
deassertion is followed by an additional 33 s assertion.

m Executing the restart command: The code for this menu item executes two reset
instructions separated by about 3 ps. Thus, /RESET is asserted for 33 ps, deasserted
for 3 ps, and asserted again for 33 ps.

You should treat all assertions of /RESET (of any duration) identically.

Power fail warning signal

The power fail warning signal (/PFW) may be asserted asynchronous with respect to the
driving edge of /CLK and indicates that the power is about to fail. In Macintosh
computers, this signal is also used to control the power supply. Driving /PFW high turns the
computer on; driving /PFW low turns it off.

See Chapter 5, “NuBus Card Electrical Design Guide,” for /PFW drive requirements if the
card you are designing is to control the power supply through the NuBus.

Nonmaster request signal

The nonmaster request signal (/NMRQ) is asynchronous to /CLK and provides an interrupt
mechanism for cards that are intended to be slave-only. Such cards avoid the cost of
implementing arbitration logic.

Chapter 3 NuBus Data Transfer

53

Serial bus signals

Two serial bus signals (/SB0 and /SB1) have been defined in the NuBus 90 specification.
These signal lines are defined only for the Macintosh Quadra 700 and the Macintosh
Quadra 900. The signal lines are bused and terminated, but the main circuit board does
not drive them.

Card slot identification signals

Identification signals 3 through 0 (/ID3-/ID0) are binary coded to specify the physical
location of each card. The highest-numbered slot ($F) has the four signals wired low. The
lowest-numbered slot ($0) has all ID signals high. In the Macintosh II, Macintosh IIx, and
Macintosh IIfx computers there are six slots numbered $9 through $E. The Macintosh
Quadra 900 provides five slots numbered $A through $E. The Macintosh Ilcx and
Macintosh Ilci have only three slots numbered $9 through $B and $C through $E,
respectively. The Macintosh Quadra 700 has two slots numbered $D and $E, and the
Macintosh IIsi has one slot, numbered $9. The main logic board is addressed as slot $0.

A Important You must tie the ID lines high through pull-up resistors or they will not
work. For example, the Macintosh II Video Card described in
Chapter 11 uses 3.3 k€ pull-up resistors; you should, however, be able
to use resistors as high as 10 kQ safely. »

The distributed arbitration logic uses the ID numbers to uniquely identify cards for
arbitration contests. See Chapter 4, “NuBus Arbitration.”

The ID signals are also used to allocate a small portion of the total address space to each
card. The upper one-sixteenth (256 MB) of the entire 4 GB NuBus address space is called
the standard slot space. If signals /ID3-/IDO0 are used to specify NuBus address lines
/AD27-/AD24, each of the 16 possible NuBus card slots has an address of the form

$Fsxx xxxx, where s is the 4-bit hex digit for a particular slot. This address range allocates
16 MB of address space (one-sixteenth of 256 MB) per NuBus card slot, an address region
called a slot.

54 Designing Cards and Drivers for the Macintosh Family

However, if bits /ID3~/IDO0 are used in a different way, a second natural address decode
of what is called super slot space can be easily performed. If bits /ID3~/ID0 are used to
specify NuBus address lines /AD31-/AD28, each of the 16 possible NuBus card slots has an
address of the form $sxxx xxxx, where s is the 4-bit hex digit for a particular slot. This
address range allocates 256 MB of address space (one-sixteenth of 4 GB) per NuBus card
slot, an address region called a super slot. Thus each physical slot has allocated to it a
standard slot space and a super slot space.

This fixed address allocation, based solely on the slot location of a card, enables the
design of systems that are free of jumpers and switches. Chapter 7, “NuBus Card Memory
Access,” discusses memory addressing in detail.

Signal line determinacy

The bus driving circuitry, the bus transmission line parameters, and the terminating
impedances must be coordinated to make the signal lines determinate within the
specified setup and hold times of the NuBus clock.

A signal line is determinate by virtue of satisfying one of the following conditions:

m Ifasignal is driven during the clock cycle (or half cycle) #, then it is determinate
during the cycle (or half cycle) n.

m [fasignal is unasserted during cycle n and is not driven during cycle n + 1, then that
signal is guaranteed to remain unasserted during cycle # + 1.

m Ifan open collector signal is driven asserted during cycle # and is not driven during
cycle n + 1, then it is guaranteed to be unasserted during cycle n + 1.

m If a tristate signal is asserted during cycle n and is not driven during cycles
n+1and n + 2, then the line is not guaranteed determinate during cycle n + 1 but is
guaranteed to be unasserted during cycle n + 2.

Chapter 3 NuBus Data Transfer 55

Data-transfer signals

The bus data-transfer signals, including control, address/data, and bus parity, are all tristate.

Control signals

This section describes the primary functions of the four NuBus control signals.

Transfer start (/START) is driven for only one clock period by the current bus master at the
beginning of a transaction. The /START signal indicates to the slaves that the
address/data signals are carrying a valid address.

Transfer acknowledge (/ACK) is driven for only one clock period by the addressed slave
device and indicates the completion of the transaction. An exception to the foregoing is
an attention cycle, when the bus master asserts both /START and /ACK. See “Attention
Cycles,” later in this chapter.

Three transfer mode signals are included in the NuBus definition: /TMO0, /TM1, and /TM2.
The /TM2 signal was introduced in the NuBus "90 specification and is provided only in the
Macintosh Quadra 700 and the Macintosh Quadra 900. The transfer mode signals are
driven by the current bus master during start cycles to indicate the type of bus operation
being initiated. They are also driven by bus slaves during acknowledge cycles to denote
the type of acknowledgment. The /TMx encoding for start cycles is given in Table 3-1.

56 Designing Cards and Drivers for the Macintosh Family

Address/data signals

Address/data signals 0 through 31 (/AD31-/AD0) are multiplexed to carry a 32-bit

byte address at the beginning of each transaction and up to 32 bits of data later in the
transaction. Note that the /ADO and /AD1 signals, along with the /TMx lines, carry transfer
mode information during the start cycle. This transfer mode encoding is shown in Table 3-1.

m Table 3-1 Transfer mode coding

/TM2 /M1 /TMO /AD1 /ADO Type of cycle

H L L L L Write byte 3

H L L L H Write byte 2

H L L H L Write byte 1

H L L H H Write byte 0

H L H L L Write halfword 1
H L H L H 1X block write
H L H H L Write halfword 0
H L H H H Write word

H H L L L Read byte 3

H H L L H Read byte 2

H H L H L Read byte 1

H H L H H Read byte 0

H H H L L Read halfword 1
H H H L H 1X block read

H H H H L Read halfword 0
H H H H H Read word

L L H L H 2X block write

L H H L H 2X block read

T /TM2 is used only in the Macintosh Quadra 700 and the Macintosh Quadra 900 and is not defined

for other Macintosh computers.

Bus parity signals

The system parity signal (/SP) transmits parity information between NuBus cards
that implement NuBus parity checking. Future Apple products may employ this feature,
but current Macintosh computers do not provide bus parity checking, so this line is

pulled high.

Chapter 3 NuBus Data Transfer

57

The system parity valid signal (/SPV) indicates that the /SP bit is being used. Cards that
do not generate bus parity never drive /SPV active, and cards that do not check parity
ignore /SP and /SPV. Future Apple products may employ this feature, but in current
versions of the Macintosh computers, this line is pulled high.

¢ Note: The Macintosh IIci and the Macintosh IIfx have an optional feature that allows
RAM parity checking when 9-bit SIMMs are installed; however, this capability is
unrelated to NuBus parity checking.

Cache-coherenéy signals

NuBus '90 defines new signals /CM0, /CM1, /CM2, and /CBUSY to support a cache-
coherency protocol. Pins on the Macintosh Quadra-family NuBus connectors are assigned
to those signals, but the cache-coherency protocol defined in the NuBus 90 specification
is not implemented.

Data-transfer specifications

The NuBus supports reads and writes of several different data sizes. Although optimized
for transactions of words and blocks of words, the NuBus also supports byte and NuBus
halfword transactions, as shown in Figure 3-1. The base unit of addressability is a NuBus
word; /AD31-/AD2 specify the appropriate word. The two least significant address bits
(/AD1-/ADO0), along with the /TM2-/TMO signals, specify the transfer mode; that mode
determines which part of the addressed word is to be transferred, as shown in Table 3-1.
The /TM2 signal is defined in the NuBus '90 specification and is only used for encoding the
transfer mode on the Macintosh Quadra 700 and the Macintosh Quadra 900. For all other
Macintosh computers with NuBus expansion interfaces, this signal is not defined and is
not relevant to specifying the transfer mode.

58 Designing Cards and Drivers for the Macintosh Family

m Figure 3-1 Words, halfwords, and bytes

Bit 31 Bit0

NuBus word

Halfword 1 Halfword 0

Byte 3 Byte 2 Byte 1 Byte 0

All NuBus data transfers are unjustified. That is, a byte of data is conveyed on the same
byte lane regardless of the transfer mode used to access it. Similarly, a halfword is
conveyed on the same halfword lane regardless of the transfer mode used to access it.
Therefore, bytes with address 0 modulo 4 are always carried by /ADO through /AD7,

bytes 1 modulo 4 by /AD8 through /AD15, bytes 2 modulo 4 by /AD16 through /AD23, and
bytes 3 modulo 4 by /AD24 through /AD31. This unjustified data path approach allows
straightforward connection of 8-bit, 16-bit, and 32-bit devices.

Single data cycle transactions

The simplest transactions on the NuBus convey one data item and consist of a start cycle
and a subsequent acknowledge cycle. These transactions are either reads or writes of
bytes, halfwords, or words.

All transactions are initiated by a bus master, which drives /START active while driving the
/TMx, /ADO, and /AD1 signals to define the cycle type. The remaining /ADX signals are also
driven to convey the address. The transaction is completed when the responding slave
drives /ACK active while driving status information on the /TMx lines. For write
transactions, the master must switch the /ADx lines from address to data information in
the second clock period and hold that data until acknowledged. In read cycles, the slave
drives the data simultaneously with the acknowledge cycle in the last period.

The following abbreviations are used in the timing diagrams and step sequences in this section:

R Rising (driving) edge of /CLK
F Falling (sampling) edge of /CLK

Chapter 3 NuBus Data Transfer

59

Read transactions

Figure 3-2 shows the timing for read bus transactions other than block transfers. Block
transfers are implemented only in the Macintosh Quadra family of computers and are not
available in other Macintosh computers. Read operations with data widths of 8, 16, and
32 bits are selected by the transfer mode signals (/TMx) and the two low-order address
signals (/AD1 and /ADO), as shown in Table 3-1. The slave must put the requested data
item on either 8, 16, or all 32 of the /AD31 through /ADO signals. Any bits other than the
requested data may be driven either high or low by the slave; they must be determinate.

Once the bus master has acquired the bus, a read bus transaction involves the following steps:

R(DT The bus master drives /START low, drives /ACK high, and drives the /ADx and
/TMx lines with the appropriate values to initiate the transfer.

F(1)* The bus slave samples the /ADx and /TMx lines.

R(2) The bus master releases the /ADx, /TMx, and /START lines and waits
for /ACK.

R(n)S The bus slave drives the requested data onto the /ADx lines, drives

the appropriate status code on /TM0 and /TM1, and drives /ACK low.

F(n) The bus master samples the /ADx and /TMx lines to receive the data
and note any error condition.

R(n+1) The bus slave releases the /ADx, /ACK, and /TMx lines. This may be
the R(1) of the next transaction.

T Ris the rising edge of /CLK.
tF is the falling edge of /CLK.
§2 < n <256, the system-defined time-out period.

60 Designing Cards and Drivers for the Macintosh Family

m Figure 3-2 Timing of NuBus read transaction

R(D KD RQ) ¢ ¢ Fn-1 R(n) F(n) R(n+1)
/CLK | L] | > S_L_r L
/ADx K Address > S S K Data S
/Thix < Mode 55 (Samscode Y

i I i :
/START ™N R] !

a PP ;
/ACK | | 55 N L

Write transactions

Figure 3-3 shows the timing for write operations other than block transfers. Block
transfers are implemented only in the Macintosh Quadra family of computers and are not
supported in other Macintosh computers. Write operations with data widths of 8, 16, and
32 bits are selected by the transfer mode signals (/TMx) and the two low-order address
bits (/AD1 and /ADO).

Chapter 3 NuBus Data Transfer 61

m Figure 3-3 Timing of NuBus write transaction

R(D F(1) RQ) F(2) RB) c f(n-1) R(n) F(n) R(n+1)
K _| L L] |_|, L |

; : L < ! :
/ADx —K Address X c ¢ | Data >—
/TMx —-<E Mode >— $S :K Status code >—

N
(Vs

/START I\ /

|
|
1
I
i
|
|
'
i
|
1
|
I
|

Jn
V)

|

I IS I,

/ACK]

The bus master has the responsibility for aligning data onto the appropriate /ADx lines for
halfword and byte writes. For example, a write of byte 3 requires that the data be placed
on /AD24 through /AD31; all other /ADX lines are not defined and are driven to either a high
or low state.

Once the bus master has acquired the bus, a write bus transaction involves the following steps:

R(D? The bus master asserts /START and the appropriate /ADx and
/TMx lines to initiate the transfer.

F(D# The bus slave samples the /ADx and /TMx lines.

R(2) ~ The bus master places the data to be written onto the /ADX lines,

releases the /START and /TMx lines, and waits for /ACK.

F(2) -F(m)} The bus slave samples the /ADx lines to capture the data. The data
may be sampled before or during the assertion of /ACK.

R(n) The bus slave asserts /ACK and places the appropriate status code
on /TM0 and /TM1 when the data is accepted.

F(n) The bus master samples /ACK and /TMx to determine the end
of the transaction.

R(n+1) The bus master releases the /ADx lines while the bus slave releases
the /ACK and /TMx lines.

TR is the rising edge of /CLK.
+F is the falling edge of /CLK.
§2 < n< 256, the system-defined time-out period.

