/* * BlueSCSI * Copyright (c) 2021 Eric Helgeson * * This file is free software: you may copy, redistribute and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 2 of the License, or (at your * option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see https://github.com/erichelgeson/bluescsi. * * This file incorporates work covered by the following copyright and * permission notice: * * Copyright (c) 2019 komatsu * * Permission to use, copy, modify, and/or distribute this software * for any purpose with or without fee is hereby granted, provided * that the above copyright notice and this permission notice appear * in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS * OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include // For Platform.IO #include #ifdef USE_STM32_DMA #warning "warning USE_STM32_DMA" #endif #define DEBUG 0 // 0:No debug information output // 1: Debug information output available #define SCSI_SELECT 0 // 0 for STANDARD // 1 for SHARP X1turbo // 2 for NEC PC98 #define READ_SPEED_OPTIMIZE 1 // Faster reads #define WRITE_SPEED_OPTIMIZE 1 // Speeding up writes #define USE_DB2ID_TABLE 1 // Use table to get ID from SEL-DB // SCSI config #define NUM_SCSIID 7 // Maximum number of supported SCSI-IDs (The minimum is 0) #define NUM_SCSILUN 2 // Maximum number of LUNs supported (The minimum is 0) #define READ_PARITY_CHECK 0 // Perform read parity check (unverified) // HDD format #define MAX_BLOCKSIZE 1024 // Maximum BLOCK size // SDFAT #define SD1_CONFIG SdSpiConfig(PA4, DEDICATED_SPI, SD_SCK_MHZ(SPI_FULL_SPEED), &SPI) SdFs SD; #if DEBUG #define LOG(XX) Serial.print(XX) #define LOGHEX(XX) Serial.print(XX, HEX) #define LOGN(XX) Serial.println(XX) #define LOGHEXN(XX) Serial.println(XX, HEX) #else #define LOG(XX) //Serial.print(XX) #define LOGHEX(XX) //Serial.print(XX, HEX) #define LOGN(XX) //Serial.println(XX) #define LOGHEXN(XX) //Serial.println(XX, HEX) #endif #define active 1 #define inactive 0 #define high 0 #define low 1 #define isHigh(XX) ((XX) == high) #define isLow(XX) ((XX) != high) #define gpio_mode(pin,val) gpio_set_mode(PIN_MAP[pin].gpio_device, PIN_MAP[pin].gpio_bit, val); #define gpio_write(pin,val) gpio_write_bit(PIN_MAP[pin].gpio_device, PIN_MAP[pin].gpio_bit, val) #define gpio_read(pin) gpio_read_bit(PIN_MAP[pin].gpio_device, PIN_MAP[pin].gpio_bit) //#define DB0 PB8 // SCSI:DB0 //#define DB1 PB9 // SCSI:DB1 //#define DB2 PB10 // SCSI:DB2 //#define DB3 PB11 // SCSI:DB3 //#define DB4 PB12 // SCSI:DB4 //#define DB5 PB13 // SCSI:DB5 //#define DB6 PB14 // SCSI:DB6 //#define DB7 PB15 // SCSI:DB7 //#define DBP PB0 // SCSI:DBP #define ATN PA8 // SCSI:ATN #define BSY PA9 // SCSI:BSY #define ACK PA10 // SCSI:ACK #define RST PA15 // SCSI:RST #define MSG PB3 // SCSI:MSG #define SEL PB4 // SCSI:SEL #define CD PB5 // SCSI:C/D #define REQ PB6 // SCSI:REQ #define IO PB7 // SCSI:I/O #define SD_CS PA4 // SDCARD:CS #define LED PC13 // LED // GPIO register port #define PAREG GPIOA->regs #define PBREG GPIOB->regs // LED control #define LED_ON() gpio_write(LED, high); #define LED_OFF() gpio_write(LED, low); // Virtual pin (Arduio compatibility is slow, so make it MCU-dependent) #define PA(BIT) (BIT) #define PB(BIT) (BIT+16) // Virtual pin decoding #define GPIOREG(VPIN) ((VPIN)>=16?PBREG:PAREG) #define BITMASK(VPIN) (1<<((VPIN)&15)) #define vATN PA(8) // SCSI:ATN #define vBSY PA(9) // SCSI:BSY #define vACK PA(10) // SCSI:ACK #define vRST PA(15) // SCSI:RST #define vMSG PB(3) // SCSI:MSG #define vSEL PB(4) // SCSI:SEL #define vCD PB(5) // SCSI:C/D #define vREQ PB(6) // SCSI:REQ #define vIO