greenscsi/ArdSCSinoV2.ino
2020-10-09 11:34:19 -05:00

1108 lines
29 KiB
C++
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* SCSI-HD Device emulator for STM32F103
*/
#define X1TURBO_DTC510B 0 /* for SHARP X1turbo */
#define READ_SPEED_OPTIMIZE 1 /* Lead speedup */
#define WRITE_SPEED_OPTIMIZE 1 /* Speed up writes */
#define USE_DB2ID_TABLE 1 /* SEL-DB Use table to get ID from */
// SCSI config
#define NUM_SCSIID 7 // Maximum number of supported SCSI-IDs (The minimum is 0)
#define NUM_SCSILUN 2 // Maximum number of LUNs supported (The minimum is 0)
#define READ_PARITY_CHECK 0 // Perform read parity check (unverified)
// HDD format
#if X1TURBO_DTC510B
#define BLOCKSIZE 256 // 1 BLOCK size
#else
#define BLOCKSIZE 512 // 1 BLOCK size
#endif
//#include <SPI.h>
#include <SdFatConfig.h>
//SdFatEX CLASS To make available
#undef ENABLE_EXTENDED_TRANSFER_CLASS
#define ENABLE_EXTENDED_TRANSFER_CLASS 1
#include <SdFat.h>
#ifdef USE_STM32_DMA
#warning "warning USE_STM32_DMA"
#endif
SPIClass SPI_1(1);
SdFatEX SD(&SPI_1);
#if 0
#define LOG(XX) Serial.print(XX)
#define LOGHEX(XX) Serial.print(XX, HEX)
#define LOGN(XX) Serial.println(XX)
#define LOGHEXN(XX) Serial.println(XX, HEX)
#else
#define LOG(XX) //Serial.print(XX)
#define LOGHEX(XX) //Serial.print(XX, HEX)
#define LOGN(XX) //Serial.println(XX)
#define LOGHEXN(XX) //Serial.println(XX, HEX)
#endif
#define active 1
#define inactive 0
#define high 0
#define low 1
#define isHigh(XX) ((XX) == high)
#define isLow(XX) ((XX) != high)
#define gpio_mode(pin,val) gpio_set_mode(PIN_MAP[pin].gpio_device, PIN_MAP[pin].gpio_bit, val);
#define gpio_write(pin,val) gpio_write_bit(PIN_MAP[pin].gpio_device, PIN_MAP[pin].gpio_bit, val)
#define gpio_read(pin) gpio_read_bit(PIN_MAP[pin].gpio_device, PIN_MAP[pin].gpio_bit)
//#define DB0 PB8 // SCSI:DB0
//#define DB1 PB9 // SCSI:DB1
//#define DB2 PB10 // SCSI:DB2
//#define DB3 PB11 // SCSI:DB3
//#define DB4 PB12 // SCSI:DB4
//#define DB5 PB13 // SCSI:DB5
//#define DB6 PB14 // SCSI:DB6
//#define DB7 PB15 // SCSI:DB7
//#define DBP PB0 // SCSI:DBP
#define ATN PA8 // SCSI:ATN
#define BSY PA9 // SCSI:BSY
#define ACK PA10 // SCSI:ACK
#define RST PA15 // SCSI:RST
#define MSG PB3 // SCSI:MSG
#define SEL PB4 // SCSI:SEL
#define CD PB5 // SCSI:C/D
#define REQ PB6 // SCSI:REQ
#define IO PB7 // SCSI:I/O
#define SD_CS PA4 // SDCARD:CS
#define LED PC13 // LED
// GPIO register port
#define PAREG GPIOA->regs
#define PBREG GPIOB->regs
// LED control
#define LED_ON() gpio_write(LED, high);
#define LED_OFF() gpio_write(LED, low);
// Virtual pin (Arduio compatibility is slow, so make it MCU-dependent)
#define PA(BIT) (BIT)
#define PB(BIT) (BIT+16)
// Virtual pin decoding
#define GPIOREG(VPIN) ((VPIN)>=16?PBREG:PAREG)
#define BITMASK(VPIN) (1<<((VPIN)&15))
#define vATN PA(8) // SCSI:ATN
#define vBSY PA(9) // SCSI:BSY
#define vACK PA(10) // SCSI:ACK
#define vRST PA(15) // SCSI:RST
#define vMSG PB(3) // SCSI:MSG
#define vSEL PB(4) // SCSI:SEL
#define vCD PB(5) // SCSI:C/D
#define vREQ PB(6) // SCSI:REQ
#define vIO PB(7) // SCSI:I/O
#define vSD_CS PA(4) // SDCARD:CS
// SCSI output pin control: opendrain active LOW (direct pin drive)
#define SCSI_OUT(VPIN,ACTIVE) { GPIOREG(VPIN)->BSRR = BITMASK(VPIN)<<((ACTIVE)?16:0); }
