SCSI2SD/software/SCSI2SD/src/disk.c

642 lines
15 KiB
C
Executable File

// Copyright (C) 2013 Michael McMaster <michael@codesrc.com>
// Copyright (C) 2014 Doug Brown <doug@downtowndougbrown.com>
//
// This file is part of SCSI2SD.
//
// SCSI2SD is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// SCSI2SD is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with SCSI2SD. If not, see <http://www.gnu.org/licenses/>.
#include "device.h"
#include "scsi.h"
#include "scsiPhy.h"
#include "config.h"
#include "disk.h"
#include "sd.h"
#include <string.h>
// Global
BlockDevice blockDev;
Transfer transfer;
static int doSdInit()
{
int result = sdInit();
if (result)
{
blockDev.state = blockDev.state | DISK_INITIALISED;
}
return result;
}
// Callback once all data has been read in the data out phase.
static void doFormatUnitComplete(void)
{
// TODO start writing the initialisation pattern to the SD
// card
scsiDev.phase = STATUS;
}
static void doFormatUnitSkipData(int bytes)
{
// We may not have enough memory to store the initialisation pattern and
// defect list data. Since we're not making use of it yet anyway, just
// discard the bytes.
scsiEnterPhase(DATA_OUT);
int i;
for (i = 0; i < bytes; ++i)
{
scsiReadByte();
}
}
// Callback from the data out phase.
static void doFormatUnitPatternHeader(void)
{
int defectLength =
((((uint16_t)scsiDev.data[2])) << 8) +
scsiDev.data[3];
int patternLength =
((((uint16_t)scsiDev.data[4 + 2])) << 8) +
scsiDev.data[4 + 3];
doFormatUnitSkipData(defectLength + patternLength);
doFormatUnitComplete();
}
// Callback from the data out phase.
static void doFormatUnitHeader(void)
{
int IP = (scsiDev.data[1] & 0x08) ? 1 : 0;
int DSP = (scsiDev.data[1] & 0x04) ? 1 : 0;
if (! DSP) // disable save parameters
{
configSave(); // Save the "MODE SELECT savable parameters"
}
if (IP)
{
// We need to read the initialisation pattern header first.
scsiDev.dataLen += 4;
scsiDev.phase = DATA_OUT;
scsiDev.postDataOutHook = doFormatUnitPatternHeader;
}
else
{
// Read the defect list data
int defectLength =
((((uint16_t)scsiDev.data[2])) << 8) +
scsiDev.data[3];
doFormatUnitSkipData(defectLength);
doFormatUnitComplete();
}
}
static void doReadCapacity()
{
uint32_t lba = (((uint32) scsiDev.cdb[2]) << 24) +
(((uint32) scsiDev.cdb[3]) << 16) +
(((uint32) scsiDev.cdb[4]) << 8) +
scsiDev.cdb[5];
int pmi = scsiDev.cdb[8] & 1;
uint32_t capacity = getScsiCapacity();
if (!pmi && lba)
{
// error.
// We don't do anything with the "partial medium indicator", and
// assume that delays are constant across each block. But the spec
// says we must return this error if pmi is specified incorrectly.
scsiDev.status = CHECK_CONDITION;
scsiDev.sense.code = ILLEGAL_REQUEST;
scsiDev.sense.asc = INVALID_FIELD_IN_CDB;
scsiDev.phase = STATUS;
}
else if (capacity > 0)
{
uint32_t highestBlock = capacity - 1;
scsiDev.data[0] = highestBlock >> 24;
scsiDev.data[1] = highestBlock >> 16;
scsiDev.data[2] = highestBlock >> 8;
scsiDev.data[3] = highestBlock;
scsiDev.data[4] = config->bytesPerSector >> 24;
scsiDev.data[5] = config->bytesPerSector >> 16;
scsiDev.data[6] = config->bytesPerSector >> 8;
scsiDev.data[7] = config->bytesPerSector;
scsiDev.dataLen = 8;
scsiDev.phase = DATA_IN;
}
else
{
scsiDev.status = CHECK_CONDITION;
scsiDev.sense.code = NOT_READY;
scsiDev.sense.asc = MEDIUM_NOT_PRESENT;
scsiDev.phase = STATUS;
}
}
static void doWrite(uint32 lba, uint32 blocks)
{
if (blockDev.state & DISK_WP)
{
scsiDev.status = CHECK_CONDITION;
scsiDev.sense.code = ILLEGAL_REQUEST;
scsiDev.sense.asc = WRITE_PROTECTED;
scsiDev.phase = STATUS;
}
else if (((uint64) lba) + blocks > getScsiCapacity())
{
scsiDev.status = CHECK_CONDITION;
scsiDev.sense.code = ILLEGAL_REQUEST;
scsiDev.sense.asc = LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE;
scsiDev.phase = STATUS;
}
else
{
transfer.dir = TRANSFER_WRITE;
transfer.lba = lba;
transfer.blocks = blocks;
transfer.currentBlock = 0;
scsiDev.phase = DATA_OUT;
scsiDev.dataLen = config->bytesPerSector;
scsiDev.dataPtr = config->bytesPerSector; // TODO FIX scsiDiskPoll()
// No need for single-block writes atm. Overhead of the
// multi-block write is minimal.