PB(7) // SCSI:I/O #define vSD_CS PA(4) // SDCARD:CS // SCSI output pin control: opendrain active LOW (direct pin drive) #define SCSI_OUT(VPIN,ACTIVE) { GPIOREG(VPIN)->BSRR = BITMASK(VPIN)<<((ACTIVE)?16:0); } // SCSI input pin check (inactive=0,avtive=1) #define SCSI_IN(VPIN) ((~GPIOREG(VPIN)->IDR>>(VPIN&15))&1) // GPIO mode // IN , FLOAT : 4 // IN , PU/PD : 8 // OUT, PUSH/PULL : 3 // OUT, OD : 1 //#define DB_MODE_OUT 3 #define DB_MODE_OUT 1 #define DB_MODE_IN 8 // Put DB and DP in output mode #define SCSI_DB_OUTPUT() { PBREG->CRL=(PBREG->CRL &0xfffffff0)|DB_MODE_OUT; PBREG->CRH = 0x11111111*DB_MODE_OUT; } // Put DB and DP in input mode #define SCSI_DB_INPUT() { PBREG->CRL=(PBREG->CRL &0xfffffff0)|DB_MODE_IN ; PBREG->CRH = 0x11111111*DB_MODE_IN; } // Turn on the output only for BSY #define SCSI_BSY_ACTIVE() { gpio_mode(BSY, GPIO_OUTPUT_OD); SCSI_OUT(vBSY, active) } // BSY,REQ,MSG,CD,IO Turn on the output (no change required for OD) #define SCSI_TARGET_ACTIVE() { } // BSY,REQ,MSG,CD,IO Turn off output, BSY is the last input #define SCSI_TARGET_INACTIVE() { SCSI_OUT(vREQ,inactive); SCSI_OUT(vMSG,inactive); SCSI_OUT(vCD,inactive);SCSI_OUT(vIO,inactive); SCSI_OUT(vBSY,inactive); gpio_mode(BSY, GPIO_INPUT_PU); } // HDDiamge file #define HDIMG_FILE_256 "HDxx_256.HDS" // BLOCKSIZE=256 HDD image file #define HDIMG_FILE_512 "HDxx_512.HDS" // BLOCKSIZE=512 HDD image file name base #define HDIMG_FILE_1024 "HDxx_1024.HDS" // BLOCKSIZE=1024 HDD image file #define HDIMG_ID_POS 2 // Position to embed ID number #define HDIMG_LUN_POS 3 // Position to embed LUN numbers #define MAX_FILE_PATH 32 // Maximum file name length // HDD image typedef struct hddimg_struct { FsFile m_file; // File object uint64_t m_fileSize; // File size size_t m_blocksize; // SCSI BLOCK size }HDDIMG; HDDIMG img[NUM_SCSIID][NUM_SCSILUN]; // Maximum number uint8_t m_senseKey = 0; // Sense key volatile bool m_isBusReset = false; // Bus reset byte scsi_id_mask; // Mask list of responding SCSI IDs byte m_id; // Currently responding SCSI-ID byte m_lun; // Logical unit number currently responding byte m_sts; // Status byte byte m_msg; // Message bytes HDDIMG *m_img; // HDD image for current SCSI-ID, LUN byte m_buf[MAX_BLOCKSIZE+1]; // General purpose buffer + overrun fetch int m_msc; bool m_msb[256]; /* * Data byte to BSRR register setting value and parity table */ // Parity bit generation #define PTY(V) (1^((V)^((V)>>1)^((V)>>2)^((V)>>3)^((V)>>4)^((V)>>5)^((V)>>6)^((V)>>7))&1) // Data byte to BSRR register setting value conversion table // BSRR[31:24] = DB[7:0] // BSRR[ 16] = PTY(DB) // BSRR[15: 8] = ~DB[7:0] // BSRR[ 0] = ~PTY(DB) // Set DBP, set REQ = inactive #define DBP(D) ((((((uint32_t)(D)<<8)|PTY(D))*0x00010001)^0x0000ff01)|BITMASK(vREQ)) #define DBP8(D) DBP(D),DBP(D+1),DBP(D+2),DBP(D+3),DBP(D+4),DBP(D+5),DBP(D+6),DBP(D+7) #define DBP32(D) DBP8(D),DBP8(D+8),DBP8(D+16),DBP8(D+24) // BSRR register control value that simultaneously performs DB set, DP set, and REQ = H (inactrive) static const uint32_t db_bsrr[256]={ DBP32(0x00),DBP32(0x20),DBP32(0x40),DBP32(0x60), DBP32(0x80),DBP32(0xA0),DBP32(0xC0),DBP32(0xE0) }; // Parity bit acquisition #define PARITY(DB) (db_bsrr[DB]&1) // Macro cleaning #undef DBP32 #undef DBP8 //#undef DBP //#undef PTY #if USE_DB2ID_TABLE /* DB to SCSI-ID translation table */ static const byte db2scsiid[256]={ 0xff, 0, 1,1, 2,2,2,2, 3,3,3,3,3,3,3,3, 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 }; #endif // Log File #define VERSION "1.0-b" #define LOG_FILENAME "LOG.txt" FsFile LOG_FILE; void onFalseInit(void); void onBusReset(void); /* * IO