mac-floppy-emu/floppy-emu-source-1.0L-F11/AVR/SdFat/examples/SdFormatter/SdFormatter.pde

479 lines
15 KiB
Plaintext
Executable File

/*
* This sketch will format an SD or SDHC card.
* Warning all data will be deleted!
*
* For SD/SDHC cards larger than 64 MB this
* sketch attempts to match the format
* generated by SDFormatter available here:
*
* http://www.sdcard.org/consumers/formatter/
*
* For smaller cards this sketch uses FAT16
* and SDFormatter uses FAT12.
*/
// Print extra info for debug if DEBUG_PRINT is nonzero
#define DEBUG_PRINT 0
#include <SdFat.h>
#if DEBUG_PRINT
#include <SdFatUtil.h>
#endif // DEBUG_PRINT
//
// Change the value of chipSelect if your hardware does
// not use the default value, SS_PIN. Common values are:
// Arduino Ethernet shield: pin 4
// Sparkfun SD shield: pin 8
// Adafruit SD shields and modules: pin 10
const uint8_t chipSelect = SS_PIN;
// Change spiSpeed to SPI_FULL_SPEED for better performance
// Use SPI_QUARTER_SPEED for even slower SPI bus speed
const uint8_t spiSpeed = SPI_HALF_SPEED;
// Serial output stream
ArduinoOutStream cout(Serial);
Sd2Card card;
uint32_t cardSizeBlocks;
uint16_t cardCapacityMB;
// cache for SD block
cache_t cache;
// MBR information
uint8_t partType;
uint32_t relSector;
uint32_t partSize;
// Fake disk geometry
uint8_t numberOfHeads;
uint8_t sectorsPerTrack;
// FAT parameters
uint16_t reservedSectors;
uint8_t sectorsPerCluster;
uint32_t fatStart;
uint32_t fatSize;
uint32_t dataStart;
// constants for file system structure
uint16_t const BU16 = 128;
uint16_t const BU32 = 8192;
// strings needed in file system structures
char noName[] = "NO NAME ";
char fat16str[] = "FAT16 ";
char fat32str[] = "FAT32 ";
//------------------------------------------------------------------------------
#define sdError(msg) sdError_P(PSTR(msg))
void sdError_P(const char* str) {
cout << pstr("error: ");
cout << pgm(str) << endl;
if (card.errorCode()) {
cout << pstr("SD error: ") << hex << int(card.errorCode());
cout << ',' << int(card.errorData()) << dec << endl;
}
while (1);
}
//------------------------------------------------------------------------------
#if DEBUG_PRINT
void debugPrint() {
cout << pstr("FreeRam: ") << FreeRam() << endl;
cout << pstr("partStart: ") << relSector << endl;
cout << pstr("partSize: ") << partSize << endl;
cout << pstr("reserved: ") << reservedSectors << endl;
cout << pstr("fatStart: ") << fatStart << endl;
cout << pstr("fatSize: ") << fatSize << endl;
cout << pstr("dataStart: ") << dataStart << endl;
cout << pstr("clusterCount: ");
cout << ((relSector + partSize - dataStart)/sectorsPerCluster) << endl;
cout << endl;
cout << pstr("Heads: ") << int(numberOfHeads) << endl;
cout << pstr("Sectors: ") << int(sectorsPerTrack) << endl;
cout << pstr("Cylinders: ");
cout << cardSizeBlocks/(numberOfHeads*sectorsPerTrack) << endl;
}
#endif // DEBUG_PRINT
//------------------------------------------------------------------------------
// write cached block to the card
uint8_t writeCache(uint32_t lbn) {
return card.writeBlock(lbn, cache.data);
}
//------------------------------------------------------------------------------
// initialize appropriate sizes for SD capacity
void initSizes() {
if (cardCapacityMB <= 6) {
sdError("Card is too small.");
} else if (cardCapacityMB <= 16) {
sectorsPerCluster = 2;
} else if (cardCapacityMB <= 32) {
sectorsPerCluster = 4;
} else if (cardCapacityMB <= 64) {
sectorsPerCluster = 8;
} else if (cardCapacityMB <= 128) {
sectorsPerCluster = 16;
} else if (cardCapacityMB <= 1024) {