62 Designing Cards and Drivers for the Macintosh Family

Acknowledge cycles
During acknowledge cycles the addressed slave drives the /TMx lines while it drives

/ACK. The /TMx lines provide status information to the current bus master, as shown in
Table 3-2.

m Table3-2 Transfer status coding

/™M1 /TMO Type of acknowledge

L L Bus transfer complete
L H Error

H L Bus time-out error

H H Try again later

Bus transfer complete: The bus transfer complete response indicates the normal valid
completion of a bus transaction.

Error: During a read or write operation, certain error conditions may occur. The
transaction terminates in a normal manner, and the bus master has the responsibility for
handling the error condition reported.

Bus time-out error: If an unimplemented address location is accessed, or for any other
reason a slave does not respond to a start cycle address, the attempted transaction is
acknowledged with a bus time-out error response. This time-out response indicates that
the system-defined time-out period has elapsed while the bus is busy (that is, the bus is
between start and acknowledge cycles) and no data transfer acknowledge has occurred.
Bus time-out support logic on the Macintosh main logic board enforces a period of 256
clock periods, or 25.6 pis, and assumes the role of the nonresponding slave; it generates an
acknowledge cycle with a bus time-out error code.

Try again later: This response status code indicates that a slave is unable to respond at
this time to a data-transfer request from a bus master. The master should retry the
transaction; slaves should be designed so that a large number of retries are not required.

A Macintosh computer generates a processor bus error exception (/TEA signal on 68040
machines, /BERR signal on others) if its microprocessor attempts a NuBus access that is
terminated with an error, a bus time-out, or a try-again-later response.

Attention cycles

An attention cycle is defined as a bus cycle during which both /START and /ACK are
asserted. During an attention cycle, the /TMx lines have a different function. The available
codings are shown in Table 3-3.

Chapter 3 NuBus Data Transfer

= Table 3-3 Attention cycle coding

/M1 /’fMO Type of attention cycle

Attention-null

Reserved
Attention-resource-lock
Attention-cache

usanil ol
ju ol e e n il o

Attention cycles can be used to reinitiate bus arbitration (attention-null), to signal a
resource lock (attention-resource-lock), or both. Refer to Chapter 4, “NuBus Arbitration,”
for a detailed explanation of bus arbitration and resource locking.

Attention-null: The attention-null cycle has two uses:

m (o reinitiate arbitration after the bus has been requested and won, but the new bus
owner decides not to transfer data (in this case, the new bus owner must generate an
attention-null cycle)

m to indicate the end of a data transfer using a locked resource

During an attention-null cycle, the /ADx lines are ignored by all bus cards, and no data may
be transferred.

Attention-resource-lock: An attention-resource-lock cycle occurs at the beginning of a
sequence of locked transactions constituting a locked tenure of the current bus master.
During this tenure, cards with lockable multiport resources lock them against access by
local processors other than the NuBus master. That tenure is terminated by an attention-
null cycle. During an attention-resource-lock cycle, the /ADx lines are ignored by all bus
cards, and no data may be transferred.

Attention-cache: The attention-cache cycle is used in cache-coherent transactions. The
master drives the /ADx and /TMx lines with the desired address, block size, and transfer
mode. The attention-cache cycle will reinitiate arbitration, but does not affect the state
of any resource lock. NuBus cache-coherency transactions are not currently supported on
any of the Macintosh computers.

You should follow these implementation rules:

m Masters must drive /ACK high during their start cycle to guarantee that /ACK is in the
unasserted state and the start cycle is not interpreted as an attention cycle.

m Masters must ensure that the first /ACK terminates a transaction. An attention cycle
immediately following the acknowledge cycle must not latch data.

m Slaves must qualify /START with the logical complement of /ACK to decode a start
cycle. Otherwise, an attention cycle could be misinterpreted as a start cycle.

4 Designing Cards and Drivers for the Macintosh Family

Interrupt operations

Three possible ways to handle NuBus interrupts are available, but only one way is used by
the Macintosh computers with the NuBus interface.

By write transaction

Interrupts on the NuBus can be implemented as write transactions. Interrupts are not done
this way on Macintosh computers. Interrupt operations require no unique signals or
protocols. Any card on the NuBus that is capable of becoming bus master can interrupt a
processor card by performing a write operation into an area of memory that is monitored
by that processor. Any address range on the processor card can be defined as its interrupt
space. This allows interrupts to be posted to individual processors and allows interrupt
priority to be software specified by memory mapping the priority level.

By slots sharing a single NuBus /NMRQ line

The individual slot /NMRQ (nonmaster request) signals may drive a single NuBus line
(/NMRQ), in which case, the system processor will have available only the wired-OR result
of all of the slot /NMRQ signals. In this case, the software must poll the slots capable of
generating the bus /NMRQ signal to determine the source or sources of the interrupt.
Interrupts are not done this way on Macintosh computers.

By a dedicated /NMRQ line from each slot

Macintosh computers with NuBus use a separate (non-NuBus) /NMRQ line from each slot
to support interrupts (see Figures 1-1 through 1-7). Each card slot has a unique /NMRQ line
driving an OR gate whose output is a real hardware interrupt signal to the microprocessor
(through VIA2, or equivalent). In addition, each of the /NMRQ lines can be independently
polled by the processor, to allow the software to communicate with the appropriate
handlers for each of the cards asserting /NMRQ. NuBus expansion cards must keep the
/NMRQ signal asserted until the interrupt service routine gets called. The interrupt service
routine must clear the interrupt.

Chapter 3 NuBus Data Transfer

1X block data transfers

Single-rate block transfers, or 1X block transfers, have not been implemented in most
Macintosh computers with NuBus, and have only recently been provided in the Macintosh
Quadra 700 and the Macintosh Quadra 900. Keep in mind that the following discussion
applies only to the NuBus implementation in the Macintosh Quadra family-computers.

A 1X block transfer is a read or write transaction in which multiple data values are
transferred. A 1X block transfer consists of a start cycle, multiple data cycles to or from
sequential address locations, and an acknowledge cycle. The number of data cycles is
controlled by the master and communicated during the start cycle. Allowed lengths of
1X block transfers are 2, 4, 8, and 16 words. (Only 32-bit NuBus word transfers are
supported in block-transfer mode.)

The /TMx and /ADx encoding for 1X block transfers is shown in Table 3-1. The starting
address of the block must correspond to the size of the block and is encoded by the
/AD2 through /ADS lines, as shown in Table 3-4.

During a 1X block transfer, each data cycle is acknowledged by the responding slave. The
intermediate acknowledges are data cycles where /TMO is asserted and /TM1 and /ACK are
both unasserted. For intermediate acknowledgments, /TMO0 has the same significance and
timing as the /ACK signal for nonblock transfers. The acknowledgment of the final word
transfer is a standard acknowledge cycle. Status codes are shown in Table 3-2.

m Table3-4 Block size and starting address coding for 1X block transfers

Block size Block
/AD5 /AD4 /AD3 /AD2 (words) starting address
—_ — — H 2 (AD31-AD3)000
—_ — H L 4 (AD31-AD4)0000
- H L L 8 (AD31-ADS5)00000
H L L L 16 (AD31-AD6)000000
L L L L Error

66 Designing Cards and Drivers for the Macintosh Family

1X block read

Figure 3-4 shows the timing for a NuBus 1X block read transaction. See Table 3-1 for the
/TMx and /ADx encoding that initiates block reads. The /AD5 through /AD2 lines
determine the size and starting address of the transaction, as shown in Table 3-4. The
responding slave drives data onto the bus, and the initiating bus master accepts the data
on each intermediate or final acknowledge. Assertion of /TMO is used by the responding
slave as an intermediate acknowledge, meaning that the next consecutive word of data is
ready to be put on the bus.

s Figure 3-4 Timing of NuBus 1X block read transaction

R(D) F(1) R(Q2) F(n-1) R(n) F(m) R(n+1) . _F(b-1) R F(b) R(b+1D)

o S I LI 51 L "L L]

D31/AD%

/ADS-/ADO D >—

i

! S ; . , !
/TMO : R N\ / ° IN_Status code p——
/TM1 ___i/ —s S E T K: Status code y——

E i G E : < G ? |
pr TN VT T s

i L C C i H < C i |
/ACK ! E) I ! E D J :'\ : V el

1 The addressed slave is responsible for driving /TMO to the desired state between R(1) and R(b + 1).

Chapter 3 NuBus Data Transfer 67

Once the bus master has acquired the bus, a 1X block read consists of these steps:

R(Dt The bus master asserts /START and the appropriate /ADx and /TMx
lines to initiate the transfer.

F(1)# The bus slave samples the /ADx and /TMx lines.

R(2) The bus master releases the /ADx, /TMx, and /START lines and waits
for an intermediate acknowledge (/TMO asserted).

R(n)S The bus slave places the first word of requested data on the /ADx
lines and asserts /TMO.
F(n) The bus master samples the /ADx lines and /TMO to capture data. The

/TMO signal is asserted and the first word of data is captured.

R(n+1) If the next consecutive word of data is not ready to be put on the
bus, the slave drives /TM0 unasserted until the word is ready.

The previous three steps are repeated for ascending addresses until B~ 1 words have been
transferred, where B is the block size (2, 4, 8, or 16).

R(D)I The bus slave places the final word of requested data onto the /ADx
lines, asserts /ACK, and places the appropriate status code on /TMO0
and /TM1.

F(b) The bus master samples the /ADx and /TMx lines to receive the data

and note any error conditions.
R(b+1) The bus slave releases the /ADx, /ACK, and /TMx lines.

T Ris the rising edge of /CIK.

1F is the falling edge of /CLK.

§2 < n <256, the system-defined time-out period.
12<b<256B.

1X block write

Figure 3-5 is a timing diagram for a NuBus 1X block write operation. Block writes

are similar to block reads except the bus master drives the data bus while the slave
‘accepts data. The format for describing block size and starting address is the same as
for block read.

68 Designing Cards and Drivers for the Macintosh Family

m Figure 3-5 Timing of NuBus 1X block write transaction

R(D F(D) RQ) F(n-1) R(n) F(n) R(n+1) . F(b-1) R(b) F(b) R(b+1)
/CIK g T e I i BN L L
/AD31-/AD6 —— Address | c Data X : - Data)
/AD5-/AD0 —< Blockinfo)X ; : Data X ; : Data)>—
/TMO L/ : AN Vak N\ Status code >——
/M1 — E ¢ o« l'/ i > “<; Status code p——
/START _L/S T T |
/ACK i b LT TN L/

t The addressed slave is responsible for driving /TMO to the desired state between R(#) and R(b + 1).

Once the bus master has acquired the bus, a 1X block write consists of these steps:

R(Dt The bus master asserts /START and the appropriate /ADx and /TMx
lines to initiate the transfer.

F(1)¢ The bus slave samples the /ADx and /TMx lines.

R(2) The bus master places the data to be written onto the /ADx lines,
stops driving the /ACK and /TMx lines, drives /START unasserted,
and waits for an intermediate acknowledge (/TMO asserted).

R(n) The bus slave asserts /TMO when the first word of data is accepted.

F(n-1) The bus slave samples the /ADx lines to capture the data being
written. The data may be sampled before or during the assertion of
/TMO.

R(n+1) The bus master places the next consecutive word of data on the bus.

Chapter 3 NuBus Data Transfer

The previous three steps are repeated for ascending addresses until B- 1 words have been
transferred, where B is the block size.

R(D)T The bus slave asserts /ACK and places the appropriate status code on
/TM0 and /TM1 when the final word of data is accepted.

F(b-) The bus slave samples the /ADx lines to capture the data. The b~
notation implies the data may be sampled before or during the
assertion of /ACK.

R(b+1) The bus master releases the /ADx lines while the bus slave releases the
/ACK and /TMx lines.

TR is the rising edge of /CLK.

1F is the falling edge of /CLK.

§2 < n <256, the system-defined time-out period.
T2<bh<256B.

1X block transfer errors

Although the length of a 1X block transfer is dictated by the master during the start cycle,
a 1X block transfer may be cut short by an error acknowledgment from the slave at any
time. The standard status codes shown in Table 3-2 are used.

The speed of a 1X block transfer is controlled by the slave; therefore, a master requesting
a 1X block transfer must be capable of transferring data at the speed of the fastest slave in
the system. This could be one word per NuBus clock cycle (one word per 100 ns). If the
master is incapable of transfers at the speed the slave specifies, an undetectable overrun
(or underrun) occurs.

NuBus specifies that if a slave supports 1X block transfers, it must support all types of
data transfer (byte, halfword, and word). In the case of a 1X block transfer request to a
slave that cannot support block transfers, that slave should terminate the first transfer
with /ACK and a normal status code. This is 7ot considered an error condition. The data
should be ignored for read or write purposes, but the master shall not assume that the data
transfer did not take place.

2X block data transfers

A 2X block transfer, or double-rate transfer, is a read or write transaction that is twice the
speed of a 1X block transfer. Double-rate block transfers are a new feature in the NuBus
90 specification. Block transfers have only recently been provided in the Macintosh
Quadra 700 and the Macintosh Quadra 900, and although computers in the Macintosh
Quadra family allow double-rate block transfers between NuBus cards, they do not
support double-rate transfers to or from main memory.

70 Designing Cards and Drivers for the Macintosh Family

In 2X block transfers, two NuBus words are transferred in a single NuBus cycle, allowing a
word to be transferred every 50 ns. The 2X block-transfer protocol also provides several
new capabilities not available with the 1X block-transfer protocol:

m longer transfer sizes (up to 256 words)
m autosizing, which allows a slave to prematurely terminate a transfer that is too long

m master flow control (slave flow control is available with both 1X and 2X block transfers)

Signal protocol for 2X block transfers

Two additional signals, /CLK2X and /TM2, have been introduced for 2X block transfers:

m /CLK2X synchronizes the 2X block data transfers. The falling (assertion) edge of
/CLK2X is coincident with the rising edge of /CLK. During a 2X block transfer,
modules drive new data on the assertion edge of /CLK2X and sample the data on the
following assertion edge.

s In conjunction with the block read and block write encoding of the /TMx and /ADx
lines at the beginning of a bus transaction, the bus master asserts /TM2 to request
that the addressed slave perform a 2X block transfer. Unlike the /TMx lines, the
master continues to drive /TM2 during the remainder of the 2X block transfer, using it
as a “master flow control” signal for pairs of NuBus words.