read. */ inline byte readIO(void) { // Port input data register uint32_t ret = GPIOB->regs->IDR; byte bret = (byte)((~ret)>>8); #if READ_PARITY_CHECK if((db_bsrr[bret]^ret)&1) m_sts |= 0x01; // parity error #endif return bret; } /* * Open HDD image file */ bool hddimageOpen(HDDIMG *h,const char *image_name,int id,int lun,int blocksize) { char file_path[MAX_FILE_PATH+1]; // build file path strcpy(file_path,image_name); file_path[HDIMG_ID_POS ] = '0'+id; file_path[HDIMG_LUN_POS] = '0'+lun; h->m_fileSize = 0; h->m_blocksize = blocksize; h->m_file = SD.open(file_path, O_RDWR); if(h->m_file.isOpen()) { h->m_fileSize = h->m_file.size(); LOG_FILE.print("Imagefile: "); LOG_FILE.print(file_path); if(h->m_fileSize>0) { // check blocksize dummy file LOG_FILE.print(" / "); LOG_FILE.print(h->m_fileSize); LOG_FILE.print("bytes / "); LOG_FILE.print(h->m_fileSize / 1024); LOG_FILE.print("KiB / "); LOG_FILE.print(h->m_fileSize / 1024 / 1024); LOG_FILE.println("MiB"); return true; // File opened } else { h->m_file.close(); h->m_fileSize = h->m_blocksize = 0; // no file LOG_FILE.println("FileSizeError"); } } return false; } /* * Initialization. * Initialize the bus and set the PIN orientation */ void setup() { // PA15 / PB3 / PB4 Cannot be used // JTAG Because it is used for debugging. disableDebugPorts(); // Serial initialization #if DEBUG Serial.begin(9600); while (!Serial); #endif // PIN initialization gpio_mode(LED, GPIO_OUTPUT_OD); gpio_write(LED, low); //GPIO(SCSI BUS)Initialization //Port setting register (lower) // GPIOB->regs->CRL |= 0x000000008; // SET INPUT W/ PUPD on PAB-PB0 //Port setting register (upper) //GPIOB->regs->CRH = 0x88888888; // SET INPUT W/ PUPD on PB15-PB8 // GPIOB->regs->ODR = 0x0000FF00; // SET PULL-UPs on PB15-PB8 // DB and DP are input modes SCSI_DB_INPUT() // Input port gpio_mode(ATN, GPIO_INPUT_PU); gpio_mode(BSY, GPIO_INPUT_PU); gpio_mode(ACK, GPIO_INPUT_PU); gpio_mode(RST, GPIO_INPUT_PU); gpio_mode(SEL, GPIO_INPUT_PU); // Output port gpio_mode(MSG, GPIO_OUTPUT_OD); gpio_mode(CD, GPIO_OUTPUT_OD); gpio_mode(REQ, GPIO_OUTPUT_OD); gpio_mode(IO, GPIO_OUTPUT_OD); // Turn off the output port SCSI_TARGET_INACTIVE() //Occurs when the RST pin state changes from HIGH to LOW //attachInterrupt(PIN_MAP[RST].gpio_bit, onBusReset, FALLING); LED_ON(); // clock = 36MHz , about 4Mbytes/sec if(!SD.begin(SD1_CONFIG)) { #if DEBUG Serial.println("SD initialization failed!"); #endif onFalseInit(); } initFileLog(); //Sector data overrun byte setting m_buf[MAX_BLOCKSIZE] = 0xff; // DB0 all off,DBP off //HD image file open scsi_id_mask = 0x00; for(int id=0;id SD - https://github.com/erichelgeson/BlueSCSI"); LOG_FILE.print("VERSION: "); LOG_FILE.println(VERSION); LOG_FILE.print("DEBUG:"); LOG_FILE.print(DEBUG); LOG_FILE.print(" SCSI_SELECT:"); LOG_FILE.print(SCSI_SELECT); LOG_FILE.print(" SDFAT_FILE_TYPE:"); LOG_FILE.println(SDFAT_FILE_TYPE); LOG_FILE.print("SdFat version: "); LOG_FILE.println(SD_FAT_VERSION_STR); LOG_FILE.println("Initialized SD Card - lets go!"); } /* * Finalize initialization logfile */ void finalizeFileLog() { // View support drive map LOG_FILE.print("ID"); for(int lun=0;lunm_file)) { LOG_FILE.print((h->m_blocksize<1000) ? ": " : ":"); LOG_FILE.print(h->m_blocksize); } else LOG_FILE.print(":----"); } LOG_FILE.println(":"); } LOG_FILE.println("Finished initialization of SCSI Devices - Entering main loop."); LOG_FILE.sync(); LOG_FILE.close(); } /* * Initialization failed. */ void onFalseInit(void) { while(true) { gpio_write(LED, high); delay(500); gpio_write(LED, low); delay(500); } } /* * Bus reset