// SCSI input pin check (inactive=0,avtive=1)
#define SCSI_IN(VPIN) ((~GPIOREG(VPIN)->IDR>>(VPIN&15))&1)
// GPIO mode
// IN , FLOAT : 4
// IN , PU/PD : 8
// OUT, PUSH/PULL : 3
// OUT, OD : 1
//#define DB_MODE_OUT 3
#define DB_MODE_OUT 1
#define DB_MODE_IN 8
// Put DB and DP in output mode
#define SCSI_DB_OUTPUT() { PBREG->CRL=(PBREG->CRL &0xfffffff0)|DB_MODE_OUT; PBREG->CRH = 0x11111111*DB_MODE_OUT; }
// Put DB and DP in input mode
#define SCSI_DB_INPUT() { PBREG->CRL=(PBREG->CRL &0xfffffff0)|DB_MODE_IN ; PBREG->CRH = 0x11111111*DB_MODE_IN; }
// Turn on the output only for BSY
#define SCSI_BSY_ACTIVE() { gpio_mode(BSY, GPIO_OUTPUT_OD); SCSI_OUT(vBSY, active) }
// BSY,REQ,MSG,CD,IO Turn on the output (no change required for OD)
#define SCSI_TARGET_ACTIVE() { }
// BSY,REQ,MSG,CD,IO Turn off output, BSY is the last input
#define SCSI_TARGET_INACTIVE() { SCSI_OUT(vREQ,inactive); SCSI_OUT(vMSG,inactive); SCSI_OUT(vCD,inactive);SCSI_OUT(vIO,inactive); SCSI_OUT(vBSY,inactive); gpio_mode(BSY, GPIO_INPUT_PU); }
// HDDiamge file
#define HDIMG_FILE "HDxx.HDS" // HD image file name base
#define HDIMG_ID_POS 2 // Position to embed ID number
#define HDIMG_LUN_POS 3 // Position to embed LUN numbers
// HDD image
typedef struct hddimg_struct
{
File m_file; // File object
uint32_t m_fileSize; // File size
}HDDIMG;
HDDIMG img[NUM_SCSIID][NUM_SCSILUN]; // Maximum number
uint8_t m_senseKey = 0; // Sense key
volatile bool m_isBusReset = false; // Bus reset
byte scsi_id_mask; // Mask list of responding SCSI IDs
byte m_id; // Currently responding SCSI-ID
byte m_lun; // Logical unit number currently responding
byte m_sts; // Status byte
byte m_msg; // Message bytes
HDDIMG *m_img; // HDD image for current SCSI-ID, LUN
byte m_buf[BLOCKSIZE+1]; // General purpose buffer + overrun fetch
int m_msc;
bool m_msb[256];
/*
* Data byte to BSRR register setting value and parity table
*/
// Parity bit generation
#define PTY(V) (1^((V)^((V)>>1)^((V)>>2)^((V)>>3)^((V)>>4)^((V)>>5)^((V)>>6)^((V)>>7))&1)
// Data byte to BSRR register setting value conversion table
// BSRR[31:24] = DB[7:0]
// BSRR[ 16] = PTY(DB)
// BSRR[15: 8] = ~DB[7:0]
// BSRR[ 0] = ~PTY(DB)
// Set DBP, set REQ = inactive
#define DBP(D) ((((((uint32_t)(D)<<8)|PTY(D))*0x00010001)^0x0000ff01)|BITMASK(vREQ))
#define DBP8(D) DBP(D),DBP(D+1),DBP(D+2),DBP(D+3),DBP(D+4),DBP(D+5),DBP(D+6),DBP(D+7)
#define DBP32(D) DBP8(D),DBP8(D+8),DBP8(D+16),DBP8(D+24)
// BSRR register control value that simultaneously performs DB set, DP set, and REQ = H (inactrive)
static const uint32_t db_bsrr[256]={
DBP32(0x00),DBP32(0x20),DBP32(0x40),DBP32(0x60),
DBP32(0x80),DBP32(0xA0),DBP32(0xC0),DBP32(0xE0)
};
// Parity bit acquisition
#define PARITY(DB) (db_bsrr[DB]&1)
// Macro cleaning
#undef DBP32
#undef DBP8
//#undef DBP
//#undef PTY
#if USE_DB2ID_TABLE
/* DB to SCSI-ID table */
static const byte db2scsiid[256]={
0xff,
0,
1,1,
2,2,2,2,
3,3,3,3,3,3,3,3,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
};
#endif
void onFalseInit(void);
void onBusReset(void);
/*
* IO read.
*/
inline byte readIO(void)
{
// Port input data register
uint32 ret = GPIOB->regs->IDR;
byte bret = (byte)((~ret)>>8);
#if READ_PARITY_CHECK
if((db_bsrr[bret]^ret)&1)
m_sts |= 0x01; // parity error
#endif
return bret;
}
/*
* Initialization.