The transfer mode signals, /TMO and /TM1, also participate in a 2X block transfer. After
the start cycle of a 2X block transfer, the slave asserts /TM1 to indicate that it can
perform a 2X block transfer. The slave drives /TM1 unasserted during all intermediate
acknowledges (when /TMO is asserted) if it is not capable of performing 2X block
transfers. At the end of the 2X block transfer, the addressed slave drives /TM1 unasserted
to indicate that the next pair of words will be the last. This allows the slave to autosize, or
prematurely terminate, a 2X block transfer if it cannot transfer the requested amount of
data in a single transaction.

The start cycle and first word of a 2X block transfer use 1X block-transfer timing. If the
slave indicates that it can perform a 2X transfer by asserting /TM1, subsequent words are
transferred as pairs, and the last word is transferred during the acknowledge cycle. The less
stringent timing for the first and last words provides additional time to establish the
direction of the data transfer.

The number of words transferred is controlled by the master and communicated to the
slave during the start cycle. The allowed lengths of 2X block transfers are 4, 8, 16, 32, 64,
128, and 256 words. Only word transfers are provided in 2X and 1X block mode. Note that
the total duration of the transfer shall not exceed 256 /CLK cycles (or 25.6 Ws).

Chapter 3 NuBus Data Transfer

71

The size of the block to be transferred and its starting address are determined by an
encoding of the /ADX lines, as defined in Table 3-5. The encoding is identical to the one
used for 1X block transfers except that two word transfers are not permitted and transfers
of 32, 64, 128, and 256 words are permitted.

m Table3-5 Block size and starting address coding for 2X block transfers

/ADx lines Block size, Block
09 08 07 06 05 04 03 02 words starting address
- = - - — — H L 4 (AD31-AD4)0000
- - — — — H L 1L 8 (AD31-AD5)00000
- — — — H L L L 16 (AD31-AD6)000000
— — — H L L L L 32 (AD31-AD7)0000000
— — H L L L L L 64 (AD31-AD8)00000000
— H L L L L L L 128 (AD31-AD9)000000000
H L L L L L L L 256 (AD31-AD10)0000000000

2X block-transfer flow control

Master and slave flow control are provided during 2X block transfers, whereas only slave
flow control is provided during 1X block transfers. Allowing both the master and the slave
to control the transfer of data makes larger burst transfers possible without the need for
large buffers or frequent arbitration for NuBus and local board resources.

During 2X block transactions, both the master and the slave control the rate of transfer
using the /TM2 and /TMO lines, respectively. During a 2X block read transaction, the slave
uses the /TMO signal to indicate when it is ready to send the data, and the master uses the
/TM2 signal to indicate when it can receive the data. During a 2X block write transaction,
the bus master uses the /TM2 signal to indicate when it can send the data, and the slave
uses the /TMO signal to indicate when it can receive the data.

2X block read transfer

Figure 3-6 shows the timing diagram for a NuBus 2X block read transaction. See Table 3-1
for the /TMx, /AD0, and /AD1 encoding that initiates 2X block reads. The /ADx lines
determine the starting address of the transaction, as shown in Table 3-5.

72 Designing Cards and Drivers for the Macintosh Family

m Figure 3-6 Timing of NuBus 2X block read transaction

X Next address)

S0
—

Sb-1) D)
-

[S oK%} [S 2 S o 8 g)
(¥ (Ve oD o
- =
> < =
__ S =) R R=TNN-1 B I 7' |||||
b} 2 =
£ -
—— —_— 3= \Il'T |||||||||||||||||
= S k=
b B
wm ———- -~ Fr——da- Iy —— -
(ﬁ (VORI o o
)_
s = NN JEDEDDE SNSDEDEEN PPN S
=" m *
) .] -
- R = RN NN, A D R
m_ E
S
— S
=L 1 N/ ARy R o
/D\) > ﬁ
= <
E E
S e} Jh Iy S I
O 2l [Va)
=~ 7,2 J ~ =] =t ~
o
A AN NN
—
-
=

D(1)
L

/CLK

m

/TMO

m

/TM1

/TM2

m

/START

/ACK

Chapter 3 NuBus Data Transfer

73

Once the bus master has acquired the bus, a 2X block read consists of these steps:

D(D)

S(D

D(2)

D(nl)

D(n)

y(n)

74

The bus master asserts /START and the appropriate /ADx and /TMx
lines to initiate the transfer.

The bus slave samples the /ADx and /TMx lines. Bus modules capable
of supporting 2X block transfers sample the /TM2 line.

The bus master stops driving the /ADx, TMx, and /ACK lines. The
master drives /TM2 unasserted, indicating that it is ready to receive
the first pair of words. The master drives /START unasserted and
waits for an intermediate acknowledgment (/TMO asserted).

The bus slave asserts /TM0 when the first word of data is accepted. If
the slave is capable of supporting 2X block transfers, it asserts /TM1
and drives /ACK unasserted.

If the bus master issues a 2X block-transfer request of 16 words or
less to a slave that can only support 1X block transfers, the addressed
slave should respond by driving /TM1 and /ACK unasserted, with
/TM1 unasserted during all intermediate acknowledges (when /TMO is
asserted), and the block transfer will be completed using the 1X
block transfer.

If the bus master issues a 2X block-transfer request of 32 NuBus
words or more to a slave that cannot support 2X block transfers, the
slave issues an immediate acknowledgment cycle with a bus-transfer
complete status code.

The bus master drives /TM2 unasserted to indicate that it can accept
the next pair of words, or asserted to indicate that it cannot accept
the next pair of words.

The slave drives /TMO asserted to indicate that it can send the next
pair of words, or unasserted to indicate that it cannot send the next
pair of words.

The slave continues to assert /TM1 until it is ready to transfer the last
pair of NuBus words. The slave drives /TM1 unasserted (coincident
with the assertion of /TMO) if the next pair of words is the last pair to
be transferred.

If the slave asserted /TMO during this cycle, the slave drives the first
word of the next pair on /ADX lines after an output hold delay.

Designing Cards and Drivers for the Macintosh Family

S(n)

x(n+1)

y(n+1)

D(n+1)

The bus master samples /TMO and the slave samples /TM2 to
determine if the next pair of NuBus words should be transferred.

If /TMO is asserted and /TM2 is unasserted (data is transferred), the
master accepts the first word of the pair. After an output hold delay,
the slave drives the second word of the pair on /ADx lines.

If /TMO is asserted and /TM2 is unasserted, the master accepts the
second word of the pair. The slave drives the first word of the next
pair on /ADx lines after an output hold delay.

If the slave is not ready to send the next pair of NuBus words, the
slave drives /TMO unasserted until it is ready to send the next pair
of words.

The previous steps starting at D(n) are repeated for ascending addresses until all but the
final pair of NuBus words have been transferred.

S(b-1)

D(b)

S(b)
D(b+1)

The master, driving /TM2 unasserted and responding to the assertion
of /TMO and /TM1 and /ACK unasserted, accepts the last pair of
words as shown here:

x(b) The master accepts the first word of the final pair. After
an output hold delay, the slave drives the final NuBus
word on the /ADx lines.

y(b) The master accepts the final NuBus word. The slave
continues to drive the last word of data on the /ADx
lines.

In addition to transferring the last pair of words, the slave drives the
appropriate transfer response on /TM0 and /TM1 and drives /ACK
asserted.

The master samples /TM1 and /TMO to note any error conditions.

The slave stops driving the /ADx, /TM1, /TM0, and /ACK lines, and
the master stops driving the /TM2 line. The bus owner drives /ACK to
a determinate state. This may be the D(1) of the next transaction.

2X block write transfer

Figure 3-7 shows the timing diagram for a NuBus 2X block write transaction. See Table 3-1
for the /TMx, /AD1, and /ADO encoding that initiates 2X block writes. Double-rate block
writes are similar to block reads except the bus master drives the data bus while the slave
accepts the data. The format for describing block size and starting address is the same
for a 2X block read and is shown in Table 3-5.

Chapter 3 NuBus Data Transfer

75

m Figure 3-7 Timing of NuBus 2X block write transaction

X Next address

S(b)
L
D7
tus
s

S(b-1)D(b)
!
.
S S
o 'ready’ m
5 0
D6)

2* D XD5X zxi

ready |

. / 'lastfpaix’r’ ’
— 'wlait'

D4 X D5)

lllllllllll B T (LT

---I-.l-! a.-l---- ----.ll!ull-i!--l
£

m
m
m

/ADx
/TMO
/TM1
/TM2
/START
/ACK

76 Designing Cards and Drivers for the Macintosh Family

Once the bus master has acquired the bus, a 2X block write consists of these steps:

D(D)

S(D)

D(2)

D(nl)

D(n)

y(n)

The bus master asserts /START and the appropriate /ADx and /TMx
lines to initiate the transfer. The master asserts /TM2 to request a 2X
block transfer.

The bus modules sample the /ADx and /TMx lines. Bus modules
capable of supporting 2X block transfers sample the /TM2 line.

The bus master drives the first NuBus word to be written on /ADx
lines and stops driving the /TMO, /TM1, and /ACK lines. The master
drives /TM2 unasserted, indicating that it is ready to transmit the
first pair of data words. The master drives /START unasserted and
waits for an intermediate acknowledgment on /TMO.

If the slave is capable of supporting 2X block transfers, it asserts
/TM1 and drives /ACK unasserted.

If the bus master issues a 2X block-transfer request of 16 words or
less to a slave that can only support 1X block transfers, the addressed
slave should respond by driving /TM1 and /ACK unasserted, with
/TM1 unasserted during all intermediate acknowledges (when /TMO is
asserted), and the block transfer will be completed using the 1X
block transfer.

If the bus master issues a 2X block-transfer request of 32 words or
more to a slave that cannot support 2X block transfers, the slave
issues an immediate acknowledgment cycle with a bus-transfer
complete status code.

The slave drives /TM0 asserted to indicate that it can accept the next
pair of NuBus words, or unasserted to indicate that it cannot accept
the next pair of words.

The slave continues to assert /TM1 until it is ready to transfer the last
pair of words. The slave drives /TM1 unasserted (coincident with the
assertion of /TMO) if the next pair of words is the last to be transferred.

The bus master drives /TM2 unasserted to indicate that it can send the
next pair of NuBus words, or asserted to indicate that it cannot send
the next pair of words.

If the master drives /TM2 unasserted during this cycle, the master
drives the first word of the next pair on the /ADx lines after an output
hold delay.

Chapter 3 NuBus Data Transfer

S(n)

x(n+1)

y(n+1)

D(n+1)

The bus master samples /TMO, and the slave samples /TM2 to
determine if the next pair of words should be transferred.

If /TMO is asserted and /TM2 is unasserted, the master drives the
second word of the pair on the /ADx lines.

If /TMO is asserted and /TM2 is unasserted, the slave accepts the
second word of the pair. The master drives the first word of the next
pair on the /ADX lines after an output hold delay.

If the slave is not ready to accept the next pair of words, the slave
drives /TMO unasserted until a bus cycle in which it is ready to send
the next pair of words. If the master is not ready to send the next
pair of words, the master drives /TM2 asserted until a bus cycle in
which it is ready to send the next pair of words.

The previous steps, starting at D(n), are repeated for ascending addresses until all but the
final pair of words has been transferred.

S(b-1)

D(b)

S(b)
D(b+1)

78

The master, driving /TM2 unasserted and responding to the assertion of
/TMO0 and /TM1 and /ACK unasserted, sends the last pair of NuBus
words as shown here:

x(b) The slave accepts the first word of the final pair. After
an output hold delay, the master drives the final word on
the /ADx lines.

y(b) The slave accepts the final word of data. The master

continues to drive the last word of data on the /ADX lines.

In addition to accepting the last pair of NuBus words, the slave
drives the appropriate transfer response on /TM0 and /TM1 and
drives /ACK asserted.

The master samples /TM1 and /TMO to note any error conditions.

The master stops driving the /ADx and /TM2 lines, and the slave stops
driving the /TM1, /TMO, and /ACK lines. The bus owner drives /ACK to
a determinate state. This may be the D(1) of the next transaction.

Designing Cards and Drivers for the Macintosh Family

2X block write transfer with delayed status indication

To allow the slave to report parity errors on 2X block write transfers, the slave can defer
the acknowledgment cycle until the last word of the transfer has been received and its
parity has been evaluated. The capability is optional for 2X slaves, but all 2X bus masters
must be able to accept a deferred acknowledgment after a 2X block write transfer.
Deferred acknowledgments are not permitted after a 2X block read transfer. Figure 3-8
shows the timing diagram for a 2X block write with delayed indication.

m Figure 3-8 Timing of NuBus 2X block write with delayed status indication

S(b-1 Db (c-1) D S(
JCIK ()5 gc (c) 0

] 1
1 1

JCLK2X mw
/ADx :: ?Z ::E D7 > Next address >
/TMO M@/—S SE 'delay’ ;\ Status
/TM1 ? ast pair’ ; SEE E
/TM2 __-l:/ m ; mo SE ; m
1 | | j
/START m ; 5 L Tl
/ACK s 5 s)

Slave’s latched data { D6 XX D7 D

Chapter 3 NuBus Data Transfer

79

Once the bus master has acquired the bus, a 2X block write with delayed status indication
consists of the following steps:

S(b-1) The master, driving /TM2 unasserted and responding to the assertion of
/TMO and /TM1, and /ACK unasserted, sends the last pair of data words

as shown here:

x(b) The slave accepts the first word of the final pair. After
an output hold deldy, the master drives the final word
on the /ADx lines.

y(b) The slave accepts the final word of data. The master

continues to drive the last word of data on the /ADx lines.

D(b) In addition to accepting the last pair of data words, the slave drives
/TMO and /TM1, and /ACK unasserted.

S(b) = S(c) The master, driving /TM2 unasserted, waits until the slave asserts
/ACK.

D(¢) The slave drives the appropriate transaction response status on the
/TM1 and /TMO lines and asserts /ACK.

S(o) The master, driving /TM2 unasserted and responding to the assertion
of /ACK by the slave, samples /TM1 and /TMO to note any error
conditions.

D(c+1) The master stops driving the /ADx and /TM2 lines, and the slave stops
driving the /TM1, /TMO, and /ACK lines. The bus owner drives /ACK to
a determinate state. This may be the D(1) of the next transaction.