interrupt. */ void onBusReset(void) { #if SCSI_SELECT == 1 // SASI I / F for X1 turbo has RST pulse write cycle +2 clock == // I can't filter because it only activates about 1.25us {{ #else if(isHigh(gpio_read(RST))) { delayMicroseconds(20); if(isHigh(gpio_read(RST))) { #endif // BUS FREE is done in the main process // gpio_mode(MSG, GPIO_OUTPUT_OD); // gpio_mode(CD, GPIO_OUTPUT_OD); // gpio_mode(REQ, GPIO_OUTPUT_OD); // gpio_mode(IO, GPIO_OUTPUT_OD); // Should I enter DB and DBP once? SCSI_DB_INPUT() LOGN("BusReset!"); m_isBusReset = true; } } } /* * Read by handshake. */ inline byte readHandshake(void) { SCSI_OUT(vREQ,active) //SCSI_DB_INPUT() while(!SCSI_IN(vACK)) { if(m_isBusReset) return 0; } byte r = readIO(); SCSI_OUT(vREQ,inactive) while( SCSI_IN(vACK)) { if(m_isBusReset) return 0; } return r; } /* * Write with a handshake. */ inline void writeHandshake(byte d) { GPIOB->regs->BSRR = db_bsrr[d]; // setup DB,DBP (160ns) SCSI_DB_OUTPUT() // (180ns) // ACK.Fall to DB output delay 100ns(MAX) (DTC-510B) SCSI_OUT(vREQ,inactive) // setup wait (30ns) SCSI_OUT(vREQ,inactive) // setup wait (30ns) SCSI_OUT(vREQ,inactive) // setup wait (30ns) SCSI_OUT(vREQ,active) // (30ns) //while(!SCSI_IN(vACK)) { if(m_isBusReset){ SCSI_DB_INPUT() return; }} while(!m_isBusReset && !SCSI_IN(vACK)); // ACK.Fall to REQ.Raise delay 500ns(typ.) (DTC-510B) GPIOB->regs->BSRR = DBP(0xff); // DB=0xFF , SCSI_OUT(vREQ,inactive) // REQ.Raise to DB hold time 0ns SCSI_DB_INPUT() // (150ns) while( SCSI_IN(vACK)) { if(m_isBusReset) return; } } /* * Data in phase. * Send len bytes of data array p. */ void writeDataPhase(int len, const byte* p) { LOGN("DATAIN PHASE"); SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low); SCSI_OUT(vCD ,inactive) // gpio_write(CD, low); SCSI_OUT(vIO , active) // gpio_write(IO, high); for (int i = 0; i < len; i++) { if(m_isBusReset) { return; } writeHandshake(p[i]); } } /* * Data in phase. * Send len block while reading from SD card. */ void writeDataPhaseSD(uint32_t adds, uint32_t len) { LOGN("DATAIN PHASE(SD)"); uint32_t pos = adds * m_img->m_blocksize; m_img->m_file.seek(pos); SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low); SCSI_OUT(vCD ,inactive) // gpio_write(CD, low); SCSI_OUT(vIO , active) // gpio_write(IO, high); for(uint32_t i = 0; i < len; i++) { // Asynchronous reads will make it faster ... m_img->m_file.read(m_buf, m_img->m_blocksize); #if READ_SPEED_OPTIMIZE //#define REQ_ON() SCSI_OUT(vREQ,active) #define REQ_ON() (*db_dst = BITMASK(vREQ)<<16) #define FETCH_SRC() (src_byte = *srcptr++) #define FETCH_BSRR_DB() (bsrr_val = bsrr_tbl[src_byte]) #define REQ_OFF_DB_SET(BSRR_VAL) *db_dst = BSRR_VAL #define WAIT_ACK_ACTIVE() while(!m_isBusReset && !SCSI_IN(vACK)) #define WAIT_ACK_INACTIVE() do{ if(m_isBusReset) return; }while(SCSI_IN(vACK)) SCSI_DB_OUTPUT() register byte *srcptr= m_buf; // Source buffer register byte *endptr= m_buf + m_img->m_blocksize; // End pointer /*register*/ byte src_byte; // Send data bytes register const uint32_t *bsrr_tbl = db_bsrr; // Table to convert to BSRR register uint32_t bsrr_val; // BSRR value to output (DB, DBP, REQ = ACTIVE) register volatile uint32_t *db_dst = &(GPIOB->regs->BSRR); // Output port // prefetch & 1st out FETCH_SRC(); FETCH_BSRR_DB(); REQ_OFF_DB_SET(bsrr_val); // DB.set to REQ.F setup 100ns max (DTC-510B) // Maybe there should be some weight here // WAIT_ACK_INACTIVE(); do{ // 0 REQ_ON(); FETCH_SRC(); FETCH_BSRR_DB(); WAIT_ACK_ACTIVE(); // ACK.F to REQ.R 500ns typ. (DTC-510B) REQ_OFF_DB_SET(bsrr_val); WAIT_ACK_INACTIVE(); // 1 