Warp-SE/cpld/RAM.v
2024-10-08 21:13:18 -04:00

193 lines
4.6 KiB
Verilog

module RAM(
/* MC68HC000 interface */
input CLK, input [21:1] A, input nWE,
input nAS, input nLDS, input nUDS, input nDTACK,
/* AS cycle detection */
input BACT, input BACTr,
/* Select and ready signals */
input RAMCS, input RAMCS0X, input ROMCS, input ROMCS4X,
/* RAM ready output */
output RAMReady,
/* Refresh Counter Interface */
input RefReqIn, input RefUrgIn,
/* DRAM interface */
output [11:0] RA, output nRAS, output reg nCAS,
output nLWE, output nUWE, output reg nOE,
/* NOR flash interface */
output nROMOE, output nROMWE);
/* RAM control state */
reg [2:0] RS;
reg RASEN;
reg RASEL;
reg RASrf;
reg RefCAS;
reg CASEndEN;
/* Refresh command generation */
reg RefDone; // Refresh done "remember"
always @(posedge CLK) begin
if (!RefReqIn && !RefUrgIn) RefDone <= 0;
else if (RS[2]) RefDone <= 1;
end
wire RefReq = RefReqIn && !RefDone;
wire RefUrg = RefUrgIn && !RefDone;
/* RAM ready control */
reg RAMReadyReg;
assign RAMReady = RAMReadyReg;//!RS[2];
/* RAM /RAS control */
assign nRAS = !((!nAS && RAMCS && RASEN) || RASrf);
/* RAM /WE control */
assign nLWE = !(!nLDS && RASEL && !nWE);
assign nUWE = !(!nUDS && RASEL && !nWE);
/* RAM /OE control */
always @(posedge CLK, posedge nAS) begin
if (nAS) nOE <= 1;
else nOE <= !(RAMCS && nWE);
end
/* ROM /OE and /WE control */
assign nROMOE = !(!nAS && ROMCS && nWE);
assign nROMWE = !(!nAS && ROMCS4X && !nWE && BACTr);
/* RAM address mux (and ROM address on RA8) */
// RA11 doesn't do anything so both should be identical.
assign RA[11] = !RASEL ? A[19] : A[20]; // ROM address 19
assign RA[03] = !RASEL ? A[19] : A[20];
// RA10 has only row so different rows but same column.
assign RA[10] = !RASEL ? A[17] : A[07];
assign RA[02] = !RASEL ? A[16] : A[07];
// Remainder of RA bus is unpaired
assign RA[09] = !RASEL ? A[15] : A[08];
assign RA[08] = !RASEL ? A[18] : A[21]; // ROM address 18
assign RA[07] = !RASEL ? A[14] : A[06];
assign RA[06] = !RASEL ? A[13] : A[05];
assign RA[05] = !RASEL ? A[12] : A[04];
assign RA[04] = !RASEL ? A[11] : A[03];
assign RA[01] = !RASEL ? A[10] : A[02];
assign RA[00] = !RASEL ? A[09] : A[01];
wire RS0toRef = // Refresh during first clock of non-RAM access
(RefReq && BACT && !BACTr && !RAMCS0X) ||
// Urgent refresh while bus inactive
(RefUrg && !BACT) ||
// Urgent refresh during non-RAM access
(RefUrg && BACT && !RAMCS0X);
wire RS0toRAM = BACT && RAMCS && RASEN;
always @(posedge CLK) begin
case (RS[2:0])
0: begin // Idle/ready
if (RS0toRAM) RS <= 1; // Access RAM
else if (RS0toRef) RS <= 4; // To refresh
else RS <= 0; // Stay in idle/ready
RASEL <= BACT && RAMCS;
RefCAS <= RS0toRef;
RASEN <= !RS0toRef;
RAMReadyReg <= !RS0toRef;
end 1: begin // RAM access
if (!nDTACK || !BACT) RS <= 2; // Cycle ending
else RS <= 1; // Cycle not ending yet
RASEL <= 1;
RefCAS <= 0;
RASEN <= nDTACK;
RAMReadyReg <= 1;
end 2: begin // finish RAM access
RS <= 3;
RASEL <= 0;
RefCAS <= 0;
RASEN <= 0;
RAMReadyReg <= 1;
end 3: begin //AS cycle complete
if (RefUrg) begin // Refresh RAS
RS <= 4;
RefCAS <= 1;
RASEN <= 0;
RAMReadyReg <= 0;
end else begin // Cycle ended so go back to idle/ready
RS <= 0;
RefCAS <= 0;
RASEN <= 1;
RAMReadyReg <= 1;
end
RASEL <= 0;
end 4: begin // Refresh RAS I
RS <= 5;
RASEL <= 0;
RefCAS <= 0;
RASEN <= 0;
RAMReadyReg <= 0;
end 5: begin // Refresh RAS II
RS <= 6;
RASEL <= 0;
RefCAS <= 0;
RASEN <= 0;
RAMReadyReg <= 0;
end 6: begin // Refresh precharge I
RS <= 7;
RASEL <= 0;
RefCAS <= 0;
RASEN <= 0;
RAMReadyReg <= 0;
end 7: begin // Reenable RAM and go to idle/ready
RS <= 0;
RASEL <= 0;
RefCAS <= 0;
RASEN <= 1;
RAMReadyReg <= 1;
end
endcase
end
always @(negedge CLK) begin
case (RS[2:0])
0: begin
RASrf <= 0;
CASEndEN <= 0;
end 1: begin
RASrf <= 1;
CASEndEN <= 1;
end 2: begin
RASrf <= 0;
CASEndEN <= 1;
end 3: begin
RASrf <= 0;
CASEndEN <= 0;
end 4: begin
RASrf <= 1;
CASEndEN <= 0;
end 5: begin
RASrf <= 1;
CASEndEN <= 0;
end 6: begin
RASrf <= 0;
CASEndEN <= 0;
end 7: begin
RASrf <= 0;
CASEndEN <= 0;
end
endcase
end
wire CASEnd = CASEndEN && nAS;
always @(negedge CLK, posedge RefCAS, posedge CASEnd) begin
if (RefCAS) nCAS <= 0;
else if (CASEnd) nCAS <= 1;
else case (RS[2:0])
0: nCAS <= 1;
1: nCAS <= 0;
2: nCAS <= 0;
3: nCAS <= 1;
4: nCAS <= 0;
5: nCAS <= 1;
6: nCAS <= 1;
7: nCAS <= 1;
endcase
end
endmodule