* Initialize the bus and set the PIN orientation
*/
void setup()
{
// PA15 / PB3 / PB4 Cannot be used
// JTAG Because it is used for debugging.
disableDebugPorts();
// Serial initialization
//Serial.begin(9600);
//while (!Serial);
// PIN initialization
gpio_mode(LED, GPIO_OUTPUT_OD);
gpio_write(LED, low);
//GPIO(SCSI BUS)Initialization
//Port setting register (lower)
// GPIOB->regs->CRL |= 0x000000008; // SET INPUT W/ PUPD on PAB-PB0
//Port setting register (upper)
//GPIOB->regs->CRH = 0x88888888; // SET INPUT W/ PUPD on PB15-PB8
// GPIOB->regs->ODR = 0x0000FF00; // SET PULL-UPs on PB15-PB8
// DB,DPは入力モード
SCSI_DB_INPUT()
// Input port
gpio_mode(ATN, GPIO_INPUT_PU);
gpio_mode(BSY, GPIO_INPUT_PU);
gpio_mode(ACK, GPIO_INPUT_PU);
gpio_mode(RST, GPIO_INPUT_PU);
gpio_mode(SEL, GPIO_INPUT_PU);
// Output port
gpio_mode(MSG, GPIO_OUTPUT_OD);
gpio_mode(CD, GPIO_OUTPUT_OD);
gpio_mode(REQ, GPIO_OUTPUT_OD);
gpio_mode(IO, GPIO_OUTPUT_OD);
// Turn off the output port
SCSI_TARGET_INACTIVE()
//#if X1TURBO_DTC510B
// Serial initialization
Serial.begin(9600);
for(int tout=3000/200;tout;tout--)
{
if(Serial) break;
Serial.print(".");
delay(200);
break;
}
Serial.println("DTC510B HDD emulator for X1turbo");
//#endif
//Occurs when the RST pin state changes from HIGH to LOW
//attachInterrupt(PIN_MAP[RST].gpio_bit, onBusReset, FALLING);
LED_ON();
// clock = 36MHz , about 4Mbytes/sec
if(!SD.begin(SD_CS,SPI_FULL_SPEED)) {
Serial.println("SD initialization failed!");
onFalseInit();
}
//Sector data overrun byte setting
m_buf[BLOCKSIZE] = 0xff; // DB0 all off,DBP off
//HD image file open
//int totalImage = 0;
scsi_id_mask = 0x00;
for(int id=0;id<NUM_SCSIID;id++)
{
for(int lun=0;lun<NUM_SCSILUN;lun++)
{
HDDIMG *h = &img[id][lun];
char file_path[sizeof(HDIMG_FILE)+1] = HDIMG_FILE;
// build file path
file_path[HDIMG_ID_POS ] = '0'+id;
file_path[HDIMG_LUN_POS] = '0'+lun;
h->m_fileSize = 0;
h->m_file = SD.open(file_path, O_RDWR);
if(h->m_file.isOpen())
{
h->m_fileSize = h->m_file.size();
Serial.print("Found Imagefile:");
Serial.print(file_path);
if(h->m_fileSize==0)
{
h->m_file.close();
}
else
{
Serial.print(" / ");
Serial.print(h->m_fileSize);
Serial.print("bytes / ");
Serial.print(h->m_fileSize / 1024);
Serial.print("KiB / ");
Serial.print(h->m_fileSize / 1024 / 1024);
Serial.println("MiB");
// Marked as a responsive ID
scsi_id_mask |= 1<<id;
//totalImage++;
}
}
}
}
// Error if the image file is 0
if(scsi_id_mask==0) onFalseInit();
// Drive map display
Serial.println("I:<-----LUN----->:");
Serial.println("D:0:1:2:3:4:5:6:7:");
for(int id=0;id<NUM_SCSIID;id++)
{
Serial.print(id);
for(int lun=0;lun<NUM_SCSILUN;lun++)
{
if( (lun<NUM_SCSILUN) && (img[id][lun].m_file))
Serial.print(":*");
else
Serial.print(":-");
}
Serial.println(":");
}
#if 0
//test dump table
for(int i=0;i<256;i++)
{
if(i%16==0)
{
Serial.println(' ');
Serial.print(i, HEX);
Serial.print(':');
}
Serial.print(db_bsrr[i], HEX);
Serial.print(',');
}
#endif
LED_OFF();
//Occurs when the RST pin state changes from HIGH to LOW
attachInterrupt(PIN_MAP[RST].gpio_bit, onBusReset, FALLING);
}
/*
* Initialization failed.
*/
void onFalseInit(void)
{
while(true) {
gpio_write(LED, high);
delay(500);
gpio_write(LED, low);
delay(500);
}
}
/*
* Bus reset interrupt.
*/
void onBusReset(void)
{
#if X1TURBO_DTC510B
// The RST pulse is a write cycle + 2 clocks, only about 1.25us.