REQ_ON(); FETCH_SRC(); FETCH_BSRR_DB(); WAIT_ACK_ACTIVE(); REQ_OFF_DB_SET(bsrr_val); WAIT_ACK_INACTIVE(); // 2 REQ_ON(); FETCH_SRC(); FETCH_BSRR_DB(); WAIT_ACK_ACTIVE(); REQ_OFF_DB_SET(bsrr_val); WAIT_ACK_INACTIVE(); // 3 REQ_ON(); FETCH_SRC(); FETCH_BSRR_DB(); WAIT_ACK_ACTIVE(); REQ_OFF_DB_SET(bsrr_val); WAIT_ACK_INACTIVE(); // 4 REQ_ON(); FETCH_SRC(); FETCH_BSRR_DB(); WAIT_ACK_ACTIVE(); REQ_OFF_DB_SET(bsrr_val); WAIT_ACK_INACTIVE(); // 5 REQ_ON(); FETCH_SRC(); FETCH_BSRR_DB(); WAIT_ACK_ACTIVE(); REQ_OFF_DB_SET(bsrr_val); WAIT_ACK_INACTIVE(); // 6 REQ_ON(); FETCH_SRC(); FETCH_BSRR_DB(); WAIT_ACK_ACTIVE(); REQ_OFF_DB_SET(bsrr_val); WAIT_ACK_INACTIVE(); // 7 REQ_ON(); FETCH_SRC(); FETCH_BSRR_DB(); WAIT_ACK_ACTIVE(); REQ_OFF_DB_SET(bsrr_val); WAIT_ACK_INACTIVE(); }while(srcptr < endptr); SCSI_DB_INPUT() #else for(int j = 0; j < BLOCKSIZE; j++) { if(m_isBusReset) { return; } writeHandshake(m_buf[j]); } #endif } } /* * Data out phase. * len block read */ void readDataPhase(int len, byte* p) { LOGN("DATAOUT PHASE"); SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low); SCSI_OUT(vCD ,inactive) // gpio_write(CD, low); SCSI_OUT(vIO ,inactive) // gpio_write(IO, low); for(uint32_t i = 0; i < len; i++) p[i] = readHandshake(); } /* * Data out phase. * Write to SD card while reading len block. */ void readDataPhaseSD(uint32_t adds, uint32_t len) { LOGN("DATAOUT PHASE(SD)"); uint32_t pos = adds * m_img->m_blocksize; m_img->m_file.seek(pos); SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low); SCSI_OUT(vCD ,inactive) // gpio_write(CD, low); SCSI_OUT(vIO ,inactive) // gpio_write(IO, low); for(uint32_t i = 0; i < len; i++) { #if WRITE_SPEED_OPTIMIZE register byte *dstptr= m_buf; register byte *endptr= m_buf + m_img->m_blocksize; for(dstptr=m_buf;dstptrm_blocksize; j++) { if(m_isBusReset) { return; } m_buf[j] = readHandshake(); } #endif m_img->m_file.write(m_buf, m_img->m_blocksize); } m_img->m_file.flush(); } /* * INQUIRY command processing. */ #if SCSI_SELECT == 2 byte onInquiryCommand(byte len) { byte buf[36] = { 0x00, //Device type 0x00, //RMB = 0 0x01, //ISO,ECMA,ANSI version 0x01, //Response data format 35 - 4, //Additional data length 0, 0, //Reserve 0x00, //Support function 'N', 'E', 'C', 'I', 'T', 'S', 'U', ' ', 'A', 'r', 'd', 'S', 'C', 'S', 'i', 'n', 'o', ' ', ' ',' ', ' ', ' ', ' ', ' ', '0', '0', '1', '0', }; writeDataPhase(len < 36 ? len : 36, buf); return 0x00; } #else byte onInquiryCommand(byte len) { byte buf[36] = { 0x00, //device type 0x00, //RMB = 0 0x01, //ISO, ECMA, ANSI version 0x01, //Response data format 35 - 4, //Additional data length 0, 0, //Reserve 0x00, //Support function 'Q', 'U', 'A', 'N', 'T', 'U', 'M', ' ', 'F', 'I', 'R', 'E', 'B', 'A', 'L', 'L', '1', ' ', ' ',' ', ' ', ' ', ' ', ' ', '1', '.', '0', ' ', }; writeDataPhase(len < 36 ? len : 36, buf); return 0x00; } #endif /* * REQUEST SENSE command processing. */ void onRequestSenseCommand(byte len) { byte buf[18] = { 0x70, //CheckCondition 0, //Segment number 0x00, //Sense key 0, 0, 0, 0, //information 17 - 7 , //Additional data length 0, }; buf[2] = m_senseKey; m_senseKey = 0; writeDataPhase(len < 18 ? len : 18, buf); } /* * READ CAPACITY command processing. */ byte onReadCapacityCommand(byte pmi) { if(!m_img) return 0x02; // Image file absent uint32_t bl = m_img->m_blocksize; uint32_t bc = m_img->m_fileSize / bl; uint8_t buf[8] = { bc >> 24, bc >> 16, bc >> 8, bc, bl >> 24, bl >> 16, bl >> 8, bl }; writeDataPhase(8, buf); return 0x00; } /* * READ6 / 10 Command processing. */ byte onReadCommand(uint32_t adds, uint32_t len) { LOGN("-R"); LOGHEXN(adds); LOGHEXN(len); if(!m_img) return 