transfer.multiBlock = 1;
sdWriteMultiSectorPrep();
}
}
static void doRead(uint32 lba, uint32 blocks)
{
uint32_t capacity = getScsiCapacity();
if (((uint64) lba) + blocks > capacity)
{
scsiDev.status = CHECK_CONDITION;
scsiDev.sense.code = ILLEGAL_REQUEST;
scsiDev.sense.asc = LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE;
scsiDev.phase = STATUS;
}
else
{
transfer.dir = TRANSFER_READ;
transfer.lba = lba;
transfer.blocks = blocks;
transfer.currentBlock = 0;
scsiDev.phase = DATA_IN;
scsiDev.dataLen = 0; // No data yet
if ((blocks == 1) ||
(((uint64) lba) + blocks == capacity)
)
{
// We get errors on reading the last sector using a multi-sector
// read :-(
transfer.multiBlock = 0;
}
else
{
transfer.multiBlock = 1;
sdReadMultiSectorPrep();
}
}
}
static void doSeek(uint32 lba)
{
if (lba >= getScsiCapacity())
{
scsiDev.status = CHECK_CONDITION;
scsiDev.sense.code = ILLEGAL_REQUEST;
scsiDev.sense.asc = LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE;
scsiDev.phase = STATUS;
}
}
static int doTestUnitReady()
{
int ready = 1;
if (!(blockDev.state & DISK_STARTED))
{
ready = 0;
scsiDev.status = CHECK_CONDITION;
scsiDev.sense.code = NOT_READY;
scsiDev.sense.asc = LOGICAL_UNIT_NOT_READY_INITIALIZING_COMMAND_REQUIRED;
scsiDev.phase = STATUS;
}
else if (!(blockDev.state & DISK_PRESENT))
{
ready = 0;
scsiDev.status = CHECK_CONDITION;
scsiDev.sense.code = NOT_READY;
scsiDev.sense.asc = MEDIUM_NOT_PRESENT;
scsiDev.phase = STATUS;
}
else if (!(blockDev.state & DISK_INITIALISED))
{
ready = 0;
scsiDev.status = CHECK_CONDITION;
scsiDev.sense.code = NOT_READY;
scsiDev.sense.asc = LOGICAL_UNIT_NOT_READY_CAUSE_NOT_REPORTABLE;
scsiDev.phase = STATUS;
}
return ready;
}
// Handle direct-access scsi device commands
int scsiDiskCommand()
{
int commandHandled = 1;
uint8 command = scsiDev.cdb[0];
if (command == 0x1B)
{
// START STOP UNIT
// Enable or disable media access operations.
// Ignore load/eject requests. We can't do that.
//int immed = scsiDev.cdb[1] & 1;
int start = scsiDev.cdb[4] & 1;
if (start)
{
blockDev.state = blockDev.state | DISK_STARTED;
if (!(blockDev.state & DISK_INITIALISED))
{
doSdInit();
}
}
else
{
blockDev.state &= ~DISK_STARTED;
}
}
else if (command == 0x00)
{
// TEST UNIT READY
doTestUnitReady();
}
else if (!doTestUnitReady())
{
// Status and sense codes already set by doTestUnitReady
}
else if (command == 0x04)
{
// FORMAT UNIT
// We don't really do any formatting, but we need to read the correct
// number of bytes in the DATA_OUT phase to make the SCSI host happy.
int fmtData = (scsiDev.cdb[1] & 0x10) ? 1 : 0;
if (fmtData)
{
// We need to read the parameter list, but we don't know how
// big it is yet. Start with the header.
scsiDev.dataLen = 4;
scsiDev.phase = DATA_OUT;
scsiDev.postDataOutHook = doFormatUnitHeader;
}
else
{
// No data to read, we're already finished!