{{
#else
if(isHigh(gpio_read(RST))) {
delayMicroseconds(20);
if(isHigh(gpio_read(RST))) {
#endif
// BUS FREE is done in the main process
// gpio_mode(MSG, GPIO_OUTPUT_OD);
// gpio_mode(CD, GPIO_OUTPUT_OD);
// gpio_mode(REQ, GPIO_OUTPUT_OD);
// gpio_mode(IO, GPIO_OUTPUT_OD);
// Should I enter DB and DBP once?
SCSI_DB_INPUT()
LOGN("BusReset!");
m_isBusReset = true;
}
}
}
/*
* Read by handshake.
*/
inline byte readHandshake(void)
{
SCSI_OUT(vREQ,active)
//SCSI_DB_INPUT()
while(!SCSI_IN(vACK)) { if(m_isBusReset) return 0; }
byte r = readIO();
SCSI_OUT(vREQ,inactive)
while( SCSI_IN(vACK)) { if(m_isBusReset) return 0; }
return r;
}
/*
* Write with a handshake.
*/
inline void writeHandshake(byte d)
{
GPIOB->regs->BSRR = db_bsrr[d]; // setup DB,DBP (160ns)
SCSI_DB_OUTPUT() // (180ns)
// ACK.Fall to DB output delay 100ns(MAX) (DTC-510B)
SCSI_OUT(vREQ,inactive) // setup wait (30ns)
SCSI_OUT(vREQ,inactive) // setup wait (30ns)
SCSI_OUT(vREQ,inactive) // setup wait (30ns)
SCSI_OUT(vREQ,active) // (30ns)
//while(!SCSI_IN(vACK)) { if(m_isBusReset){ SCSI_DB_INPUT() return; }}
while(!m_isBusReset && !SCSI_IN(vACK));
// ACK.Fall to REQ.Raise delay 500ns(typ.) (DTC-510B)
GPIOB->regs->BSRR = DBP(0xff); // DB=0xFF , SCSI_OUT(vREQ,inactive)
// REQ.Raise to DB hold time 0ns
SCSI_DB_INPUT() // (150ns)
while( SCSI_IN(vACK)) { if(m_isBusReset) return; }
}
/*
* Data in phase.
* Send len bytes of data array p.
*/
void writeDataPhase(int len, const byte* p)
{
LOGN("DATAIN PHASE");
SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low);
SCSI_OUT(vCD ,inactive) // gpio_write(CD, low);
SCSI_OUT(vIO , active) // gpio_write(IO, high);
for (int i = 0; i < len; i++) {
if(m_isBusReset) {
return;
}
writeHandshake(p[i]);
}
}
/*
* Data in phase.
* Send len block while reading from SD card.
*/
void writeDataPhaseSD(uint32_t adds, uint32_t len)
{
LOGN("DATAIN PHASE(SD)");
uint32_t pos = adds * BLOCKSIZE;
m_img->m_file.seek(pos);
SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low);
SCSI_OUT(vCD ,inactive) // gpio_write(CD, low);
SCSI_OUT(vIO , active) // gpio_write(IO, high);
for(uint32_t i = 0; i < len; i++) {
// Asynchronous reads will make it faster ...
m_img->m_file.read(m_buf, BLOCKSIZE);
#if READ_SPEED_OPTIMIZE
//#define REQ_ON() SCSI_OUT(vREQ,active)
#define REQ_ON() (*db_dst = BITMASK(vREQ)<<16)
#define FETCH_SRC() (src_byte = *srcptr++)
#define FETCH_BSRR_DB() (bsrr_val = bsrr_tbl[src_byte])
#define REQ_OFF_DB_SET(BSRR_VAL) *db_dst = BSRR_VAL
#define WAIT_ACK_ACTIVE() while(!m_isBusReset && !SCSI_IN(vACK))
#define WAIT_ACK_INACTIVE() do{ if(m_isBusReset) return; }while(SCSI_IN(vACK))
SCSI_DB_OUTPUT()
register byte *srcptr= m_buf; // Source buffer
/*register*/ byte src_byte; // Send data bytes
register const uint32_t *bsrr_tbl = db_bsrr; // Table to convert to BSRR
register uint32_t bsrr_val; // BSRR value to output (DB, DBP, REQ = ACTIVE)
register volatile uint32_t *db_dst = &(GPIOB->regs->BSRR); // Output port
// prefetch & 1st out
FETCH_SRC();
FETCH_BSRR_DB();
REQ_OFF_DB_SET(bsrr_val);
// DB.set to REQ.F setup 100ns max (DTC-510B)
// Maybe there should be some weight here
// WAIT_ACK_INACTIVE();
do{
// 0