0x02; // Image file absent gpio_write(LED, high); writeDataPhaseSD(adds, len); gpio_write(LED, low); return 0x00; //sts } /* * WRITE6 / 10 Command processing. */ byte onWriteCommand(uint32_t adds, uint32_t len) { LOGN("-W"); LOGHEXN(adds); LOGHEXN(len); if(!m_img) return 0x02; // Image file absent gpio_write(LED, high); readDataPhaseSD(adds, len); gpio_write(LED, low); return 0; //sts } /* * MODE SENSE command processing. */ #if SCSI_SELECT == 2 byte onModeSenseCommand(byte dbd, int cmd2, uint32_t len) { if(!m_img) return 0x02; // Image file absent int pageCode = cmd2 & 0x3F; // Assuming sector size 512, number of sectors 25, number of heads 8 as default settings int size = m_img->m_fileSize; int cylinders = (int)(size >> 9); cylinders >>= 3; cylinders /= 25; int sectorsize = 512; int sectors = 25; int heads = 8; // Sector size int disksize = 0; for(disksize = 16; disksize > 0; --(disksize)) { if ((1 << disksize) == sectorsize) break; } // Number of blocks uint32_t diskblocks = (uint32_t)(size >> disksize); memset(m_buf, 0, sizeof(m_buf)); int a = 4; if(dbd == 0) { uint32_t bl = m_img->m_blocksize; uint32_t bc = m_img->m_fileSize / bl; byte c[8] = { 0,// Density code bc >> 16, bc >> 8, bc, 0, //Reserve bl >> 16, bl >> 8, bl }; memcpy(&m_buf[4], c, 8); a += 8; m_buf[3] = 0x08; } switch(pageCode) { case 0x3F: { m_buf[a + 0] = 0x01; m_buf[a + 1] = 0x06; a += 8; } case 0x03: // drive parameters { m_buf[a + 0] = 0x80 | 0x03; // Page code m_buf[a + 1] = 0x16; // Page length m_buf[a + 2] = (byte)(heads >> 8);// number of sectors / track m_buf[a + 3] = (byte)(heads);// number of sectors / track m_buf[a + 10] = (byte)(sectors >> 8);// number of sectors / track m_buf[a + 11] = (byte)(sectors);// number of sectors / track int size = 1 << disksize; m_buf[a + 12] = (byte)(size >> 8);// number of sectors / track m_buf[a + 13] = (byte)(size);// number of sectors / track a += 24; if(pageCode != 0x3F) { break; } } case 0x04: // drive parameters { LOGN("AddDrive"); m_buf[a + 0] = 0x04; // Page code m_buf[a + 1] = 0x12; // Page length m_buf[a + 2] = (cylinders >> 16);// Cylinder length m_buf[a + 3] = (cylinders >> 8); m_buf[a + 4] = cylinders; m_buf[a + 5] = heads; // Number of heads a += 20; if(pageCode != 0x3F) { break; } } default: break; } m_buf[0] = a - 1; writeDataPhase(len < a ? len : a, m_buf); return 0x00; } #else byte onModeSenseCommand(byte dbd, int cmd2, uint32_t len) { if(!m_img) return 0x02; // No image file memset(m_buf, 0, sizeof(m_buf)); int pageCode = cmd2 & 0x3F; int a = 4; if(dbd == 0) { uint32_t bl = m_img->m_blocksize; uint32_t bc = m_img->m_fileSize / bl; byte c[8] = { 0,//Density code bc >> 16, bc >> 8, bc, 0, //Reserve bl >> 16, bl >> 8, bl }; memcpy(&m_buf[4], c, 8); a += 8; m_buf[3] = 0x08; } switch(pageCode) { case 0x3F: case 0x03: //Drive parameters m_buf[a + 0] = 0x03; //Page code m_buf[a + 1] = 0x16; // Page length m_buf[a + 11] = 0x3F;//Number of sectors / track a += 24; if(pageCode != 0x3F) { break; } case 0x04: //Drive parameters { uint32_t bc = m_img->m_fileSize / m_img->m_file; m_buf[a + 0] = 0x04; //Page code m_buf[a + 1] = 0x16; // Page length m_buf[a + 2] = bc >> 16;// Cylinder length m_buf[a + 3] = bc >> 8; m_buf[a + 4] = bc; m_buf[a + 5] = 1; //Number of heads a += 24; } if(pageCode != 0x3F) { break; } default: break; } m_buf[0] = a - 1; writeDataPhase(len < a ? len : a, m_buf); return 0x00; } #endif #if SCSI_SELECT == 1 /* * dtc510b_setDriveparameter */ #define PACKED __attribute__((packed)) typedef struct PACKED dtc500_cmd_c2_param_struct { uint8_t StepPlusWidth; // Default is 13.6usec (11) uint8_t StepPeriod; // Default is 3 msec.