80 Designing Cards and Drivers for the Macintosh Family

Cache coherency

Cache coherency is an optional NuBus '90 protocol used to determine the ownership
of data between multiple processors with private caches and to maintain coherence,
or agreement, between data shared by the processors and shared memory. New
signals /CM0, /CM1, /CM2, and /CBUSY have been defined to support a NuBus
cache-coherency protocol.

A Important NuBus cache-coherent transactions are not currently
implemented in any members of the Macintosh family, but they
may be implemented in future Apple products. Apple has
chosen to implement cache coherency differently. The
following discussion, although not pertinent to the Macintosh
computer, is provided for completeness in describing the
NuBus. An overview of cache coherency has been provided. For
more details, please refer to the NuBus '90 specification. A

Shared memory may be physically located on a processor module but can be accessed by
other processors via NuBus. In other implementations, the shared memory may be
physically located on an external memory module that is accessed only via NuBus.

The use of a cache memory for each processor can greatly reduce bus traffic since the
majority of memory references can be serviced by the cache. Bus traffic can be further
reduced by using a copyback cache, where the data in the cache is written to shared
memory only if the cache is full, or during a cache flush. Cache memories typically transfer
blocks of data, referred to as a cache line.

Since multiple caches can have simultaneous copies of data for a given memory location,
a cache-coherency protocol is required to ensure that all copies remain consistent.

In this section, you can find information about the cache line states, cache snooping,
transactions in the cache-coherency protocol, cache-coherent states, and arbitration by
cache-coherent modules.

Chapter 3 NuBus Data Transfer

81

Cache line states and sizes

A cache line can be in one of four states defined below.

m A cache line is modified if the data may be different from memory and there is only one
cached copy of the line in the system.

m A cache line is exclusive if the data is known to be the same as memory and there is only
one cached copy of the line in the system.

m A cache line is shared if the data is known to be the same as memory and another cached
copy of the line may exist somewhere in the system.

m A cache line is invalid if there is not an up-to-date copy of the line in the module’s cache.

A cache line can be 4, 8, 16, 32, or 64 bytes long, and caches with different cache line sizes
can be used at the same time. The addresses of cache lines are aligned to their cache size.

Read and write miss

When a processor issues a read and the requested location is exclusive, shared, or
modified, the operation is said to be a read hit. The processor can use the data in the
cache and no bus transaction is necessary. If the location is invalid, the operation is said
to be a read miss.

When a processor issues a write and the requested location is modified or exclusive, the
operation is said to be a write hit. The processor can modify the data in the cache and
no bus transaction is necessary. If the location is shared or invalid, the operation is said to
be a write miss, even though the location may be valid.

8 Designing Cards and Drivers for the Macintosh Family

Snooping

A snooping module is one that snoops, or monitors, cache-coherent transactions between
a master and a slave. This can include cache tag comparison, reporting cache line status to
the master, and, if necessary, writing modified data to shared memory. Snooping modules
monitor the /CMx signal lines to detect the cache-coherence start cycle and monitor the
address and block size specified by the /ADx and /TMx lines. The response of the
snooping module is based on the initial state of the cache line (modified, exclusive,
shared, or invalid) and the transaction mode indicated by /CM1 and /CM2. The response
of the snooping module does not depend on the type of data transaction. In some cases,
the snooping module may be required to write back a modified cache line to update
memory. After a snooping module examines its cache line tags and performs a write-back
transaction (if necessary), it updates the cache line tag to its final state.

Cache-coherency transactions

Cache-coherent modules use the existing bus arbitration protocol to request bus
ownership and an additional protocol and signal line to ensure fair access to the bus by all
cache-coherent modules. Cache-coherent transactions are initiated by a master, are
observed by snooping modules, and are completed by the addressed slave. During the
cache-coherent start cycle, the /CM1 and /CMO signal lines specify the cache-update
transaction, and the /TMx signal lines specify the data transaction. Table 3-6 summarizes
the cache-coherent transactions.

m Table3-6 Cache-coherent transactions

/CM1 /CM0 /M1 /TMO Transaction

L L H L ReadExclusive

L L H H AttentionExclusive
L L L — WriteExclusive

L H H L ReadShared

L H H H AttentionShared

L H L — (not used)

H L H L ReadInvalidate

H L H H AttentionInvalidate
H L L — WriteInvalidate

H H H L ReadNosnoop

H H H H (not used)

H H L — WriteNosnoop

Chapter 3 NuBus Data Transfer

All cache-coherent transactions begin with a cache-coherent start cycle that is coincident
with the /START cycle of a data-transfer or attention-cache cycle. During the cache-
coherent start cycle, the /CM0 and /CM1 signal lines specify the cache-update transaction
(exclusive, shared, invalidate, or nosnoop), and the /TMx lines specify the data
transaction (read, write, or attention).

Read and write transactions may use single word transfers or 1X and 2X block transfers,
depending on the capabilities of the master and the slave. The attention transactions are
address-only transactions in which the master asserts both /ACK and /START during the
same cycle. They can be used by processors accessing physically local but globally
coherent memory, for flushing or purging data, or in other situations where an initial read
or write data transaction is not required.

The initial read, write, or attention transaction may be followed by one or more data
transactions by snooping modules that write back modified data to shared memory
before the original master updates its cache with the updated data in memory.

The ReadExclusive, AttentionExclusive, and WriteExclusive transactions
guarantee that at the end of the transaction the master has the only copy of the data. The
ReadShared and AttentionShared transactions guarantee that at the end of the
transaction the master’s copy of the data is the same as memory. The ReadInvalidate,
AttentionInvalidate, and WriteInvalidate transactions guarantee that at the
end of the transaction no other cache in the system has a copy of the data. Finally, the
ReadNosnoop and WriteNosnoop transactions inhibit snooping by all modules that
could potentially snoop the transaction.

The following sections give a brief description of each transaction. For more information and
for timing diagrams for each transaction, please refer to the NuBus '90 draft specification.

ReadShared

A ReadShared transaction is used when a processor cache read miss occurs and data
must be read from an external shared memory module. At the end of the transaction, the
processor’s cache and shared memory will contain valid copies of the data, and possibly
one or more external caches may contain valid copies of the data.

ReadExclusive

The ReadExclusive transaction can be used to service a processor cache write miss by
ensuring that the cache line is exclusive before it is modified. The shared memory is
located on an external memory module.

8 Designing Cards and Drivers for the Macintosh Family

ReadInvalidate

The ReadInvalidate transaction may be used by a master to read shared memory and
invalidate any cache lines that reference data. The use of the ReadInvalidate
transaction assumes that the processor previously copied back to memory the set of
modified cache lines that correspond to areas of memory that will be read.

ReadNosnoop

The ReadNosnoop transaction may be used by a master, such as a DMA I/O controller, to
read shared memory with snooping inhibited. The used of the ReadNosnoop transaction
assumes that the processor has previously copied back to memory the set of modified
cache lines that correspond to areas of memory that will be read using the ReadNosnoop
transaction. Alternatively, the ReadNosnoop transaction can be used to read data from
areas of memory that use a write-through cache-coherence policy, where the cache
controller always writes to both the cache and main memory. Since snooping is inhibited,
the state of any cache lines is unaffected.

The ReadNosnoop transaction can also be used to access read-only data from memory,
such as instruction code and data that cannot be modified. After the transaction is
performed, the master marks its cache line shared.

WriteExclusive

The writeExclusive transaction can be used for writing partial cache lines to external
shared memory. The master first writes the data, typically a single word, to shared
memory. If none of the snooping modules have modified data, the writeExclusive
transaction is complete. Otherwise, the master waits until all snooping masters have
updated shared memory with their modified data, and then retries the original write
transaction. At the end of the transaction, the processor’s cache line will be in the
exclusive state. An alternative to the WwriteExclusive transaction is a
ReadExclusive transaction followed by a writeNosnoop (copyback) transaction.

WriteInvalidate

The writeInvalidate transaction may be used by a master, such as a DMA I/O
controller, to invalidate all copies of the cache line and write a full cache line to memory.
The previous contents of the cache line are not needed since the entire cache line is
replaced by new data. At the successful completion of the transaction, no cache in the
system contains a valid copy of the cache line.

Chapter 3 NuBus Data Transfer

WriteNosnoop

The writeNosnoop transaction may be used by a master, such as a DMA I/O controller,
to write to shared memory with snooping inhibited. The use of the writeNosnoop
transaction assumes that the processor has previously invalidated the set of cache lines
that correspond to areas of memory that will be written using the writeNosnoop
transaction. Since snooping is inhibited, the state of any cache lines is unaffected.

The writeNosnoop transaction can also be used to copy back a modified cache line to
external shared memory to free up space in the cache. Snooping is not required since the
cache has an exclusive copy of the data. After the copyback operation is performed, the
master marks its cache line either invalid or exclusive.

AttentionShared

The AttentionShared transaction is similar to ReadShared except that it is used by
masters accessing physically local but globally coherent memory. The At tentionShared
transaction is used when a processor cache read miss occurs and data must be read from
shared memory physically located on the processor module. At the end of the transaction,
the processor’s cache and shared memory will contain valid copies of the data, and
possibly one or more external caches will contain valid copies of the data.

AttentionExclusive

The AttentionExclusive transaction is similar to ReadExclusive except that it is used by
masters accessing physically local but globally coherent memory. The AttentionExclusive
transaction can be used to service a processor cache write miss by ensuring the cache line is
exclusive before it is modified. The shared memory is physically located on the processor module.

AttentionInvalidate

The AttentionInvalidate transaction is used by a caching master to service a write
hit to a shared cache line by invalidating all other caches and changing its cache line status
from shared to modified. All other caches are invalid after the completion of the
AttentionInvalidate transaction.

86 Designing Cards and Drivers for the Macintosh Family

Non-cache-coherent transactions to caching modules

It is recommended that cache-coherent modules support accesses by noncaching bus
masters. This includes DMA I/O controllers and earlier bus master designs that can only
issue non-cache-coherent read and write transactions.

It is recommended that memory locations accessed by read transactions be consistent
with any cached copies of the data. The simplest approach is for caching processors to
use a write-through cache, where all processor write transactions are written to memory as
well as to the cache. This technique will work for caching processors accessing physically
local or external memory, and guarantees that data read from memory will be up-to-date.
If the shared memory is physically located on the processor module, a copyback cache-
coherence policy can be used if the processor can snoop and supply its modified data to
external read transactions that reference its memory. Alternatively, cache coherency can
be enforced by software flushing the processor caches to memory prior to any read
transactions by noncaching masters.

It is recommended that memory locations accessed by nonglobal write transactions be
snooped by caches so that the data in the caches are up-to-date. Alternatively, cache
coherency can be enforced by software invalidating areas of memory prior to any write
transactions by non-cache-coherent masters.

Cache-coherent states

The cache-coherency protocol consists of several states that are defined by the current
and previous states of /CM2 and /CM1 and the type of cache-coherent transaction
requested by the master. The cache-coherent transactions and their /CMx signal line
encodings are summarized in Table 3-7. All cache-coherent transactions are identified by
the assertion of /CM2 after /CM2 was previously unasserted. The state of /CM1 during the
previous cycle identifies the actual start of the cache-coherent transaction and
subsequent write-back and retry transactions.

Chapter 3 NuBus Data Transfer

m Table 3-7

Cache-coherent transaction encodings

Bus cycle n—-1 Bus cycle "

/cM2t /el /CM2 /CM1 /CMO Transaction

H H (cc-start) L L L ReadExclusive,
AttentionExclusive,
Orf WriteExclusive

H H (cc-start) L L H ReadShared Of AttentionShared

H H (cc-start) L H L ReadInvalidate,
AttentionInvalidate,
OrWriteInvalidate

H H (cc-start) L H H ReadNosnoop Of WriteNosnoop

H L (nosnoop) L - - Write-back or retry (nosnoop)

T For all cache-coherent transactions starting at bus cycle 7, /CM2 must have been unasserted high
during the previous bus cycle, n- 1, and /CM2 must be asserted low at bus cycle #.

The cache-coherency states are defined here.

The cache-coherent idle cycle (cc-idle) is the inactive state of the cache-coherency
protocol where /CM2 and /CM1 are both unasserted.

The cache-coherent start cycle (cc-start) is a single bus cycle in which /CM2 is
asserted during the bus cycle immediately following a cc-idle cycle. The cc-start cycle
must be coincident with the /START cycle of a data-transfer or attention cycle.

The cache-coherent snoop cycles (cc-snoop) assert /CM2 immediately after the
ce-start cycle if additional time is required to snoop the transaction and check for a
cache hit. As each snooping module determines the status of its cache tags, it
releases the /CM2 line and asserts its cache line status code on /CM1 and /CMO.

The cache-coherent acknowledge cycle (cc-ack) is a single bus cycle in which /CM2 is
unasserted after having been asserted during the cc-start and cc-snoop cycles. The
last snooping module to release the /CM2 line determines when the cc-ack cycle
occurs, and the bus master samples the cache status code on /CM1 and /CMO.

During the cc-ack cycle, one or more snooping modules may have asserted /CMO to
indicate that they have a valid (shared or exclusive) copy of the data. If none of the
snooping caches contain modified data (/CM1 unasserted), the protocol is considered to
be in the cc-ack/cc-idle state since /CM2 and /CM1 are both unasserted and another
cache-coherent transaction may begin on the next cycle. The master updates its cache line
state with the “shared” status information returned on /CMO.

88

Designing Cards and Drivers for the Macintosh Family

During the cc-ack cycle, one or more snooping modules may have asserted /CM1 to
indicate that they will perform write-back transfers to return their modified data to
shared memory. In addition, the master may retry the original data transfer to update its
cache and cache line tags with the “shared” status information returned on /CM0 during
the cc-ack cycle.

The /CMx signal lines are used to identify write-back and retry operations and to
determine when modules can request bus ownership. The master asserts /CM1 immediately
after the cc-ack cycle if it intends to retry the original data transaction. Snooping
modules continue to assert /CM1 and also assert /CMO immediately after the cc-ack cycle.
As each snooping module becomes bus owner and performs its write-back transaction,
the module releases both /CM1 and /CMO. After all snooping modules have written back
their modified data to memory, /CMO will be in the unasserted state (and /CM1 remains
asserted if the master intends to retry the original data transaction).