}
}
else if (command == 0x08)
{
// READ(6)
uint32 lba =
(((uint32) scsiDev.cdb[1] & 0x1F) << 16) +
(((uint32) scsiDev.cdb[2]) << 8) +
scsiDev.cdb[3];
uint32 blocks = scsiDev.cdb[4];
if (blocks == 0) blocks = 256;
doRead(lba, blocks);
}
else if (command == 0x28)
{
// READ(10)
// Ignore all cache control bits - we don't support a memory cache.
uint32 lba =
(((uint32) scsiDev.cdb[2]) << 24) +
(((uint32) scsiDev.cdb[3]) << 16) +
(((uint32) scsiDev.cdb[4]) << 8) +
scsiDev.cdb[5];
uint32 blocks =
(((uint32) scsiDev.cdb[7]) << 8) +
scsiDev.cdb[8];
doRead(lba, blocks);
}
else if (command == 0x25)
{
// READ CAPACITY
doReadCapacity();
}
else if (command == 0x0B)
{
// SEEK(6)
uint32 lba =
(((uint32) scsiDev.cdb[1] & 0x1F) << 16) +
(((uint32) scsiDev.cdb[2]) << 8) +
scsiDev.cdb[3];
doSeek(lba);
}
else if (command == 0x2B)
{
// SEEK(10)
uint32 lba =
(((uint32) scsiDev.cdb[2]) << 24) +
(((uint32) scsiDev.cdb[3]) << 16) +
(((uint32) scsiDev.cdb[4]) << 8) +
scsiDev.cdb[5];
doSeek(lba);
}
else if (command == 0x0A)
{
// WRITE(6)
uint32 lba =
(((uint32) scsiDev.cdb[1] & 0x1F) << 16) +
(((uint32) scsiDev.cdb[2]) << 8) +
scsiDev.cdb[3];
uint32 blocks = scsiDev.cdb[4];
if (blocks == 0) blocks = 256;
doWrite(lba, blocks);
}
else if (command == 0x2A)
{
// WRITE(10)
// Ignore all cache control bits - we don't support a memory cache.
uint32 lba =
(((uint32) scsiDev.cdb[2]) << 24) +
(((uint32) scsiDev.cdb[3]) << 16) +
(((uint32) scsiDev.cdb[4]) << 8) +
scsiDev.cdb[5];
uint32 blocks =
(((uint32) scsiDev.cdb[7]) << 8) +
scsiDev.cdb[8];
doWrite(lba, blocks);
}
else if (command == 0x36)
{
// LOCK UNLOCK CACHE
// We don't have a cache to lock data into. do nothing.
}
else if (command == 0x34)
{
// PRE-FETCH.
// We don't have a cache to pre-fetch into. do nothing.
}
else if (command == 0x1E)
{
// PREVENT ALLOW MEDIUM REMOVAL
// Not much we can do to prevent the user removing the SD card.
// do nothing.
}
else if (command == 0x01)
{
// REZERO UNIT
// Set the lun to a vendor-specific state. Ignore.
}
else if (command == 0x35)
{
// SYNCHRONIZE CACHE
// We don't have a cache. do nothing.
}
else if (command == 0x2F)
{
// VERIFY
// TODO: When they supply data to verify, we should read the data and
// verify it. If they don't supply any data, just say success.
if ((scsiDev.cdb[1] & 0x02) == 0)
{
// They are asking us to do a medium verification with no data
// comparison. Assume success, do nothing.
}
else
{
// TODO. This means they are supplying data to verify against.
// Technically we should probably grab the data and compare it.
scsiDev.status = CHECK_CONDITION;
scsiDev.sense.code = ILLEGAL_REQUEST;
scsiDev.sense.asc = INVALID_FIELD_IN_CDB;
scsiDev.phase = STATUS;
}
}
else
{
commandHandled = 0;
}
return commandHandled;
}
void scsiDiskPoll()
{
if (scsiDev.phase == DATA_IN &&
transfer.currentBlock != transfer.blocks)
{
scsiEnterPhase(DATA_IN);
int totalSDSectors = transfer.blocks * SDSectorsPerSCSISector();
uint32_t sdLBA = SCSISector2SD(transfer.lba);
int buffers = sizeof(scsiDev.data) / SD_SECTOR_SIZE;
int prep = 0;
int i = 0;
int scsiActive = 0;
int sdActive = 0;
while ((i < totalSDSectors) &&
(scsiDev.phase == DATA_IN) &&
!scsiDev.resetFlag)
{
if ((sdActive == 1) && sdReadSectorDMAPoll())
{
sdActive = 0;
prep++;
}
else if ((sdActive == 0) && (prep - i < buffers) && (prep < totalSDSectors))
{
// Start an SD transfer if we have space.