sectorsPerCluster = 32;
} else {
sectorsPerCluster = 64;
}
cout << pstr("Blocks/Cluster: ") << int(sectorsPerCluster) << endl;
// set fake disk geometry
sectorsPerTrack = cardCapacityMB <= 256 ? 32 : 63;
if (cardCapacityMB <= 16) {
numberOfHeads = 2;
} else if (cardCapacityMB <= 32) {
numberOfHeads = 4;
} else if (cardCapacityMB <= 128) {
numberOfHeads = 8;
} else if (cardCapacityMB <= 504) {
numberOfHeads = 16;
} else if (cardCapacityMB <= 1008) {
numberOfHeads = 32;
} else if (cardCapacityMB <= 2016) {
numberOfHeads = 64;
} else if (cardCapacityMB <= 4032) {
numberOfHeads = 128;
} else {
numberOfHeads = 255;
}
}
//------------------------------------------------------------------------------
// zero cache and optionally set the sector signature
void clearCache(uint8_t addSig) {
memset(&cache, 0, sizeof(cache));
if (addSig) {
cache.mbr.mbrSig0 = BOOTSIG0;
cache.mbr.mbrSig1 = BOOTSIG1;
}
}
//------------------------------------------------------------------------------
// zero FAT and root dir area on SD
void clearFatDir(uint32_t bgn, uint32_t count) {
clearCache(false);
if (!card.writeStart(bgn, count)) {
sdError("Clear FAT/DIR writeStart failed");
}
for (uint32_t i = 0; i < count; i++) {
if ((i & 0XFF) == 0) cout << '.';
if (!card.writeData(cache.data)) {
sdError("Clear FAT/DIR writeData failed");
}
}
if (!card.writeStop()) {
sdError("Clear FAT/DIR writeStop failed");
}
cout << endl;
}
//------------------------------------------------------------------------------
// return cylinder number for a logical block number
uint16_t lbnToCylinder(uint32_t lbn) {
return lbn / (numberOfHeads * sectorsPerTrack);
}
//------------------------------------------------------------------------------
// return head number for a logical block number
uint8_t lbnToHead(uint32_t lbn) {
return (lbn % (numberOfHeads * sectorsPerTrack)) / sectorsPerTrack;
}
//------------------------------------------------------------------------------
// return sector number for a logical block number
uint8_t lbnToSector(uint32_t lbn) {
return (lbn % sectorsPerTrack) + 1;
}
//------------------------------------------------------------------------------
// format and write the Master Boot Record
void writeMbr() {
clearCache(true);
part_t* p = cache.mbr.part;
p->boot = 0;
uint16_t c = lbnToCylinder(relSector);
if (c > 1023) sdError("MBR CHS");
p->beginCylinderHigh = c >> 8;
p->beginCylinderLow = c & 0XFF;
p->beginHead = lbnToHead(relSector);
p->beginSector = lbnToSector(relSector);
p->type = partType;
uint32_t endLbn = relSector + partSize - 1;
c = lbnToCylinder(endLbn);
if (c <= 1023) {
p->endCylinderHigh = c >> 8;
p->endCylinderLow = c & 0XFF;
p->endHead = lbnToHead(endLbn);
p->endSector = lbnToSector(endLbn);
} else {
// Too big flag, c = 1023, h = 254, s = 63
p->endCylinderHigh = 3;
p->endCylinderLow = 255;
p->endHead = 254;
p->endSector = 63;
}
p->firstSector = relSector;
p->totalSectors = partSize;
if (!writeCache(0)) sdError("write MBR");
}
//------------------------------------------------------------------------------
// generate serial number from card size and micros since boot
uint32_t volSerialNumber() {
return (cardSizeBlocks << 8) + micros();
}
//------------------------------------------------------------------------------
// format the SD as FAT16
void makeFat16() {
uint32_t nc;
for (dataStart = 2 * BU16;; dataStart += BU16) {
nc = (cardSizeBlocks - dataStart)/sectorsPerCluster;
fatSize = (nc + 2 + 255)/256;
uint32_t r = BU16 + 1 + 2 * fatSize + 32;
if (dataStart < r) continue;