Sensing the unassertion of /CMO, the master can then retry the original data transaction to
update its cache. When the master begins the retry operation, it releases /CM1. Once
/CM1 is released, other cache-coherent modules may request bus ownership.

There are several rules that govern the relationship between cache coherency and data
transaction protocols.

m The cache-coherent transaction must be coincident with the data or attention-cache
transaction’s /START cycle.

m The cache-coherent acknowledge cycle can occur before, during, or after the data
transaction’s acknowledge cycle.

m A cache-coherent cc-start cycle and associated data transaction /START cycle must
wait for the completion of the previous cache-coherent transaction.

m Any number of non-cache-coherent transactions may occur during a single cache-
coherent transaction.

Chapter 3 NuBus Data Transfer 89

Cache-coherent masters

A cache-coherent master indicates the type of cache-coherent transactions on the /CMx
lines during the cc-start cycle. After the snooping modules have snooped the transaction,
the master notes the systemwide cache status on the /CMx lines reported during the cc-ack
cycle. The assertion of /CM1 indicates that one or more caches have a modified copy of
data that will be returned to memory using the write-back transaction. The assertion of
/CMO indicates that one or more caches may have retained a shared copy of the data.

If /CM1 was asserted during the cc-ack cycle, the master waits until all caches have
completed their write-back transactions. Then the master retries the read or write data
transfer driginally requested during the cache-coherent start cycle.

By retrying the read data transfer of a ReadExclusive or ReadShared transaction, the
master can update its cache with formerly modified data from snooping caches. By retrying
the write data transfer of a writeExclusive transaction, the master can write over
formerly modified data from snooping caches. In an optimization for ReadExclusive
and ReadShared transactions, the master can snarf the write-back transactions and thus
eliminate the need to retry the original read data transfer.

At the conclusion of the cache-coherent transaction, the master updates its cache line
state according to Table 3-8.

90 Designing Cards and Drivers for the Macintosh Family

m Table 3-8 Cache-coherent master actions

Mode and initial statet cc-ack status Action and final state
Transaction mode Master state /CM1 /CMO Action Master state
Exclusive Sorl L H Retry/snarff M, E, S, or I
Exclusive Sorl H H None M, E, S, orl
Shared I L L Retry/snarf Sorl
Shared I L H Retry/snarf E, S orl
Shared I H L None Sorl
Shared I H H None E, S, orl
Invalidate Sorl H H None M, E, S, orl
ReadNosnoop | (DMA transfer) H H None I (data read)
ReadNosnoop AllnotM H H None Sorl
WriteNosnoop I (DMA transfer) H H None I (data written)
Copyback M H H None E S orl
Invalidate M, E, S, orl L n/a Error
Nosnoop n/a H

M = modified, E = exclusive, S = shared, and I = invalid.

“Retry/snarf” /CM1 asserted during cc-ack cycle; master must retry snarf.

“None” /CM1 not asserted during cc-ack cycle; transaction completed.

“All not M” No cache has a modified copy of the data, or read-only data.
“Copyback” AwriteNosnoop transaction used to return modified data to memory

and free the cache line for later use.

“Error” /CM1 and /CMO should not be asserted during the cc-ack cycle.

T The “initial” state of the master cache line is when the master becomes bus owner and begins
the cache-coherent transaction. The cache line may have been invalidated while arbitrating for

the bus.

Chapter 3 NuBus Data Transfer

91

Arbitration by cache-coherent modules

Cache-coherent modules use the existing bus arbitration protocol to acquire the bus
ownership. They also use an additional protocol and signal line, /CBUSY, to ensure that all
cache-coherent modules have fair access to the bus.

To perform a cache-coherent transaction, a cache-coherent module requests bus
ownership by driving the /RQST and /CBUSY lines asserted. The module continues to
assert both signals until it wins the arbitration contest and asserts /START. At this point,
the module can begin a cache-coherent transaction. Before doing so, it may be that the
module must perform a write-back transaction in response to another module’s cache-
coherent transaction. The cache-coherent module may also have to relinquish bus
ownership to permit other snooping modules to perform their write-back transactions or
to permit another master to retry its original data transaction.

Assuming that the cache-coherent module can begin its own transaction, it releases /RQST
and /CBUSY. If it must perform a write-back transaction or relinquish bus ownership, the
module releases /RQST when the write-back transaction is complete, or the bus ownership
has been relinquished. The module continues to assert /CBUSY until it actually starts its
originally intended cache-coherent transaction.

This protocol ensures that all cache-coherent transactions requested during the same bus
cycle will be serviced before any new cache-coherent requests can be made. The protocol
guarantees fair access to the bus by all cache-coherent modules and is similar to the
protocol used by /RQST to guarantee fair access to all modules.

92 Designing Cards and Drivers for the Macintosh Family

Nonaligned microprocessor accesses

The MC68020, MC68030, and MC68040 bus interfaces allow accesses that do not fall into
natural NuBus transactions. For example, a microprocessor program can request a read of
a NuBus word at an odd-numbered location. This cannot be performed in a single NuBus
transaction since it falls across word boundaries.

The interface between a Macintosh computer and NuBus always translates an aligned
request into its counterpart on NuBus. However, that interface also provides support for
all nonaligned microprocessor accesses. On 68020-based and 68030-based machines, the
dynamic bus-sizing facilities of the microprocessor are used. However, on 68040-based
machines, the microprocessor will perform multiple aligned transfers to move a non-
aligned access. The computer-to-NuBus interface responds to off-boundary
microprocessor requests with /DSACK (data transfer and size acknowledge) signals that
tell the processor that the bus is only 16 bits wide. This causes the processor to make
several cycles to fulfill the original request, using an incremented address and decremented
size. For each subsequent cycle, the NuBus interface generates an appropriate transaction
until the entire request is complete.

Nonaligned reads

Nonaligned reads are mapped into NuBus word (32 bit) reads. This feature provides

the required data in the fewest NuBus transactions. On 68020-based and 68030-based
computers, some nonaligned requests generate two NuBus cycles. For example, a NuBus
word read of $Fs00 0001 generates a word read to $Fs00 0000 and a byte read to

$Fs00 0004. The “extra” data provided by the word read is ignored. The reason for the
second read being a byte read instead of another word read is that the processor asks
for 1 byte to $Fs00 0004, which is a natural NuBus transaction.

On 68040-based Macintosh computers, a NuBus word read of $Fs00 0001 would generate
three accesses: a byte access to $Fs00 0001, a word access to $Fs00 0002, and a byte
access to $Fs00 0004.

Chapter 3 NuBus Data Transfer

93

Nonaligned writes

Nonaligned writes are supported by breaking the processor request into pieces that can
be executed by the NuBus. For example, a NuBus word write to $Fs00 0001 would be
performed in three pieces: a byte write to $Fs00 0001, a NuBus halfword write to

$Fs00 0002, and a byte write to $Fs00 0004.

Data caching

The MC68030 microprocessor used in some Macintosh computers includes a feature called
data caching. To support this feature, RAM-like cards should always supply all 32 bits,
regardless of the NuBus request. For example, if a NuBus request is presented for a byte,
the card should present data for all 4 bytes in the NuBus word.

Note that the caching of data can be controlled by software; that is, some address spaces
can be declared as noncacheable. (NuBus space is always noncacheable.) To declare a
RAM address space as noncacheable, your driver should use the LockMemory function.
This function is described in more detail with the memory management information in
Inside Macintosh. Any card that is not capable of supporting a full 32-bit read must have
its corresponding driver software set up the caching control appropriately.

A similar caveat concerns the nonaligned cases: if a card cannot support a full 32-bit read, the
software must ensure that only appropriately aligned and sized operations are requested.

Compliance categories

You may design cards that conform to the NuBus specification but do not support all
NuBus features. Masters and slaves do not need to support all transfer types. Any
combination of 8-, 16-, and 32-bit single data transfers, with the card acting as either
master or slave, is allowable. Masters need not support all possible block transfers.
However, slaves must support all block-transfer lengths if they support block transfer
at all.

The decisions about how nonaligned accesses work and the rules for data caching have
been made to provide the highest performance for 32-bit-wide cards. These cards may
have all the necessary logic and bus transceivers to support these rules.

% Designing Cards and Drivers for the Macintosh Family

NuBus slot cards may be dumb. It is not required that all devices respond with an error
status code for transfer types that they do not handle; it is acceptable to merely respond
with an /ACK assertion.

Such dumb cards must be managed only by device drivers that are designed to
communicate with them appropriately. One of the functions of the declaration ROM is to
provide indications of the capabilities of the card. (The declaration ROM is described in
Chapter 8, “NuBus Card Firmware.”)

Driver-supported cards are those that are accessed indirectly via a software driver. You
can write the driver to manage any idiosyncrasies of the card. For these types of cards,
you have relative freedom in the tradeoffs you make in the design of the hardware
because you can write the driver software to accommodate them.

Peer cards are cards that are designed to execute code that is not specialized to the
card—for example, two cards that execute cooperating processes to solve a problem.
These cards must be more general in their hardware design, because the code that
executes on them assumes no restrictions in types of access, size of data operands, and
so forth.

In general, peer cards must be designed to support the maximum size of transfer that any
of their peers are capable of supporting. In particular, a peer card that is designed to
cooperate with the MC68020, MC68030, or MC68040 microprocessor on the main logic
board of a Macintosh computer must properly handle 32-bit (NuBus word) transfers. If
such a card contains, for example, an MC68000 and has a local bus that is naturally 16 bits
wide, the card must provide the hardware support in its NuBus interface to handle such 32-
bit transfers. This would involve doing two local bus cycles for each NuBus word request.

A card with an MC68000 processor must make two NuBus halfword requests to satisfy an
access to a NuBus word quantity (for example, a pointer value). A Macintosh computer
propetly responds to these two requests. The same instruction when executed by the
MC68020, MC68030, or MC68040 microprocessor makes one NuBus word request. If the
card with the MC68000 does not respond with the correct 32-bit quantity, the program
obviously does not execute correctly.

You should clearly indicate in the card’s documentation exactly which kind of card it is
and what types of accesses it supports.

Memory devices, however, must support all transfer types except for block transfer; the
devices should always respond with all 32 bits in the addressed NuBus word. This rule
allows RAM cards to be used as if they were on-board RAM in order to support nonaligned
transfers, 68020 bit-field instructions, 68030 caching, and so forth.

Chapter 3 NuBus Data Transfer

Chapter 4 NuBus Arbitration

This chapter discusses how the bus master is selected from among the
several cards likely to be competing for bus mastership, and how all the
other cards desiring service are accommodated.

Arbitration overview

The NuBus fair arbitration mechanism differs from strict priority arbitration in that it
prevents “starvation” of cards and distributes access to the bus evenly.

Arbitrate 3 to arbitrate 0 (/ARB3-/ARBO) are open-collector binary-coded lines driven by
contenders for the bus. They are used by the distributed arbitration logic to determine
bus mastership.

Bus request (/RQST) is an open-collector line driven low by contenders for the bus.

During arbitration, one or more cards contend for control of the NuBus. Cards that desire
ownership of the NuBus must first assert the /RQST line. The /RQST line may be asserted
only while it is in an unasserted state. All cards that assert /RQST place their ID codes on the
/ARBx lines and contend for the bus. The arbitration logic distributed among the cards
determines which of the cards gets ownership of the NuBus. After two clock periods, signal
transients have settled and the contest mechanism is complete. The contender with the
highest ID code has its code on the /ARBx lines, has won bus ownership, and may initiate a
transaction (after completion of any transactions in progress).

Presuming that the winner does not desire to lock the bus, the winning card first removes
its /RQST and at the same time asserts /START (this begins a start cycle of the card’s first
transaction). Then, after the start cycle, the card removes its /ARBx signals and continues
with the cycles required to complete the transaction.

The release of /START initiates another contest between any cards that originally
requested the bus in the same clock period, but that have not yet won. These cards will be
granted ownership in turn, from highest ID number to lowest ID number. The rule that
/RQST must be unasserted before a card may assert it keeps other cards from
participating in contests until all the original requestors have been served.

Figure 4-1 shows a situation in which cards with ID codes $9 and $A request the bus at the
same clock period. Card $A wins the first arbitration coptest, and then removes its
request after its start cycle (when the address is shown on the /ADx lines). In the
meantime, card $9 continues to assert /RQST. Card $E desires the bus as well but may not
request it because the /RQST line is already asserted by card $9. Contesting against no
one, card $§9 wins the next contest and gains bus ownership. When card $9 releases /RQST,
card $E requests, arbitrates, and wins. Note that card $9 owns the bus only after it wins a
contest and the transaction in progress ends.

98 Designing Cards and Drivers for the Macintosh Family

= Figure 41 Sample arbitration contest

Master $A Master $9 Master SE
transaction transaction transaction

/ADx Adr Data | Adr Data | Adr Data

/ARBx

/RQST ™~

Because /RQST is unasserted,
master $E may assert it and contend.

Master $9 releases /RQST as
it initiates transaction,
Master $A removes /RQST
and takes its ID off /ARBx.
Master $E desires bus but cannot
contend because /RQST is asserted.

Master $9 and master $A desire bus
and assert /RQST and contend.

Arbitration logic mechanism

When a bus contest occurs, each card drives the /ARBx lines with its unique ID code and
then releases the /ARBx lines if it detects higher ID codes than its own on the /ARBx lines.
One possible implementation of this arbitration logic is diagrammed in Figure 4-2, for
illustrative purposes only.

Chapter 4 NuBus Arbitration

»

m Figure 4-2 Typical bus arbitration logic

Note that the /ARBx lines are bused common to all cards, but the /IDx lines present a
unique binary code to each card slot. The signals /ARB and GRANT are card signals, not
NuBus signals: /ARB is an input to the arbitration logic that indicates whether the card is
contending for the bus, and GRANT is an output that indicates whether the /ARBx lines
currently match this card’s /IDx lines. The following logic equations approximate how the
arbitration logic on any given card works:

/ARB3 = /ID3 ¢ /ARB

/ARB2 = /ID2 o /ARB e (/ID3 + ARB3)

/ARB1 = /ID1 o /ARB e (/ID3 + ARB3 e (/ID2 + ARB2)

/ARBO = /1D0 ¢ /ARB e (/ID3 + ARB3) e (/ID2 + ARB2) ¢ (/ID1 + ARB1)

where e is logical AND, + is logical OR, and ARBx is the logical complement of /ARBx.