REQ_ON();
FETCH_SRC();
FETCH_BSRR_DB();
WAIT_ACK_ACTIVE();
// ACK.F to REQ.R 500ns typ. (DTC-510B)
REQ_OFF_DB_SET(bsrr_val);
WAIT_ACK_INACTIVE();
// 1
REQ_ON();
FETCH_SRC();
FETCH_BSRR_DB();
WAIT_ACK_ACTIVE();
REQ_OFF_DB_SET(bsrr_val);
WAIT_ACK_INACTIVE();
// 2
REQ_ON();
FETCH_SRC();
FETCH_BSRR_DB();
WAIT_ACK_ACTIVE();
REQ_OFF_DB_SET(bsrr_val);
WAIT_ACK_INACTIVE();
// 3
REQ_ON();
FETCH_SRC();
FETCH_BSRR_DB();
WAIT_ACK_ACTIVE();
REQ_OFF_DB_SET(bsrr_val);
WAIT_ACK_INACTIVE();
// 4
REQ_ON();
FETCH_SRC();
FETCH_BSRR_DB();
WAIT_ACK_ACTIVE();
REQ_OFF_DB_SET(bsrr_val);
WAIT_ACK_INACTIVE();
// 5
REQ_ON();
FETCH_SRC();
FETCH_BSRR_DB();
WAIT_ACK_ACTIVE();
REQ_OFF_DB_SET(bsrr_val);
WAIT_ACK_INACTIVE();
// 6
REQ_ON();
FETCH_SRC();
FETCH_BSRR_DB();
WAIT_ACK_ACTIVE();
REQ_OFF_DB_SET(bsrr_val);
WAIT_ACK_INACTIVE();
// 7
REQ_ON();
FETCH_SRC();
FETCH_BSRR_DB();
WAIT_ACK_ACTIVE();
REQ_OFF_DB_SET(bsrr_val);
WAIT_ACK_INACTIVE();
}while(srcptr < m_buf+BLOCKSIZE);
SCSI_DB_INPUT()
#else
for(int j = 0; j < BLOCKSIZE; j++) {
if(m_isBusReset) {
return;
}
writeHandshake(m_buf[j]);
}
#endif
}
}
/*
* Data out phase.
* len block read
*/
void readDataPhase(int len, byte* p)
{
LOGN("DATAOUT PHASE");
SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low);
SCSI_OUT(vCD ,inactive) // gpio_write(CD, low);
SCSI_OUT(vIO ,inactive) // gpio_write(IO, low);
for(uint32_t i = 0; i < len; i++)
p[i] = readHandshake();
}
/*
* Data out phase.
* Write to SD card while reading len block.
*/
void readDataPhaseSD(uint32_t adds, uint32_t len)
{
LOGN("DATAOUT PHASE(SD)");
uint32_t pos = adds * BLOCKSIZE;
m_img->m_file.seek(pos);
SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low);
SCSI_OUT(vCD ,inactive) // gpio_write(CD, low);
SCSI_OUT(vIO ,inactive) // gpio_write(IO, low);
for(uint32_t i = 0; i < len; i++) {
#if WRITE_SPEED_OPTIMIZE
register byte *dstptr= m_buf;
for(int j = 0; j < BLOCKSIZE/8; j++) {
dstptr[0] = readHandshake();
dstptr[1] = readHandshake();
dstptr[2] = readHandshake();
dstptr[3] = readHandshake();
dstptr[4] = readHandshake();
dstptr[5] = readHandshake();
dstptr[6] = readHandshake();
dstptr[7] = readHandshake();
if(m_isBusReset) {
return;
}
dstptr+=8;
}
#else
for(int j = 0; j < BLOCKSIZE; j++) {
if(m_isBusReset) {
return;
}
m_buf[j] = readHandshake();
}
#endif
m_img->m_file.write(m_buf, BLOCKSIZE);
}
m_img->m_file.flush();
}
/*
* INQUIRY command processing.
*/
byte onInquiryCommand(byte len)
{
byte buf[36] = {
0x00, //device type
0x00, //RMB = 0
0x01, //ISO, ECMA, ANSI version
0x01, //Response data format
35 - 4, //Additional data length
0, 0, //Reserve
0x00, //Support function
'T', 'N', 'B', ' ', ' ', ' ', ' ', ' ',
'A', 'r', 'd', 'S', 'C', 'S', 'i', 'n', 'o', ' ', ' ',' ', ' ', ' ', ' ', ' ',
'0', '0', '1', '0',
};
writeDataPhase(len < 36 ? len : 36, buf);
return 0x00;
}
/*
* REQUEST SENSE command processing.
*/
void onRequestSenseCommand(byte len)
{
byte buf[18] = {
0x70, //CheckCondition
0, //Segment number
0x00, //Sense key
0, 0, 0, 0, //information
17 - 7 , //Additional data length
0,
};
buf[2] = m_senseKey;
m_senseKey = 0;
writeDataPhase(len < 18 ? len : 18, buf);
}
/*
* READ CAPACITY command processing.