relSector = dataStart - r + BU16;
break;
}
// check valid cluster count for FAT16 volume
if (nc < 4085 || nc >= 65525) sdError("Bad cluster count");
reservedSectors = 1;
fatStart = relSector + reservedSectors;
partSize = nc * sectorsPerCluster + 2 * fatSize + reservedSectors + 32;
if (partSize < 32680) {
partType = 0X01;
} else if (partSize < 65536) {
partType = 0X04;
} else {
partType = 0X06;
}
// write MBR
writeMbr();
clearCache(true);
fat_boot_t* pb = &cache.fbs;
pb->jump[0] = 0XEB;
pb->jump[1] = 0X00;
pb->jump[2] = 0X90;
for (uint8_t i = 0; i < sizeof(pb->oemId); i++) {
pb->oemId[i] = ' ';
}
pb->bytesPerSector = 512;
pb->sectorsPerCluster = sectorsPerCluster;
pb->reservedSectorCount = reservedSectors;
pb->fatCount = 2;
pb->rootDirEntryCount = 512;
pb->mediaType = 0XF8;
pb->sectorsPerFat16 = fatSize;
pb->sectorsPerTrack = sectorsPerTrack;
pb->headCount = numberOfHeads;
pb->hidddenSectors = relSector;
pb->totalSectors32 = partSize;
pb->driveNumber = 0X80;
pb->bootSignature = EXTENDED_BOOT_SIG;
pb->volumeSerialNumber = volSerialNumber();
memcpy(pb->volumeLabel, noName, sizeof(pb->volumeLabel));
memcpy(pb->fileSystemType, fat16str, sizeof(pb->fileSystemType));
// write partition boot sector
if (!writeCache(relSector)) {
sdError("FAT16 write PBS failed");
}
// clear FAT and root directory
clearFatDir(fatStart, dataStart - fatStart);
clearCache(false);
cache.fat16[0] = 0XFFF8;
cache.fat16[1] = 0XFFFF;
// write first block of FAT and backup for reserved clusters
if (!writeCache(fatStart)
|| !writeCache(fatStart + fatSize)) {
sdError("FAT16 reserve failed");
}
}
//------------------------------------------------------------------------------
// format the SD as FAT32
void makeFat32() {
uint32_t nc;
relSector = BU32;
for (dataStart = 2 * BU32;; dataStart += BU32) {
nc = (cardSizeBlocks - dataStart)/sectorsPerCluster;
fatSize = (nc + 2 + 127)/128;
uint32_t r = relSector + 9 + 2 * fatSize;
if (dataStart >= r) break;
}
// error if too few clusters in FAT32 volume
if (nc < 65525) sdError("Bad cluster count");
reservedSectors = dataStart - relSector - 2 * fatSize;
fatStart = relSector + reservedSectors;
partSize = nc * sectorsPerCluster + dataStart - relSector;
// type depends on address of end sector
// max CHS has lbn = 16450560 = 1024*255*63
if ((relSector + partSize) <= 16450560) {
// FAT32
partType = 0X0B;
} else {
// FAT32 with INT 13
partType = 0X0C;
}
writeMbr();
clearCache(true);
fat32_boot_t* pb = &cache.fbs32;
pb->jump[0] = 0XEB;
pb->jump[1] = 0X00;
pb->jump[2] = 0X90;
for (uint8_t i = 0; i < sizeof(pb->oemId); i++) {
pb->oemId[i] = ' ';
}
pb->bytesPerSector = 512;
pb->sectorsPerCluster = sectorsPerCluster;
pb->reservedSectorCount = reservedSectors;
pb->fatCount = 2;
pb->mediaType = 0XF8;
pb->sectorsPerTrack = sectorsPerTrack;
pb->headCount = numberOfHeads;
pb->hidddenSectors = relSector;
pb->totalSectors32 = partSize;
pb->sectorsPerFat32 = fatSize;
pb->fat32RootCluster = 2;
pb->fat32FSInfo = 1;
pb->fat32BackBootBlock = 6;
pb->driveNumber = 0X80;
pb->bootSignature = EXTENDED_BOOT_SIG;
pb->volumeSerialNumber = volSerialNumber();
memcpy(pb->volumeLabel, noName, sizeof(pb->volumeLabel));
memcpy(pb->fileSystemType, fat32str, sizeof(pb->fileSystemType));
// write partition boot sector and backup
if (!writeCache(relSector)
|| !writeCache(relSector + 6)) {
sdError("FAT32 write PBS failed");
}
clearCache(true);
// write extra boot area and backup
if (!writeCache(relSector + 2)
|| !writeCache(relSector + 8)) {
sdError("FAT32 PBS ext failed");
}
fat32_fsinfo_t* pf = &cache.fsinfo;