(60) uint8_t StepMode; // Default is Bufferd (0) uint8_t MaximumHeadAdress; // Default is 4 heads (3) uint8_t HighCylinderAddressByte; // Default set to 0 (0) uint8_t LowCylinderAddressByte; // Default is 153 cylinders (152) uint8_t ReduceWrietCurrent; // Default is above Cylinder 128 (127) uint8_t DriveType_SeekCompleteOption;// (0) uint8_t Reserved8; // (0) uint8_t Reserved9; // (0) } DTC510_CMD_C2_PARAM; static void logStrHex(const char *msg,uint32_t num) { LOG(msg); LOGHEXN(num); } static byte dtc510b_setDriveparameter(void) { DTC510_CMD_C2_PARAM DriveParameter; uint16_t maxCylinder; uint16_t numLAD; //uint32_t stepPulseUsec; int StepPeriodMsec; // receive paramter writeDataPhase(sizeof(DriveParameter),(byte *)(&DriveParameter)); maxCylinder = (((uint16_t)DriveParameter.HighCylinderAddressByte)<<8) | (DriveParameter.LowCylinderAddressByte); numLAD = maxCylinder * (DriveParameter.MaximumHeadAdress+1); //stepPulseUsec = calcStepPulseUsec(DriveParameter.StepPlusWidth); StepPeriodMsec = DriveParameter.StepPeriod*50; logStrHex (" StepPlusWidth : ",DriveParameter.StepPlusWidth); logStrHex (" StepPeriod : ",DriveParameter.StepPeriod ); logStrHex (" StepMode : ",DriveParameter.StepMode ); logStrHex (" MaximumHeadAdress : ",DriveParameter.MaximumHeadAdress); logStrHex (" CylinderAddress : ",maxCylinder); logStrHex (" ReduceWrietCurrent : ",DriveParameter.ReduceWrietCurrent); logStrHex (" DriveType/SeekCompleteOption : ",DriveParameter.DriveType_SeekCompleteOption); logStrHex (" Maximum LAD : ",numLAD-1); return 0; // error result } #endif /* * MsgIn2. */ void MsgIn2(int msg) { LOGN("MsgIn2"); SCSI_OUT(vMSG, active) // gpio_write(MSG, high); SCSI_OUT(vCD , active) // gpio_write(CD, high); SCSI_OUT(vIO , active) // gpio_write(IO, high); writeHandshake(msg); } /* * MsgOut2. */ void MsgOut2() { LOGN("MsgOut2"); SCSI_OUT(vMSG, active) // gpio_write(MSG, high); SCSI_OUT(vCD , active) // gpio_write(CD, high); SCSI_OUT(vIO ,inactive) // gpio_write(IO, low); m_msb[m_msc] = readHandshake(); m_msc++; m_msc %= 256; } /* * Main loop. */ void loop() { //int msg = 0; m_msg = 0; // Wait until RST = H, BSY = H, SEL = L do {} while( SCSI_IN(vBSY) || !SCSI_IN(vSEL) || SCSI_IN(vRST)); // BSY+ SEL- // If the ID to respond is not driven, wait for the next //byte db = readIO(); //byte scsiid = db & scsi_id_mask; byte scsiid = readIO() & scsi_id_mask; if((scsiid) == 0) { return; } LOGN("Selection"); m_isBusReset = false; // Set BSY to-when selected SCSI_BSY_ACTIVE(); // Turn only BSY output ON, ACTIVE // Ask for a TARGET-ID to respond #if USE_DB2ID_TABLE m_id = db2scsiid[scsiid]; //if(m_id==0xff) return; #else for(m_id=7;m_id>=0;m_id--) if(scsiid & (1<= 0x80) { } // Extended message if (m_msb[i] == 0x01) { // Check only when synchronous transfer is possible if (!syncenable || m_msb[i + 2] != 0x01) { MsgIn2(0x07); break; } // Transfer period factor(50 x 4 = Limited to 200ns) syncperiod = m_msb[i + 3]; if (syncperiod > 50) { syncoffset = 50; } // REQ/ACK offset(Limited to 16) syncoffset = m_msb[i + 4]; if (syncoffset > 16) { syncoffset = 16; } // STDR response message generation MsgIn2(0x01); MsgIn2(0x03); MsgIn2(0x01); MsgIn2(syncperiod); MsgIn2(syncoffset); break; } } } LOG("Command:"); SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low); SCSI_OUT(vCD , active) // gpio_write(CD, high); SCSI_OUT(vIO ,inactive) // gpio_write(IO, low); int len; byte cmd[12]; cmd[0] = readHandshake(); if(m_isBusReset) goto BusFree; LOGHEX(cmd[0]); // Command length selection, reception static const