*/
byte onReadCapacityCommand(byte pmi)
{
if(!m_img) return 0x02; // Image file absent
uint32_t bc = m_img->m_fileSize / BLOCKSIZE;
uint32_t bl = BLOCKSIZE;
uint8_t buf[8] = {
bc >> 24, bc >> 16, bc >> 8, bc,
bl >> 24, bl >> 16, bl >> 8, bl
};
writeDataPhase(8, buf);
return 0x00;
}
/*
* READ6 / 10 Command processing.
*/
byte onReadCommand(uint32_t adds, uint32_t len)
{
LOGN("-R");
LOGHEXN(adds);
LOGHEXN(len);
if(!m_img) return 0x02; // Image file absent
gpio_write(LED, high);
writeDataPhaseSD(adds, len);
gpio_write(LED, low);
return 0x00; //sts
}
/*
* WRITE6 / 10 Command processing.
*/
byte onWriteCommand(uint32_t adds, uint32_t len)
{
LOGN("-W");
LOGHEXN(adds);
LOGHEXN(len);
if(!m_img) return 0x02; // Image file absent
gpio_write(LED, high);
readDataPhaseSD(adds, len);
gpio_write(LED, low);
return 0; //sts
}
/*
* MODE SENSE command processing.
*/
byte onModeSenseCommand(byte dbd, int pageCode, uint32_t len)
{
if(!m_img) return 0x02; // Image file absent
memset(m_buf, 0, sizeof(m_buf));
int a = 4;
if(dbd == 0) {
uint32_t bc = m_img->m_fileSize / BLOCKSIZE;
uint32_t bl = BLOCKSIZE;
byte c[8] = {
0,//Density code
bc >> 16, bc >> 8, bc,
0, //Reserve
bl >> 16, bl >> 8, bl
};
memcpy(&m_buf[4], c, 8);
a += 8;
m_buf[3] = 0x08;
}
switch(pageCode) {
case 0x3F:
case 0x03: //Drive parameters
m_buf[a + 0] = 0x03; //Page code
m_buf[a + 1] = 0x16; // Page length
m_buf[a + 11] = 0x3F;//Number of sectors / track
a += 24;
if(pageCode != 0x3F) {
break;
}
case 0x04: //Drive parameters
{
uint32_t bc = m_img->m_fileSize / BLOCKSIZE;
m_buf[a + 0] = 0x04; //Page code
m_buf[a + 1] = 0x16; // Page length
m_buf[a + 2] = bc >> 16;// Cylinder length
m_buf[a + 3] = bc >> 8;
m_buf[a + 4] = bc;
m_buf[a + 5] = 1; //Number of heads
a += 24;
}
if(pageCode != 0x3F) {
break;
}
default:
break;
}
m_buf[0] = a - 1;
writeDataPhase(len < a ? len : a, m_buf);
return 0x00;
}
#if X1TURBO_DTC510B
/*
* dtc510b_setDriveparameter
*/
#define PACKED __attribute__((packed))
typedef struct PACKED dtc500_cmd_c2_param_struct
{
uint8_t StepPlusWidth; // Default is 13.6usec (11)
uint8_t StepPeriod; // Default is 3 msec.(60)
uint8_t StepMode; // Default is Bufferd (0)
uint8_t MaximumHeadAdress; // Default is 4 heads (3)
uint8_t HighCylinderAddressByte; // Default set to 0 (0)
uint8_t LowCylinderAddressByte; // Default is 153 cylinders (152)
uint8_t ReduceWrietCurrent; // Default is above Cylinder 128 (127)
uint8_t DriveType_SeekCompleteOption;// (0)
uint8_t Reserved8; // (0)
uint8_t Reserved9; // (0)
} DTC510_CMD_C2_PARAM;
static void logStrHex(const char *msg,uint32_t num)
{
LOG(msg);
LOGHEXN(num);
}
static byte dtc510b_setDriveparameter(void)
{
DTC510_CMD_C2_PARAM DriveParameter;
uint16_t maxCylinder;
uint16_t numLAD;
//uint32_t stepPulseUsec;
int StepPeriodMsec;
// receive paramter
writeDataPhase(sizeof(DriveParameter),(byte *)(&DriveParameter));
maxCylinder =
(((uint16_t)DriveParameter.HighCylinderAddressByte)<<8) |
(DriveParameter.LowCylinderAddressByte);
numLAD = maxCylinder * (DriveParameter.MaximumHeadAdress+1);
//stepPulseUsec = calcStepPulseUsec(DriveParameter.StepPlusWidth);
StepPeriodMsec = DriveParameter.StepPeriod*50;
logStrHex (" StepPlusWidth : ",DriveParameter.StepPlusWidth);
logStrHex (" StepPeriod : ",DriveParameter.StepPeriod );
logStrHex (" StepMode : ",DriveParameter.StepMode );
logStrHex (" MaximumHeadAdress : ",DriveParameter.MaximumHeadAdress);
logStrHex (" CylinderAddress : ",maxCylinder);
logStrHex (" ReduceWrietCurrent : ",DriveParameter.ReduceWrietCurrent);
logStrHex (" DriveType/SeekCompleteOption : ",DriveParameter.DriveType_SeekCompleteOption);
logStrHex (" Maximum LAD : ",numLAD-1);
return 0; // error result
}
#endif
/*
* MsgIn2.