if (transfer.multiBlock)
{
sdReadMultiSectorDMA(&scsiDev.data[SD_SECTOR_SIZE * (prep % buffers)]);
}
else
{
sdReadSingleSectorDMA(sdLBA + prep, &scsiDev.data[SD_SECTOR_SIZE * (prep % buffers)]);
}
sdActive = 1;
}
if ((scsiActive == 1) && scsiWriteDMAPoll())
{
scsiActive = 0;
++i;
}
else if ((scsiActive == 0) && ((prep - i) > 0))
{
int dmaBytes = SD_SECTOR_SIZE;
if (i % SDSectorsPerSCSISector() == SDSectorsPerSCSISector() - 1)
{
dmaBytes = config->bytesPerSector % SD_SECTOR_SIZE;
if (dmaBytes == 0) dmaBytes = SD_SECTOR_SIZE;
}
scsiWriteDMA(&scsiDev.data[SD_SECTOR_SIZE * (i % buffers)], dmaBytes);
scsiActive = 1;
}
}
if (scsiDev.phase == DATA_IN)
{
scsiDev.phase = STATUS;
}
scsiDiskReset();
}
else if (scsiDev.phase == DATA_OUT &&
transfer.currentBlock != transfer.blocks)
{
scsiEnterPhase(DATA_OUT);
int totalSDSectors = transfer.blocks * SDSectorsPerSCSISector();
int buffers = sizeof(scsiDev.data) / SD_SECTOR_SIZE;
int prep = 0;
int i = 0;
int scsiActive = 0;
int sdActive = 0;
while ((i < totalSDSectors) &&
(scsiDev.phase == DATA_OUT) &&
!scsiDev.resetFlag)
{
if ((sdActive == 1) && sdWriteSectorDMAPoll())
{
sdActive = 0;
i++;
}
else if ((sdActive == 0) && ((prep - i) > 0))
{
// Start an SD transfer if we have space.
sdWriteMultiSectorDMA(&scsiDev.data[SD_SECTOR_SIZE * (i % buffers)]);
sdActive = 1;
}
if ((scsiActive == 1) && scsiReadDMAPoll())
{
scsiActive = 0;
++prep;
}
else if ((scsiActive == 0) && ((prep - i) < buffers) && (prep < totalSDSectors))
{
int dmaBytes = SD_SECTOR_SIZE;
if (prep % SDSectorsPerSCSISector() == SDSectorsPerSCSISector() - 1)
{
dmaBytes = config->bytesPerSector % SD_SECTOR_SIZE;
if (dmaBytes == 0) dmaBytes = SD_SECTOR_SIZE;
}
scsiReadDMA(&scsiDev.data[SD_SECTOR_SIZE * (prep % buffers)], dmaBytes);
scsiActive = 1;
}
}
if (scsiDev.phase == DATA_OUT)
{
if (scsiDev.parityError)
{
scsiDev.sense.code = ABORTED_COMMAND;
scsiDev.sense.asc = SCSI_PARITY_ERROR;
scsiDev.status = CHECK_CONDITION;;
}
scsiDev.phase = STATUS;
}
scsiDiskReset();
}
}
void scsiDiskReset()
{
scsiDev.dataPtr = 0;
scsiDev.savedDataPtr = 0;
scsiDev.dataLen = 0;
// transfer.lba = 0; // Needed in Request Sense to determine failure
transfer.blocks = 0;
transfer.currentBlock = 0;
// Cancel long running commands!
if (transfer.inProgress == 1)
{
if (transfer.dir == TRANSFER_WRITE)
{
sdCompleteWrite();
}
else
{
sdCompleteRead();
}
}
transfer.inProgress = 0;
transfer.multiBlock = 0;
}
void scsiDiskInit()
{
transfer.inProgress = 0;
scsiDiskReset();
// Don't require the host to send us a START STOP UNIT command
blockDev.state = DISK_STARTED;
// WP pin not available for micro-sd
// TODO read card WP register
#if 0
if (SD_WP_Read())
{
blockDev.state = blockDev.state | DISK_WP;
}
#endif
// The Card-detect switches of micro-sd sockets are not standard. Don't make
// use of SD_CD so we can use sockets from other manufacturers.
// Detect presence of the card by testing whether it responds to commands.
// if (SD_CD_Read() == 1)
{
int retry;
blockDev.state = blockDev.state | DISK_PRESENT;
// Wait up to 5 seconds for the SD card to wake up.
for (retry = 0; retry < 5; ++retry)
{
if (doSdInit())
{
break;
}
else
{
CyDelay(1000);
}
}
}
}