According to these equations, after a short delay (arbitration period) the /ARBx

lines will equal the ID code of the highest-priority contender, that is, the contender
with the largest integer for its ID code. See Appendix D for the PAL listing labeled
(ARB2), NuBus arbitration logic; implementation of these equations accomplishes the
desired arbitration.

¢ Note: The signal names /ARB and GRANT are written here with capital letters,
consistent with the convention used in this book, but the Texas Instruments NuBus
documentation uses /arb and grant, respectively.

100 Designing Cards and Drivers for the Macintosh Family

Arbitration timing overview

The details of arbitration timing are covered in Chapter 5, “NuBus Card Electrical Design
Guide.” Arbitration events generally occur on driving edges and sampling edges,
synchronous to the system clock, with the same timing as the basic address/data, control,
and utility signals. For example, /RQST may be asserted on a particular driving edge only if
it is seen to be unasserted on the previous sample edge. However, the /ARBx lines differ
from all other NuBus signals in that their assertion timing is specified from the sample
edge of the bus clock. See Figures 4-3 and 5-2.

Arbitration contests last two clock periods by definition. On the second sampling edge
after a contest starts, all contenders sample their internal GRANT signal. The highest-
priority contender will find its GRANT signal asserted. The winner may now take control of
the bus and assert /START on the next driving edge (25 ns after the contest’s second
sampling edge) if the bus isn't in use.

If the bus is in use, the new winner asserts /START on the driving edge immediately after
the next sample edge where the current transaction’s /ACK is asserted. The new winner
continues to assert its ID code on the /ARBx lines throughout the start cycle of its first
transaction. This facilitates bus lock detection and bus diagnostics.

A Warning If there are many NuBus masters active at the same time, the
CPU, especially in the Macintosh IIfx, can be given too little
time to refresh memory. This problem is actually caused by the
“fair” NuBus arbitration scheme; no priority is given the CPU in
its bid for NuBus access. This can cause the computer to slow
down tremendously. On most Macintosh computers, the
symptom of this problem will be extremely slow or nonexistent
updates to the screen. a

Locking

Although cards generally use the bus for a single transaction before allowing another
requesting card to become bus master, sometimes the bus must be held locked in an
extended tenure. For some local processor operations, it may be necessary to prevent any
NuBus requests from interfering with the access of the processor to its local bus.

Chapter 4 NuBus Arbitration

101

This might be the case, for example, when the processor is doing a floppy disk transfer,
which is inherently time critical. Such a processor must have some mechanism (for
example, a bus lock line) for locking itself, and its local bus, from NuBus intrusion. This
type of locking is called bus locking.

Another example of locking to prevent interference is an indivisible test-and-set
operation performed in a multiprocessor environment; this type of locking is called
resource locking.

A Important The bus must not be held in a locked condition for more than four
transactions at a time. A

m Figure 4-3 NuBus arbitration and transaction timing, single master and two masters

Single master, bus idle

Driving edge

l Sampling edge
/CIK L :_r [¥ s 1 I ¥ B O O
/RQST —’]______|
/ARB-/ARB) —— —
/START E; i____i ; :5
/ACK — I I |I |I

- A | J

Arbitration Transaction
Two masters ($9 & $A), one transaction each
fx L T T T
Ty S R
MBS AR ——C T S ————
L 1
/ACK - T e W

Arbitration Arbitration

($A wins) ($9 wins) y,

Transactlion $A) Transactlion $9

102 Designing Cards and Drivers for the Macintosh Family

Bus locking

Bus locking requires no added mechanism. To lock the bus, a master simply continues to
request (by keeping the /ARB lines driven with its ID code) and contend (continuing to

assert /RQST). Because it has the highest ID code of those cards present, it wins

subsequent contests. Figure 4-4 shows an example in which card $C locks the bus for two

transactions. Fairness in arbitration depends upon cards not locking the NuBus unless

required and locking it only for the shortest required tenure.

Any card or software that uses extended-tenure bus locking should clearly specify in the

documentation for the product the maximum number of bus cycles allowed.

Bus locking can be valuable for optimizing NuBus transfers. During a NuBus transfer, it is
not possible to determine when a transaction will complete because of a variance in
NuBus interrupt latency. The interrupt latency can be affected by such things as floppy
disk accesses and slot interrupts. The bus, therefore, can be locked for a small set of
transactions, then unlocked for rearbitration. It order to allow fairness, you should lock

the bus for as short a time as possible. It is also important that you provide sufficient

buffering on your NuBus card to allow for the variance in interrupt latency.

= Figure 4-4 Sample bus lock

$C tenure $A tenure $9 tenure
| | S R
a N[N
/ADx Adr e Data | Adr | Data | -~ | Adr | Data Adr | Data

/ARBx

JRQST ~

Master $C removes /RQST
and takes ID off /ARBx.

Master $C
keeps contesting.

Master $C, master $A, and master $9
desire bus and assert /RQST (§C desiring
two indivisible transactions).

1 Tenure continues until another card asserts /RQST and the next arbitration contest commences.

Chapter 4 NuBus Arbitration

103

Resource locking

Resource locking is initiated by the bus owner driving both /START and /ACK to
commence an attention-resource-lock cycle; this alerts all cards that a bus and resource
locked transaction is occurring. The bus lock is maintained as described in the previous
section. A bus owner that issues an attention-resource-lock cycle as the first cycle of a bus
tenure must conclude that tenure with an attention-null cycle to inform all cards that the
tenure is complete.

Access to a resource must be controlled when that resource is accessible by both a local
processor and the NuBus. One example of such a shared resource is a dual-ported RAM.
Another, more specific, example is found in Macintosh computers, where the NuBus
interface circuitry uses the local processor bus to access the shared resource, RAM, as
shown in Figure 4-5.

All cards that have shared resources capable of being locked must monitor the NuBus for
an attention-resource-lock cycle and must record the occurrence. A card does not have to
react to the occurrence of a bus tenure starting with an attention-resource-lock cycle
unless it is addressed during that tenure; this allows multiple resources to be alerted and
locked during a single bus tenure.

Figure 4-5 may be helpful in discussing an indivisible bus operation. For example, suppose
the processor on the NuBus card is instructed to perform a read-modify-write cycle to
the RAM as part of executing a TAS (test and set) instruction. The NuBus card contends
for and wins bus ownership, then initiates an attention-resource-lock cycle. On the
Macintosh Ilcx, Macintosh Ilci, Macintosh IIsi, Macintosh IIfx, Macintosh Quadra 700,
and Macintosh Quadra 900, the NuBus interface controller automatically performs an
attention-resource-lock cycle before doing a read-modify-write cycle, and an attention-
null cycle afterward.

The state machines in the BIU respond to the attention-resource-lock cycle by setting a
flag. This flag indicates that if the RAM-shared resource is accessed by the processor on
the NuBus card, the BIU will lock the processor bus. The local processor will then be unable
to access the RAM and thereby interfere with the indivisible read-modify-write of a data
structure by the NuBus processor. Any bus owner that is programmed to perform an
indivisible bus operation should lock resources on any slaves to be addressed during that
operation, as well as locking any bus that provides an alternative path to those resources.
All cards should release the locked status when an attention-null cycle occurs.

A card is not required to provide locking of its local resources; it may do so on some
resources and not on others. Reliable TAS instructions may only be done on resources that
can be locked.

104 Designing Cards and Drivers for the Macintosh Family

m Figure 4-5 Read-modify-write indivisible bus operation

Read

Modify

NuBus
card with
processor

Write

MC68020 or
MC68030
Processor

Bus interface logic

Shared
resource
(RAM or other)

NuBus

Local
processor
bus

Bus parking

A bus master that has released /RQST is considered parked on the bus and may use

it at any time (without rearbitration) until another card asserts /RQST. When /RQST
is finally asserted by another requester, the parked bus master finishes its current
transaction and relinquishes the bus to the new winner without commencing another
transaction. Bus parking reduces the average time to acquire the bus in systems with a
small number of contenders.

& Note: A bus owner is not allowed to go from a parked condition into a bus-locked
series of transactions without submitting to arbitration by asserting /RQST.

Chapter 4 NuBus Arbitration

105

Chapter 5 NuBus Card Electrical Design Guide

This chapter gives the electrical specifications and timing requirements for
NuBus cards, including power requirements, connector pin assignments, a

power budget, and timing diagrams. Refer to Appendix A for guidelines on
electromagnetic interference (EMI), heat dissipation, and product safety.

107

Electrical requirements

This section provides the detailed electrical information that you need to design a NuBus
expansion card.

Logical and electrical state relationships

All NuBus signals are active when low. The relationship between logical states and
electrical signal levels for all NuBus lines is shown in Table 5-1.

m Table5-1 Logical state definitions

Logical state Electrical signal level

H (unasserted) > 2.0V at the receiver
L (asserted) < 0.8V at the receiver

DC and AC specifications for line drive

This section provides the drive requirements and the load allowance for each of the NuBus
lines. These lines can be divided into five basic types based on their electrical drive and
load characteristics:

m clock (/CLK)

m address/data (/ADx, /SP, /SPV)

m control (/START, /ACK, /TMx)

m open collector (/RESET, /RQST, /ARBx, /NMRQ, /CBUSY?, /CBx?)
m power control (/PFW)

1 These signals were introduced in the NuBus "90 specification and are defined only in the
Macintosh Quadra 700 and the Macintosh Quadra 900.

Table 5-2 lists the specifications for these line (signal) types, from a NuBus card’s point of
view. The columns labeled drive indicate the minimum requirements for card outputs,
while those labeled load specify the maximum load that may be presented by card inputs.
Negative currents indicate flow out of a node (sourcing), and positive currents indicate
flow into a node (sinking).

108 Designing Cards and Drivers for the Macintosh Family

m Table5-2 NuBus line drive requirements and load allowances

AC drive DC drive AC load DC load
Ipp Ipy ToL Ton 1% Iy Iin

Signal type (min),mA (min),mA (min),mA (min)mA (max),pF (max),mA (max), mA

Address/data 80 40 24 -12mA 18 -0.5 0.1
@3.2V

Clock? 90 50 60 -30 18 -1.4 0.1 from

driver

Control 80 40 24 -12mA 18 -0.5 0.1
@32V

Open collector 80 N/A 60 N/A 18 -0.625 0.1

Power control
(/PFW)#

t Supplied by the Macintosh computer.
¥ The source of /PFW must be capable of sourcing 20 mA at 3 V for 2 seconds when driving /PFW
high to turn the computing system on. See the next section.

The column headings in Table 5-2 have the following meanings:
lrp Transient pull-down current, required for one Tpq (NuBus delay period) whenever the
driver changes from unasserted to asserted.

Ipy Transient pull-up current, required for one Tpg whenever the driver changes from
asserted to unasserted.

Io Low-output drive current available at 0.5 V.

Ioy High-output drive current available at specified voltage.
C, Capacitive load per slot.

I DC low-level input current.

Ly DC high-level input current.

¢ Note: Each NuBus card input can present an AC load of up to 18 pF to the computer’s
main logic board. This includes 2 pF for the NuBus connector and 16 pF for the card’s
trace capacitance plus the input capacitance of all devices connected to that trace.
Also, the load presented by NuBus card inputs (and tristated outputs) affects those
NuBus signals as seen by the computer’s main logic board and by any other installed
NuBus cards. To minimize NuBus signal degradation, it is best to buffer all card inputs
as close to the NuBus connector as possible, and to limit each signal to one LS load.
This is especially important for the NuBus clock signal, which, because of its critical
timing and high frequency, is easily damaged by the loading effect of a NuBus card.
For additional helpful design hints, see Appendix A, “EMI, Heat Dissipation, and
Product Safety Guidelines.”

Chapter 5 NuBus Card Electrical Design Guide

109

/PFW interaction with the power supply

The /PFW signal is intended to serve two purposes:

1. To allow the power supply to be turned on and off by a low-voltage signal that can be
controlled by the logic board (or expansion card) circuitry and hence by software.

2. To allow the power supply to warn the computer of an impending power loss.

When /PFW is held between 3.0 and 6.8 V for at least 1.5 seconds, the power supply turns
on and the computer begins operating. Once the power supply turns on, its own +5V
output holds /PFW high so it can continue operating. If /PFW is pulled below 0.6 V, the
power supply will turn off; /PFW should be keld below 0.6 V until the computer completely
shuts down. If some fault condition (such as AC line failure) causes the power supply to
turn off, the power supply will pull /PFW low at least 2 ms before the DC outputs fail.

There are many issues that restrict the circuitry that can be connected to /PFW. Here are a
few cautions and tips:

m The /PFW voltage may be greater than the +5V bus voltage for a second or two when
the computer is turned on.

m If/PFW is fed into a gate input, any internal diodes to the +5V (or any other power)
bus may prevent the computer from turning on because /PFW goes high before the
power supply outputs bring the power buses up to rated voltage.

= No pull-up may be added to the /PFW line or else there may be difficulty in turning
off the computer.

m Any circuitry connected to /PFW must present a high impedance when the power is
removed or it may prevent the computer from turning on and drain the battery.
Likewise, such circuitry must present a high-impedance load during normal operation
to prevent contention with other drivers of /PFW. The only time additional circuitry
should present a low-impedance load to the /PFW line is when it is intentionally and
temporarily controlling the /PFW signal.