pf->leadSignature = FSINFO_LEAD_SIG;
pf->structSignature = FSINFO_STRUCT_SIG;
pf->freeCount = 0XFFFFFFFF;
pf->nextFree = 0XFFFFFFFF;
// write FSINFO sector and backup
if (!writeCache(relSector + 1)
|| !writeCache(relSector + 7)) {
sdError("FAT32 FSINFO failed");
}
clearFatDir(fatStart, 2 * fatSize + sectorsPerCluster);
clearCache(false);
cache.fat32[0] = 0x0FFFFFF8;
cache.fat32[1] = 0x0FFFFFFF;
cache.fat32[2] = 0x0FFFFFFF;
// write first block of FAT and backup for reserved clusters
if (!writeCache(fatStart)
|| !writeCache(fatStart + fatSize)) {
sdError("FAT32 reserve failed");
}
}
//------------------------------------------------------------------------------
// flash erase all data
uint32_t const ERASE_SIZE = 262144L;
void eraseCard() {
cout << endl << pstr("Erasing\n");
uint32_t firstBlock = 0;
uint32_t lastBlock;
uint16_t n = 0;
do {
lastBlock = firstBlock + ERASE_SIZE - 1;
if (lastBlock >= cardSizeBlocks) lastBlock = cardSizeBlocks - 1;
if (!card.erase(firstBlock, lastBlock)) sdError("erase failed");
cout << '.';
if ((n++)%32 == 31) cout << endl;
firstBlock += ERASE_SIZE;
} while (firstBlock < cardSizeBlocks);
cout << endl;
if (!card.readBlock(0, cache.data)) sdError("readBlock");
cout << hex << showbase << setfill('0') << internal;
cout << pstr("All data set to ") << setw(4) << int(cache.data[0]) << endl;
cout << dec << noshowbase << setfill(' ') << right;
cout << pstr("Erase done\n");
}
//------------------------------------------------------------------------------
void formatCard() {
cout << endl;
cout << pstr("Formatting\n");
initSizes();
if (card.type() != SD_CARD_TYPE_SDHC) {
cout << pstr("FAT16\n");
makeFat16();
} else {
cout << pstr("FAT32\n");
makeFat32();
}
#if DEBUG_PRINT
debugPrint();
#endif // DEBUG_PRINT
cout << pstr("Format done\n");
}
//------------------------------------------------------------------------------
void setup() {
char c;
Serial.begin(9600);
cout << pstr(
"This sketch can erase and/or format SD/SDHC cards.\n"
"\n"
"Erase uses the card's fast flash erase command.\n"
"Flash erase sets all data to 0X00 for most cards\n"
"and 0XFF for a few vendor's cards.\n"
"\n"
"Cards larger than 2 GB will be formatted FAT32 and\n"
"smaller cards will be formatted FAT16.\n"
"\n"
"Warning, all data on the card will be erased.\n"
"Enter 'Y' to continue: ");
while (!Serial.available()) {}
c = Serial.read();
cout << c << endl;
if (c != 'Y') {
cout << pstr("Quiting, you did not enter 'Y'.\n");
return;
}
// read any existing Serial data
while (Serial.read() >= 0) {}
cout << pstr(
"\n"
"Options are:\n"
"E - erase the card and skip formatting.\n"
"F - erase and then format the card. (recommended)\n"
"Q - quick format the card without erase.\n"
"\n"
"Enter option: ");
while (!Serial.available()) {}
c = Serial.read();
cout << c << endl;
if (!strchr("EFQ", c)) {
cout << pstr("Quiting, invalid option entered.") << endl;
return;
}
if (!card.init(spiSpeed, chipSelect)) {
cout << pstr(
"\nSD initialization failure!\n"
"Is the SD card inserted correctly?\n"
"Is chip select correct at the top of this sketch?\n");
sdError("card.init failed");
}
cardSizeBlocks = card.cardSize();
if (cardSizeBlocks == 0) sdError("cardSize");
cardCapacityMB = (cardSizeBlocks + 2047)/2048;
cout << pstr("Card Size: ") << cardCapacityMB;
cout << pstr(" MB, (MB = 1,048,576 bytes)") << endl;
if (c == 'E' || c == 'F') {
eraseCard();
}
if (c == 'F' || c == 'Q') {
formatCard();
}
}
//------------------------------------------------------------------------------
void loop() {}