*/
void MsgIn2(int msg)
{
LOGN("MsgIn2");
SCSI_OUT(vMSG, active) // gpio_write(MSG, high);
SCSI_OUT(vCD , active) // gpio_write(CD, high);
SCSI_OUT(vIO , active) // gpio_write(IO, high);
writeHandshake(msg);
}
/*
* MsgOut2.
*/
void MsgOut2()
{
LOGN("MsgOut2");
SCSI_OUT(vMSG, active) // gpio_write(MSG, high);
SCSI_OUT(vCD , active) // gpio_write(CD, high);
SCSI_OUT(vIO ,inactive) // gpio_write(IO, low);
m_msb[m_msc] = readHandshake();
m_msc++;
m_msc %= 256;
}
/*
* Main loop.
*/
void loop()
{
//int msg = 0;
m_msg = 0;
// Wait until RST = H, BSY = H, SEL = L
do {} while( SCSI_IN(vBSY) || !SCSI_IN(vSEL) || SCSI_IN(vRST));
// BSY+ SEL-
// If the ID to respond is not driven, wait for the next
//byte db = readIO();
//byte scsiid = db & scsi_id_mask;
byte scsiid = readIO() & scsi_id_mask;
if((scsiid) == 0) {
return;
}
LOGN("Selection");
m_isBusReset = false;
// Set BSY to-when selected
SCSI_BSY_ACTIVE(); // Turn only BSY output ON, ACTIVE
// Ask for a TARGET-ID to respond
#if USE_DB2ID_TABLE
m_id = db2scsiid[scsiid];
//if(m_id==0xff) return;
#else
for(m_id=7;m_id>=0;m_id--)
if(scsiid & (1<<m_id)) break;
//if(m_id<0) return;
#endif
// Wait until SEL becomes inactive
while(isHigh(gpio_read(SEL))) {
if(m_isBusReset) {
goto BusFree;
}
}
SCSI_TARGET_ACTIVE() // (BSY), REQ, MSG, CD, IO output turned on
//
if(isHigh(gpio_read(ATN))) {
bool syncenable = false;
int syncperiod = 50;
int syncoffset = 0;
m_msc = 0;
memset(m_msb, 0x00, sizeof(m_msb));
while(isHigh(gpio_read(ATN))) {
MsgOut2();
}
for(int i = 0; i < m_msc; i++) {
// ABORT
if (m_msb[i] == 0x06) {
goto BusFree;
}
// BUS DEVICE RESET
if (m_msb[i] == 0x0C) {
syncoffset = 0;
goto BusFree;
}
// IDENTIFY
if (m_msb[i] >= 0x80) {
}
// Extended message
if (m_msb[i] == 0x01) {
// Check only when synchronous transfer is possible
if (!syncenable || m_msb[i + 2] != 0x01) {
MsgIn2(0x07);
break;
}
// Transfer period factor(50 x 4 = Limited to 200ns)
syncperiod = m_msb[i + 3];
if (syncperiod > 50) {
syncoffset = 50;
}
// REQ/ACK offset(Limited to 16)
syncoffset = m_msb[i + 4];
if (syncoffset > 16) {
syncoffset = 16;
}
// STDR response message generation
MsgIn2(0x01);
MsgIn2(0x03);
MsgIn2(0x01);
MsgIn2(syncperiod);
MsgIn2(syncoffset);
break;
}
}
}
LOG("Command:");
SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low);
SCSI_OUT(vCD , active) // gpio_write(CD, high);
SCSI_OUT(vIO ,inactive) // gpio_write(IO, low);
int len;
byte cmd[12];
cmd[0] = readHandshake(); if(m_isBusReset) goto BusFree;
LOGHEX(cmd[0]);
// Command length selection, reception
static const int cmd_class_len[8]={6,10,10,6,6,12,6,6};
len = cmd_class_len[cmd[0] >> 5];
cmd[1] = readHandshake(); LOG(":");LOGHEX(cmd[1]); if(m_isBusReset) goto BusFree;
cmd[2] = readHandshake(); LOG(":");LOGHEX(cmd[2]); if(m_isBusReset) goto BusFree;
cmd[3] = readHandshake(); LOG(":");LOGHEX(cmd[3]); if(m_isBusReset) goto BusFree;
cmd[4] = readHandshake(); LOG(":");LOGHEX(cmd[4]); if(m_isBusReset) goto BusFree;
cmd[5] = readHandshake(); LOG(":");LOGHEX(cmd[5]); if(m_isBusReset) goto BusFree;
// Receive the remaining commands