110 Designing Cards and Drivers for the Macintosh Family

NuBus connector pin assignments

Table 5-3 gives the pin assignments for NuBus connectors on most of the Macintosh
computers with the NuBus interface. The order of the rows is given as viewed from the
front edge of the card. The NuBus "90 specification has changed several of these pin
assignments. Table 5-4 lists the connector pin assignments for NuBus connectors on the
Macintosh Quadra 700 and Macintosh Quadra 900. Table 5-5 lists and describes the new
signals defined in NuBus "90 and included in the Macintosh Quadra family.

m Table5-3 Connector pin assignments

Pin Row A Row B Row C Pin Row A Row B Row C
1 =12V -12V /RESET 17 /AD23 GND /AD22
2 f GND 1 18 /AD25 GND /AD24
3 /SPV GND +5V 19 /AD27 GND /AD26
4 /SP +5V +5V 20 /AD29 GND /AD28
5 /TM1 +5V /TMO 21 /AD31 GND /AD30
6 /ADI1 +5V /ADO 22 GND GND GND
7 /AD3 +5V /AD2 23 GND GND /PFW
8 /ADS T /AD4 24 /ARB1 1 /ARBO
9 /AD7 T /AD6 25 /ARB3 T /ARB2

10 /AD9 1 /ADS8 26 /ID1 t /IDO

11 /ADI11 1 /AD10 27 /ID3 t /ID2

12 /AD13 GND /AD12 28 /ACK +5V /START

13 /AD15 GND /AD14 29 +5V +5V +5V

14 /AD17 GND /AD16 30 /RQST GND +5V

15 /AD19 GND /AD18 31 /NMRQ GND GND

16 /AD21 GND /AD20 32 +12V +12V /CLK

T These pins are connected but not supplied with the -5.2 V described in the Texas Instruments
NuBus specification. This voltage could be supplied by a card, in which case -5.2 V would be
available to all cards.

1 These pins are reserved in the IEEE 1196 standard and are grounded in all Macintosh computers
with the NuBus interface except for the Macintosh Quadra 700 and Macintosh Quadra 900.

Chapter 5 NuBus Card Electrical Design Guide

11

m Table 5-4

NuBus "90 connector pin assignments

Pin Row A Row B Row C Pin Row A Row B Row C
1 -12v =12V /RESET 17 /AD23 GND /AD22
2 SBO GND SB1 18 /AD25 GND /AD24
3 /SPV GND +5V 19 /AD27 GND /AD26
4 /SP +5V +5V 20 /AD29 GND /AD28
5 /M1 +5V /TMO 21 /AD31 GND /AD30
6 /AD1 +5V /ADO 22 GND GND GND
7 /AD3 +5V /AD2 23 GND GND /PFW
8 /AD5 /TM2 /AD4 24 /ARBI CLK2X /ARBO
9 /AD7 /CMO /ADG 25 /ARB3 STDBYPWR /ARB2

10 /AD9 /CM1 /AD8 26 /ID1 /CLK2XEN /IDO

11 /ADI11 /CM2 /AD10 27 /ID3 /CBUSY /ID2

12 /AD13 GND /AD12 28 /ACK +5V /START

13 /AD15 GND /AD14 29 +5V +5V +5V

14 /AD17 GND /AD16 30 /RQST GND +5V

15 /AD19 GND /AD18 31 /NMRQ GND GND

16 /AD21 GND /AD20 32 +12V +12V /CLK

A Important The eight lines that were connected to the -5.2V signals in the

original NuBus specification are now used for new features on
the Macintosh Quadra 700 and the Macintosh Quadra 900.
Many older NuBus cards connect those eight lines together; the
presence of such a card in the Macintosh Quadra 700 and
Macintosh Quadra 900 will disable the new features of all
installed NuBus cards that use those lines. All the other features
of both the old and new cards will operate normally. A

112 Designing Cards and Drivers for the Macintosh Family

s Table 5-5

NuBus '90 signals on the Macintosh Quadra—family NuBus connectors

Pin number Signal name Function

A2 SBOT High-speed serial bus, defined in P1394 standard.

B8 /TM2 New transfer mode: requests double-speed transfer.

B9 /CMOt Controls cache-coherency operations.

B10 /CM1t Controls cache-coherency operations.

B11 /CM2t Controls cache-coherency operations.

B24 /CLK2X Synchronizes double-speed block transfers.

B25 STDBYPWR Small current at +5 V when main power is off; enables a
card to turn on main power by asserting /PFW signal.
This signal is defined only on the Macintosh Quadra 900
and not on the Macintosh Quadra 700.

B26 /CLK2XEN If not connected to other NuBus 90 signals, this line
enables /CLK2X driver.

B27 /CBUSY Used with cache-coherency operations.

C2 SB1f High-speed serial bus, defined in P1394 standard.

t These signals are not driven or monitored by circuits in the Macintosh Quadra 700 or the
Macintosh Quadra 900.

Power supply specifications

Three voltages are specified on the NuBus: +5 V, +12 V, and -12 V. These voltages are
listed in Table 5-6 with their specifications.

m Table5-6 Power supply specifications
Combined Maximum
Source Nominal Tolerance line and load ripple, mV
label value, V from nominal, % regulation, % (peak—peak)
+5 5 *3 0.3 50
+12 12 *3 0.3 75
-12 -12 3 0.3 75

Chapter 5 NuBus Card Electrical Design Guide

113

NuBus powef budget

You can determine the maximum current available to any NuBus card by dividing the
maximum current available to the entire NuBus by the number of NuBus slots. For
example, since a Macintosh II, Macintosh IIx, and Macintosh IIfx all have six NuBus slots,
the maximum current available to any one NuBus card is one-sixth of that available to the
entire NuBus. And since a Macintosh Ilcx and a Macintosh Ilci have only three slots, the
maximum current available to any one NuBus card is one-third of that available to the
entire NuBus. Worst case analysis for a fully loaded Macintosh computer, with equal
current allocation to each of the slots, yields the recommendations in Table 5-7. A similar
analysis, starting with the maximum capacitance for which the power supply operates
reliably and subtracting the maximum capacitance on the main logic board, yields the
card filter capacitance recommendations in the table.

& Note: The maximum current available to the entire NuBus in the Macintosh Ilcx or
Macintosh IIci computer is one-half of the maximum current availdble to the entire
NuBus of a Macintosh II, Macintosh IIx, or Macintosh IIfx computer. Therefore, the
calculated maximum current allocation to each of the three slots in a Macintosh Ilcx or
Macintosh Ilci is the same as that shown in Table 5-7.

m Table57 Recommended current and capacitance limits for a NuBus card

Recommended maximum
Nominal power current per card (slot), A Recommended maximum
supply value, V (continuous) capacitance per card, [\F
+5 2.0 1513
+12 0.175 536
-12 0.150 698

& Note: The current analysis assumes a hard disk (1.8 A rms max) and two floppy disk
drives (0.2 A typical) internal to the computer; if you choose to develop a card that
exceeds these recommendations, you should make the end user aware of any
limitations imposed on the system configuration.

The recommendations for maximum card capacitance are actual (not nominal)
capacitance. You must allow for the capacitance tolerances of the particular capacitors
being used in order to stay below the recommended maximum.

114 Designing Cards and Drivers for the Macintosh Family

The power allowed in all Macintosh computers except the Macintosh Quadra 900 is 13.3 W
per NuBus slot. The power supply in the Macintosh Quadra 900 is designed to provide
additional current on the +5V outputs for the NuBus slots, compared with other
Macintosh computers. The Macintosh Quadra 900 has enough power to support a total of
two 25 W cards and three 15 W cards. The total power budget for NuBus cards in the
Macintosh Quadra 900 shall not exceed 95 W.

If the amount of power used by NuBus expansion cards exceeds the total power budget,
the Macintosh computer cannot be booted. During startup, the power supply attempts to
turn itself on but cannot, and it continues the attempt over and over. When the computer
is in this state, you must unplug it and remove the offending expansion cards.

However, some NuBus cards may inherently require more power. If your card contains a
processor or a large amount of RAM, the card will probably need more power than is
allowed for each expansion card. In the rare case when you do need to consume the power
of multiple slots, you must make sure that the slot or slots adjacent to your card are not
used. While there may be many ways to prevent the installation of an adjacent card, three
possible solutions are provided here.

To prevent installation of an expansion card in an adjacent slot, you could create a
mechanical barrier attached to your expansion card. Alternatively, you could design your
NuBus expansion card as a multiple-card implementation. The NuBus cards could be
connected via an internal bus, using ribbon cables or another type of connector. As a third
suggestion, you could provide slot covers with your card. You must instruct the user to
install slot covers over the necessary adjacent slots and warn them that they could damage
their computers if the slot covers are not installed.

While all three suggestions solve the problem, there is one major drawback for the first
two suggestions: if the power budget for future Macintosh computers changes, your card
may no longer exceed the per slot power allocation. At that point, you may be wasting
space and available NuBus slots. The third suggestion avoids this potential waste, as the
slot covers would simply not be installed.

A Warning It is important that the 13.3 W power allocation not be
exceeded for NuBus expansion cards in the Macintosh 1Isi.
Because the Macintosh IIsi has only one expansion slot, you
cannot “borrow” excess power from other slots that may not be
filled. Because the power supply in the Macintosh IIsi is
designed to drive only a single card, however, a NuBus card
that consumes more power than it is supposed to may damage
itself and possibly the Macintosh IIsi. a

Chapter 5 NuBus Card Electrical Design Guide

115

Timing requirements

To meet the following timing requirements, you must pay careful attention to card
construction practices. You must provide adequate design and manufacturing margins so
that cards manufactured by you and other developers may be interchangeably inserted in
any Macintosh computer with the NuBus interface and all communicate with each other
and the processor on the main logic board.

Utility and data-transfer timing

Figure 5-1 shows the clock, control, and address/data timing relationships during data
transfers. Table 5-8 lists the bus timing specifications for these signals. Control and

address/data signals are changed on the rising edge of /CLK and sampled on the falling
edge of /CLK. This timing gives protection from bus skew.

m Figure 5-1 Data-transfer timing diagram

o
[oy)
L (0 :
/CLK Ton Toft
fr—lﬁ (1 \:
su h

arecaiver XX XK

Tep
TCW
TOn
Toff

Ssu

2Tpd

116

Address, data, control,
/RQST, and so on

(

pd

Clock period

Clock width

Turn-on time at driver
Turn-off time at driver
Setup time at receiver
Hold time at receiver
NuBus delay

Designing Cards and Drivers for the Macintosh Family

m Table 5-8 Data-transfer timing parameters

Parameter Description Minimum, ns Maximum, ns
T, Clock periodt 99.99 100.01
Tew Clock width 73 77
T, Turn-on time 0 35
Tos Turn-off time 0 35
2T NuBus delay
(16 loaded slots) — 17
(8 loaded slots) — 10
T, Setup time 21 —
T, Hold time Ty~ Tew —

T This clock period is the average period over a 1-second interval. Jitter must be kept low enough
to avoid violations of other parameters.

Setup, hold, and other times are defined at the card-to-NuBus connectors. All card-
internal delays must be taken into account while providing for the times specified
in the table.

Arbitration timing

Refer to Chapter 4, “NuBus Arbitration,” for a description of the arbitration process. The
timing for the /ARBx signals is not the same as the timing of the data-transfer signals.
Arbitration begins on the falling (sampling) edge of /CLK before the assertion of /RQST
or, if /RQST is already active on the falling edge of /CLK, during /START. The contenders
assert their respective slot IDs on the /ARBx lines. The bus contest must be settled within
two cycles of /CLK following the assertion of /RQST or the negation of /START. By the
end of that interval, the /ARB lines will contain the ID code of the card winning the
arbitration contest.

Figure 5-2 details the /ARBx timing for an arbitration won by card $A following a /START
signal initiated by card $9. See Table 5-9 for the meaning of the abbreviations used in
Figure 5-2.

In the general case, contenders must wait for the preceding bus master to release the
/ARBx lines before the succeeding bus arbitration can take place. Thus, the arbitration
turn-on time (T) for /ARBx signals is the turn-off time of the preceding master (T), plus
the bus propagation delay (2T 4, one reflection assumed), plus the time taken to react to
the change in logic levels (T,,).

pd>

Table 5-9 lists the timing specifications for the /ARBx lines.

Chapter 5 NuBus Card Electrical Design Guide

117

m Figure 5-2 Detailed arbitration timing

/START / AN /
/ACK \\ /
ax 7| L] I —
| arb I Vo
' ' . L
:FToff 2Tpd Ten Tpd Tdgs 2Tpd Ten Tpd Tou W: gThé
: Ton . [1 | ﬁ
Y §
M SR B
/ARB3 HVAVAVANETEEE L
/ARB2 __\ Z77777 | P
N Avav. AR R E T
G I NNNNNN\ N A PN
/ARBx lines settled at $A (arbitration winner)
Lines driven to $B=$(A+9)
Lines in tristate (during Toff) or $(A+9)
Lines driven to $E, bus master (assumed)
m Table 59 Bus arbitration timing parameters
Parameter Description Minimum, ns Maximum, ns
Top Arbitration time — 200
Ton Arbitration turn-on time 10 83
Tys Arbitration disable time — 26
Ten Arbitration enable time — 26
Ts Arbitration setup time 31 —
T, Hold time 10 -
Ty Turn-off time 10 40
2Tpg NuBus delay
16 loaded slots — 17
8 loaded slots — 10

118 Designing Cards and Drivers for the Macintosh Family

Chapter 6 NuBus Card Physical Design Guide

This chapter contains physical design guidelines for the development of
NuBus expansion cards for Macintosh computers. It describes the
physical characteristics, including the maximum allowable dimensions, of
a Macintosh NuBus card.

¢ Note: The NuBus specification also specifies a much larger, triple-height
card, but that card cannot be used in a Macintosh computer.

119

Card description

Foldout drawings in the back of the book show the pertinent design details and
installation requirements of a NuBus expansion card. If you would like to develop a
NuBus expansion card that will fit into more than one of the Macintosh computers, adhere
strictly to the NuBus specification. Most Macintosh computers, because of their physical
design, allow you to vary slightly from the NuBus standard. This, however, does not
guarantee that all future Macintosh computers with the NuBus interface will vary in the
same manner. If a NuBus card is developed according to the NuBus specification, it will
be guaranteed to fit into the entire line of Macintosh computers with the NuBus interface.

All Macintosh computers with the NuBus interface will accommodate a standard NuBus
card. Foldout 1 shows the overall dimensions and the placement of connectors on a
standard NuBus card viewed from the component side. The NuBus connector is on the
bottom, and the I/O connector is on the right side of the card.