int cmd_class_len[8]={6,10,10,6,6,12,6,6}; len = cmd_class_len[cmd[0] >> 5]; cmd[1] = readHandshake(); LOG(":");LOGHEX(cmd[1]); if(m_isBusReset) goto BusFree; cmd[2] = readHandshake(); LOG(":");LOGHEX(cmd[2]); if(m_isBusReset) goto BusFree; cmd[3] = readHandshake(); LOG(":");LOGHEX(cmd[3]); if(m_isBusReset) goto BusFree; cmd[4] = readHandshake(); LOG(":");LOGHEX(cmd[4]); if(m_isBusReset) goto BusFree; cmd[5] = readHandshake(); LOG(":");LOGHEX(cmd[5]); if(m_isBusReset) goto BusFree; // Receive the remaining commands for(int i = 6; i < len; i++ ) { cmd[i] = readHandshake(); LOG(":"); LOGHEX(cmd[i]); if(m_isBusReset) goto BusFree; } // LUN confirmation m_lun = m_sts>>5; m_sts = cmd[1]&0xe0; // Preset LUN in status byte // HDD Image selection m_img = (HDDIMG *)0; // None if( (m_lun <= NUM_SCSILUN) ) { m_img = &(img[m_id][m_lun]); // There is an image if(!(m_img->m_file.isOpen())) m_img = (HDDIMG *)0; // Image absent } // if(!m_img) m_sts |= 0x02; // Missing image file for LUN //LOGHEX(((uint32_t)m_img)); LOG(":ID "); LOG(m_id); LOG(":LUN "); LOG(m_lun); LOGN(""); switch(cmd[0]) { case 0x00: LOGN("[Test Unit]"); break; case 0x01: LOGN("[Rezero Unit]"); break; case 0x03: LOGN("[RequestSense]"); onRequestSenseCommand(cmd[4]); break; case 0x04: LOGN("[FormatUnit]"); break; case 0x06: LOGN("[FormatUnit]"); break; case 0x07: LOGN("[ReassignBlocks]"); break; case 0x08: LOGN("[Read6]"); m_sts |= onReadCommand((((uint32_t)cmd[1] & 0x1F) << 16) | ((uint32_t)cmd[2] << 8) | cmd[3], (cmd[4] == 0) ? 0x100 : cmd[4]); break; case 0x0A: LOGN("[Write6]"); m_sts |= onWriteCommand((((uint32_t)cmd[1] & 0x1F) << 16) | ((uint32_t)cmd[2] << 8) | cmd[3], (cmd[4] == 0) ? 0x100 : cmd[4]); break; case 0x0B: LOGN("[Seek6]"); break; case 0x12: LOGN("[Inquiry]"); m_sts |= onInquiryCommand(cmd[4]); break; case 0x1A: LOGN("[ModeSense6]"); m_sts |= onModeSenseCommand(cmd[1]&0x80, cmd[2], cmd[4]); break; case 0x1B: LOGN("[StartStopUnit]"); break; case 0x1E: LOGN("[PreAllowMed.Removal]"); break; case 0x25: LOGN("[ReadCapacity]"); m_sts |= onReadCapacityCommand(cmd[8]); break; case 0x28: LOGN("[Read10]"); m_sts |= onReadCommand(((uint32_t)cmd[2] << 24) | ((uint32_t)cmd[3] << 16) | ((uint32_t)cmd[4] << 8) | cmd[5], ((uint32_t)cmd[7] << 8) | cmd[8]); break; case 0x2A: LOGN("[Write10]"); m_sts |= onWriteCommand(((uint32_t)cmd[2] << 24) | ((uint32_t)cmd[3] << 16) | ((uint32_t)cmd[4] << 8) | cmd[5], ((uint32_t)cmd[7] << 8) | cmd[8]); break; case 0x2B: LOGN("[Seek10]"); break; case 0x5A: LOGN("[ModeSense10]"); onModeSenseCommand(cmd[1] & 0x80, cmd[2], ((uint32_t)cmd[7] << 8) | cmd[8]); break; #if SCSI_SELECT == 1 case 0xc2: LOGN("[DTC510B setDriveParameter]"); m_sts |= dtc510b_setDriveparameter(); break; #endif default: LOGN("[*Unknown]"); m_sts |= 0x02; m_senseKey = 5; break; } if(m_isBusReset) { goto BusFree; } LOGN("Sts"); SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low); SCSI_OUT(vCD , active) // gpio_write(CD, high); SCSI_OUT(vIO , active) // gpio_write(IO, high); writeHandshake(m_sts); if(m_isBusReset) { goto BusFree; } LOGN("MsgIn"); SCSI_OUT(vMSG, active) // gpio_write(MSG, high); SCSI_OUT(vCD , active) // gpio_write(CD, high); SCSI_OUT(vIO , active) // gpio_write(IO, high); writeHandshake(m_msg); BusFree: LOGN("BusFree"); m_isBusReset = false; //SCSI_OUT(vREQ,inactive) // gpio_write(REQ, low); //SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low); //SCSI_OUT(vCD ,inactive) // gpio_write(CD, low); //SCSI_OUT(vIO ,inactive) // gpio_write(IO, low); //SCSI_OUT(vBSY,inactive) SCSI_TARGET_INACTIVE() // Turn off BSY, REQ, MSG, CD, IO output }