for(int i = 6; i < len; i++ ) {
cmd[i] = readHandshake();
LOG(":");
LOGHEX(cmd[i]);
if(m_isBusReset) goto BusFree;
}
// LUN confirmation
m_lun = m_sts>>5;
m_sts = cmd[1]&0xe0; // Preset LUN in status byte
// HDD Image selection
m_img = (HDDIMG *)0; // None
if( (m_lun <= NUM_SCSILUN) )
{
m_img = &(img[m_id][m_lun]); // There is an image
if(!(m_img->m_file.isOpen()))
m_img = (HDDIMG *)0; // Image absent
}
// if(!m_img) m_sts |= 0x02; // Missing image file for LUN
//LOGHEX(((uint32_t)m_img));
LOG(":ID ");
LOG(m_id);
LOG(":LUN ");
LOG(m_lun);
LOGN("");
switch(cmd[0]) {
case 0x00:
LOGN("[Test Unit]");
break;
case 0x01:
LOGN("[Rezero Unit]");
break;
case 0x03:
LOGN("[RequestSense]");
onRequestSenseCommand(cmd[4]);
break;
case 0x04:
LOGN("[FormatUnit]");
break;
case 0x06:
LOGN("[FormatUnit]");
break;
case 0x07:
LOGN("[ReassignBlocks]");
break;
case 0x08:
LOGN("[Read6]");
m_sts |= onReadCommand((((uint32_t)cmd[1] & 0x1F) << 16) | ((uint32_t)cmd[2] << 8) | cmd[3], (cmd[4] == 0) ? 0x100 : cmd[4]);
break;
case 0x0A:
LOGN("[Write6]");
m_sts |= onWriteCommand((((uint32_t)cmd[1] & 0x1F) << 16) | ((uint32_t)cmd[2] << 8) | cmd[3], (cmd[4] == 0) ? 0x100 : cmd[4]);
break;
case 0x0B:
LOGN("[Seek6]");
break;
case 0x12:
LOGN("[Inquiry]");
m_sts |= onInquiryCommand(cmd[4]);
break;
case 0x1A:
LOGN("[ModeSense6]");
m_sts |= onModeSenseCommand(cmd[1]&0x80, cmd[2] & 0x3F, cmd[4]);
break;
case 0x1B:
LOGN("[StartStopUnit]");
break;
case 0x1E:
LOGN("[PreAllowMed.Removal]");
break;
case 0x25:
LOGN("[ReadCapacity]");
m_sts |= onReadCapacityCommand(cmd[8]);
break;
case 0x28:
LOGN("[Read10]");
m_sts |= onReadCommand(((uint32_t)cmd[2] << 24) | ((uint32_t)cmd[3] << 16) | ((uint32_t)cmd[4] << 8) | cmd[5], ((uint32_t)cmd[7] << 8) | cmd[8]);
break;
case 0x2A:
LOGN("[Write10]");
m_sts |= onWriteCommand(((uint32_t)cmd[2] << 24) | ((uint32_t)cmd[3] << 16) | ((uint32_t)cmd[4] << 8) | cmd[5], ((uint32_t)cmd[7] << 8) | cmd[8]);
break;
case 0x2B:
LOGN("[Seek10]");
break;
case 0x5A:
LOGN("[ModeSense10]");
onModeSenseCommand(cmd[1] & 0x80, cmd[2] & 0x3F, ((uint32_t)cmd[7] << 8) | cmd[8]);
break;
#if X1TURBO_DTC510B
case 0xc2:
LOGN("[DTC510B setDriveParameter]");
m_sts |= dtc510b_setDriveparameter();
break;
#endif
default:
LOGN("[*Unknown]");
m_sts |= 0x02;
m_senseKey = 5;
break;
}
if(m_isBusReset) {
goto BusFree;
}
LOGN("Sts");
SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low);
SCSI_OUT(vCD , active) // gpio_write(CD, high);
SCSI_OUT(vIO , active) // gpio_write(IO, high);
writeHandshake(m_sts);
if(m_isBusReset) {
goto BusFree;
}
LOGN("MsgIn");
SCSI_OUT(vMSG, active) // gpio_write(MSG, high);
SCSI_OUT(vCD , active) // gpio_write(CD, high);
SCSI_OUT(vIO , active) // gpio_write(IO, high);
writeHandshake(m_msg);
BusFree:
LOGN("BusFree");
m_isBusReset = false;
//SCSI_OUT(vREQ,inactive) // gpio_write(REQ, low);
//SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low);
//SCSI_OUT(vCD ,inactive) // gpio_write(CD, low);
//SCSI_OUT(vIO ,inactive) // gpio_write(IO, low);
//SCSI_OUT(vBSY,inactive)
SCSI_TARGET_INACTIVE() // Turn off BSY, REQ, MSG, CD, IO output
}