¢ Note: Foldout 2 pertains only to the Macintosh Quadra family. The card in
Foldout 2 has identical physical dimensions to the card in Foldout 1, but since a
Macintosh Quadra—family computer uses the same size card for both NuBus
and PDS expansion, the card in Foldout 2 is shown with two connectors, one a
96-pin NuBus connector and the other a 140-pin PDS connector. If you are
designing a NuBus card, the PDS connector is omitted; if you are designing a
PDS card, the NuBus connector is omitted.

Foldout 3 gives the clearance dimensions for installing a NuBus card in a Macintosh II,
Macintosh IIx, Macintosh IIfx, or Macintosh Quadra 900. Foldout 4 gives the clearance
dimensions for installing a NuBus card in a Macintosh IIcx, Macintosh Ilci, or Macintosh
Quadra 700.

A Warning The foldout drawings are from design guides used within Apple
Computer. These drawings were correct at the time of publication but
are subject to change. a

A Important To make sure that your NuBus card fits and functions in all Macintosh
computers, your physical design should adhere to the specifications in
the IEEE publication Standard for a Simple 32-Bit Backplane Bus:
NuBus, ANSI/IEEE Std 1196-1990. »

120 Designing Cards and Drivers for the Macintosh Family

According to the IEEE NuBus specification, a standard NuBus expansion card must

be 101.6 mm (4.0 inches) high and between 326.6 mm (12.858 inches) and 177.8 mm

(7.0 inches) long. Notice that the cards shown in the foldout drawings exceed the NuBus-
specified maximum length of 326.6 mm (12.858 inches). This is permitted because the
physical design of the existing Macintosh computers allows a slight deviation from the
NuBus standard. If you follow the NuBus card design guidelines shown in the foldouts,
your NuBus cards will work in current Macintosh models; but to ensure that your card will
work in all future Macintosh models, it is recommended that you adhere to the
dimensional tolerances in the ANSI/IEEE NuBus specification.

There is room in the Macintosh Quadra 900 that could be used for a NuBus expansion card
measuring 152.4 mm (6.0 inches) high and between 326.6 mm (12.858 inches) and 177.8
mm (7.0 inches) long. However, a card this size will fit in only the Macintosh Quadra 900
and is not guaranteed to fit in any future Macintosh computers. Foldout 5 shows this
oversized card viewed from the component side. Like on the standard NuBus card, the
NuBus connector is on the bottom edge of the card in the drawing, and the I/O connector
is on the right side.

A Important You should test all standard-size NuBus cards in the Macintosh
modular platforms: the Macintosh Icx, the Macintosh Ilci, and
the Macintosh Quadra 700. A standard-size NuBus card extends
326.6 mm (12.858 inches) and might interfere with the NMI and
reset buttons in these machines. A

Card thickness must be 1.575 £0.1906 mm (0.0062 £0.0075 inch). Warpage must be
controlled to within a 2541 mm (0.10 inch) deviation from ideal.

Components may be placed anywhere within the unslashed area of the foldout drawing.
The prohibited area along the top edge in the drawing applies to cards of any length. The
five holes 3.38 mm (0.133 inch) in diameter are used only for Apple tooling purposes and

are optional to you.

Components may not extend beyond the edge of the card in any direction. Component
height must not be more than 15.246 mm (0.60 inch), measured from the card surface. No
component or wire lead is allowed to extend more than 2.541 mm (0.10 inch) beyond the
noncomponent side of the card.

The nominal spacing between centerlines of adjacent NuBus connectors is 22.869 mm
(0.900 inch) in the Macintosh II, Macintosh IIx, Macintosh IIfx, and Macintosh
Quadra 900 computers and 24.1395 mm (0.950 inch) in the Macintosh IIcx, Macintosh
Ilci, and Macintosh Quadra 700 computers.

Chapter 6 NuBus Card Physical Design Guide

121

The NuBus specification allows for an external connector plastics opening of only

74.55 mm by 11.90 mm. The Macintosh II and IIx allowed a significantly larger hole than
the specification (80.00 mm by 17.00 mm). The external connector opening in the
Macintosh Ilcx is yet another size (75.61 by 14.00 mm), which is still larger than the NuBus
specification. There is no guarantee, however, that future Macintosh computers will
continue to have larger openings. Again, if you would like your cards to fit into more than
one Macintosh computer, your design should adhere to the NuBus specification.

In the Macintosh IIcx, the intercard spacing is also different from that in other Macintosh
computers with NuBus. Originally, in the Macintosh II and IIx, the intercard spacing was
set to the minimum space (22.86 mm) allowed by the NuBus specification. In the
Macintosh Ilcx, this dimension was expanded to 24.13 mm. Because the intercard spacing
is likely to continue to vary in future Macintosh computers, you should adhere to the
NuBus specification to guarantee that your NuBus expansion card will fit in all Macintosh
computers with the NuBus interface.

NuBus connector description

The NuBus connector on the card must be a 603-2-IEC-C096-M connector. See Chapter 5
for NuBus connector pin assignments. Figure 6-1 shows the version of that connector used
on the Macintosh II Video Card. Figure 6-2 shows the NuBus mating connector on the main
logic board of a Macintosh computer. Note that this is the same as the PDS connector
used in the Macintosh SE and shown in Figure 17-6. For the Macintosh IIsi, the NuBus
mating connector is not found on the main logic board. Instead, you must first install a
NuBus adapter card, which is described in the section “Physical Implementation of the
Macintosh IIsi NuBus Adapter Kit” later in this chapter. Once the adapter card has been
installed, the NuBus mating connector will be present on the NuBus adapter card.

You can get Euro-DIN connectors meeting Apple specifications from

Amp Incorporated
Harrisburg, PA 17105

122 Designing Cards and Drivers for the Macintosh Family

Because of high-volume production requirements, Apple purchases specially modified
versions of the Euro-DIN connector from this vendor. However, you may purchase mating
connectors of standard configuration from this or other vendors.

For EMI protection, a metal shield surrounds the I/O connector on the rear of the card.

Appendix A, “EMI, Heat Dissipation, and Product Safety Guidelines,” provides information

on EMI reduction when a Macintosh computer with the NuBus interface is expanded. See
Foldout 6 at the back of the book for a drawing of the I/O connector shield.

A Warning Foldout 6 is from a design guide used within Apple Computer. This

drawing was correct at the time of publication but is subject to change. a

You can get the I/O connector shield meeting Apple specifications from

North American Tool and Die
San Leandro, CA 94577

The part number for the connector shield is 805-5101. Before ordering the connector
shield, however, you must first obtain authorization from Apple Macintosh Developer
Technical Support (MacDTS).

The type and number of I/O connectors (if required) are left to you, but they must meet
dimensional constraints of the shield.

If auxiliary connectors are used, they must be no longer than 76.23 mm (3.0 inches).
Please refer to the Standard for a Simple 32-Bit Backplane Bus: NuBus, ANSI/IEEE
Std 1196-1990, for information about the location of auxiliary connectors.

Chapter 6 NuBus Card Physical Design Guide

123

® Figure 6-1 A 96-pin plug connector for a NuBus expansion card

88.9

- .
- (3.50) >~ (12648 -
. — 254
R 1L
2.59 dia ([T 5.08
(102) (1782'8) i v (.200)
% U bse
o ! (121
<1115
(437)
Row C
2.54 — 78.74 | Row B
SN (3.100 ‘ o
Y N ¢ = 74
oo 11.1 max
I o g g o gﬁ (.437)
f TUU a T
5.08 I
(200) 1= 940 -
' (3.70)
Three-row pin connector
96 contact positions

2.54 mm (.100 inch) spacing pins
Gold plated, 20 microinches, over nickel plate

Dimensions are in millimeters with inches in parentheses.

124 Designing Cards and Drivers for the Macintosh Family

® Figure 6-2 A 96-pin socket connector on main logic board

275
(.108) 6.6
max (:259) min
) v
e b |
(;ﬁ;g) 3 [m] [=] (] (] .__l T’
. T AT
2.54 4 L 279 (100)
(.100) (.110) min
3.95(.155)
- 95.0 (3.74) max > 8.5 (.334) max
5.08 - 90.0 (3.54) - — 106 (417)
(~2f0) i‘ 85.0 (3.34) max =i
nmr S S SR SRS S S R RS SR R R R R Gy
I e R D D D D D D D PP _
)‘ [e MU0 -TH610 —] N a1
254 2holes@ bl
(.100) 2.85(.112) cl

Three-row socket connector

96 contact positions
2.54 mm (.100 inch) spacing sockets
Gold plated, 20 microinches, over nickel plate

Dimensions are in millimeters with inches in parentheses.

NuBus expansion card internal connectors

Some NuBus card developers need to connect two expansion cards. The NuBus
specification allows for this need with an auxiliary connector at the top of the card next
to the no-component area. A ribbon cable must be used to connect the cards. The cable is
run over the top of the card, and you must provide a slot in the card into which the cable
fits. Figure 6-3 is an example of the correct way to implement your internal connector.

If you cut a slot at the top of your NuBus expansion card, you will have no problem with
future Macintosh computers that provide NuBus expansion. The slot needs to be deep
enough for the cable to be flush with the top of the card.

Chapter 6 NuBus Card Physical Design Guide 125

m Figure 6-3 Internal connector cabling slot for NuBus expansion card

|
Internal connector

External connector

GG) —— Y)
000 0 0 O ——

J‘(SL

NO-COIIIpOHCl’lt area

The internal connector must have no parts that extend into the no-component area. If
your connector has lock and eject tabs, similar to the internal SCSI connector, the tabs
must be below the no-component area.

The no-component area is an area in which you may not put any component parts. The lid
of a Macintosh computer has two fingers that hold the NuBus cards into place. These
fingers are needed for stability, and they help to ensure that the cards will not be damaged
in the event that the computer is jarred. If there are components in the no-component
area, either the fingers will break the components or the lid will not fit correctly.

The no-component area is three-dimensional. As such, it covers the surface of the board as
well as the distance next to the card (22.86 mm). You must not violate this space with
either mounted parts or secondary logic boards.

126 Designing Cards and Drivers for the Macintosh Family

Recommended heat dissipation guidelines

Apple recommends that NuBus expansion cards dissipate a maximum of 13.3 W of power.
This total, which provides a comfortable margin for the major computer components, is
arrived at as follows:

5V @ 20A= 100W
+12V. @ 0175A= 21W
-12V @ 01A-= 1.2W
Total power = 133W

Dissipation of more than 13.3 W of power by a card may cause excessive temperature rise
on certain critical components. Apple studies indicate that at an ambient temperature of
about 24°C, 13.3 W of dissipated power from the expansion card will cause an acceptable
rise in average component case temperature to about 53°C. (Studies were conducted with
an internal hard disk drive installed.) For additional information, refer to the section
“Heat Dissipation Guidelines for NuBus Cards” in Appendix A.

NuBus slot ordering

The list of Macintosh computers that offer the NuBus expansion interface is growing, and the
variety of configurations is growing as well. There are Macintosh computers with one, two,
three, five, and six available NuBus slots.

For most of the Macintosh computers, when the main logic board is viewed from above, NuBus
slot ID ordering starts with a lower-number ID at the left side and increases from left to right.
However, on the Macintosh Quadra 700 and the Macintosh Quadra 900, the NuBus slot ID
ordering starts with higher ID numbers on the left and decreases from left to right. There should
be no compatibility problems due to the physical ordering of NuBus slots on computers in the
Macintosh Quadra family.

Figure 6-4 shows the slot ordering on the Macintosh Quadra 700 and the Macintosh Quadra 900,
as compared with that on the Macintosh Iici, the Macintosh Ilcx, and the Macintosh IIfx.

Chapter 6 NuBus Card Physical Design Guide

127

m Figure 6-4 NuBus slot ordering on Macintosh Ilci, Macintosh Quadra 700,
Macintosh IIcx, Macintosh Quadra 900, and Macintosh IIfx computers

-«— [0 Connectors — ~— [0 Connectors —m ~«— [O Connectors —»
CDE CPU ED 9 AB ICEJ]
- -
E)
g CPU g ;
o [g
D 1040 g
S =
Mac Ici Macintosh Quadra 700 Mac Icx
~— [0 Connectors — -«— [0 Connectors —
EDCBA 9ABCDE
g : CPU
= cPy [P P]
IO 5
& 040 Mac IIfx
Macintosh Quadra 900

Physical implementation of the Macintosh IIsi NuBus adapter kit

A NuBus adapter kit, available from an authorized Apple dealer, allows a customer to
install a NuBus card in the Macintosh IIsi computer and have it function exactly as if it
were in any other Macintosh computer with the NuBus interface. The NuBus adapter card
includes two different connectors. One is a 120-pin plug connector that mates with the
Euro-DIN 120-pin socket connector on the left side (viewed from the front) of the main
logic board. The adapter card mounts vertically in this connector. The other is a 96-pin
socket connector (the same as the NuBus connectors on the main logic boards of other
Macintosh computers). The NuBus card plugs into this connector and is positioned
horizontally over the main logic board.

128 Designing Cards and Drivers for the Macintosh Family

The NuBus vertical adapter card acts as a translator between the 68030 signals on the main
logic board and the signals on the NuBus expansion card. It contains the same custom
NuChip 30 that is found in the Macintosh Ilci, other electrical components that make up
the NuBus interface logic, and a 20 MHz MC68882 FPU. All the translation is transparent,
so that NuBus cards will work successfully in the Macintosh IIsi.

The adapter card also includes a bracket that adapts the NuBus card’s connector to the
opening in the back of the Macintosh IIsi computer. This bracket provides both EMI
protection and support for the card. Two screws are included in the adapter card kit to
secure the bracket to the opening in the chassis. The top cover of the Macintosh IIsi
computer includes grooves that hold the NuBus card in place when the cover is closed.
There is just enough gap between the top cover and bottom half of the case for a

1.575 mm thick card, which is Apple’s specification for a NuBus card. Any size NuBus card
specified by Apple can be accommodated in the Macintosh IIsi computer.

Figure 6-5 is a sketch showing a NuBus card and its adapter card installed on the main logic
board of a Macintosh IIsi computer. Notice that, unlike the 68030 Direct Slot adapter
card specified in Chapter 15, the NuBus card has other electrical components in addition
to the FPU, including the custom NuChip 30 and ass<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>