minimacplus/firmware/components/tme-esp32/spi_lcd.c

313 lines
9.9 KiB
C

//Driver for the LCD on an ESP32-Wrover-Kit board
/*
* ----------------------------------------------------------------------------
* "THE BEER-WARE LICENSE" (Revision 42):
* Jeroen Domburg <jeroen@spritesmods.com> wrote this file. As long as you retain
* this notice you can do whatever you want with this stuff. If we meet some day,
* and you think this stuff is worth it, you can buy me a beer in return.
* ----------------------------------------------------------------------------
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_system.h"
#include "driver/spi_master.h"
#include "soc/gpio_struct.h"
#include "driver/gpio.h"
#include "esp_heap_alloc_caps.h"
#include "mpumouse.h"
#include "mouse.h"
#define PIN_NUM_MISO 25
#define PIN_NUM_MOSI 23
#define PIN_NUM_CLK 19
#define PIN_NUM_CS 22
#define PIN_NUM_DC 21
#define PIN_NUM_RST 18
#define PIN_NUM_BCKL 5 //backlight enable
/*
The ILI9341 needs a bunch of command/argument values to be initialized. They are stored in this struct.
*/
typedef struct {
uint8_t cmd;
uint8_t data[16];
uint8_t databytes; //No of data in data; bit 7 = delay after set; 0xFF = end of cmds.
} ili_init_cmd_t;
static const ili_init_cmd_t ili_init_cmds[]={
{0xCF, {0x00, 0x83, 0X30}, 3},
{0xED, {0x64, 0x03, 0X12, 0X81}, 4},
{0xE8, {0x85, 0x01, 0x79}, 3},
{0xCB, {0x39, 0x2C, 0x00, 0x34, 0x02}, 5},
{0xF7, {0x20}, 1},
{0xEA, {0x00, 0x00}, 2},
{0xC0, {0x26}, 1},
{0xC1, {0x11}, 1},
{0xC5, {0x35, 0x3E}, 2},
{0xC7, {0xBE}, 1},
{0x36, {0x28}, 1},
{0x3A, {0x55}, 1},
{0xB1, {0x00, 0x1B}, 2},
{0xF2, {0x08}, 1},
{0x26, {0x01}, 1},
{0xE0, {0x1F, 0x1A, 0x18, 0x0A, 0x0F, 0x06, 0x45, 0X87, 0x32, 0x0A, 0x07, 0x02, 0x07, 0x05, 0x00}, 15},
{0XE1, {0x00, 0x25, 0x27, 0x05, 0x10, 0x09, 0x3A, 0x78, 0x4D, 0x05, 0x18, 0x0D, 0x38, 0x3A, 0x1F}, 15},
{0x2A, {0x00, 0x00, 0x00, 0xEF}, 4},
{0x2B, {0x00, 0x00, 0x01, 0x3f}, 4},
{0x2C, {0}, 0},
{0xB7, {0x07}, 1},
{0xB6, {0x0A, 0x82, 0x27, 0x00}, 4},
{0x11, {0}, 0x80},
{0x29, {0}, 0x80},
{0, {0}, 0xff},
};
static spi_device_handle_t spi;
//Send a command to the ILI9341. Uses spi_device_transmit, which waits until the transfer is complete.
void ili_cmd(spi_device_handle_t spi, const uint8_t cmd)
{
esp_err_t ret;
spi_transaction_t t;
memset(&t, 0, sizeof(t)); //Zero out the transaction
t.length=8; //Command is 8 bits
t.tx_buffer=&cmd; //The data is the cmd itself
t.user=(void*)0; //D/C needs to be set to 0
ret=spi_device_transmit(spi, &t); //Transmit!
assert(ret==ESP_OK); //Should have had no issues.
}
//Send data to the ILI9341. Uses spi_device_transmit, which waits until the transfer is complete.
void ili_data(spi_device_handle_t spi, const uint8_t *data, int len)
{
esp_err_t ret;
spi_transaction_t t;
if (len==0) return; //no need to send anything
memset(&t, 0, sizeof(t)); //Zero out the transaction
t.length=len*8; //Len is in bytes, transaction length is in bits.
t.tx_buffer=data; //Data
t.user=(void*)1; //D/C needs to be set to 1
ret=spi_device_transmit(spi, &t); //Transmit!
assert(ret==ESP_OK); //Should have had no issues.
}
//This function is called (in irq context!) just before a transmission starts. It will
//set the D/C line to the value indicated in the user field.
void ili_spi_pre_transfer_callback(spi_transaction_t *t)
{
int dc=(int)t->user;
gpio_set_level(PIN_NUM_DC, dc);
}
//Initialize the display
void ili_init(spi_device_handle_t spi)
{
int cmd=0;
//Initialize non-SPI GPIOs
gpio_set_direction(PIN_NUM_DC, GPIO_MODE_OUTPUT);
gpio_set_direction(PIN_NUM_RST, GPIO_MODE_OUTPUT);
gpio_set_direction(PIN_NUM_BCKL, GPIO_MODE_OUTPUT);
//Reset the display
gpio_set_level(PIN_NUM_RST, 0);
vTaskDelay(100 / portTICK_RATE_MS);
gpio_set_level(PIN_NUM_RST, 1);
vTaskDelay(100 / portTICK_RATE_MS);
//Send all the commands
while (ili_init_cmds[cmd].databytes!=0xff) {
ili_cmd(spi, ili_init_cmds[cmd].cmd);
ili_data(spi, ili_init_cmds[cmd].data, ili_init_cmds[cmd].databytes&0x1F);
if (ili_init_cmds[cmd].databytes&0x80) {
vTaskDelay(100 / portTICK_RATE_MS);
}
cmd++;
}
///Enable backlight
gpio_set_level(PIN_NUM_BCKL, 0);
}
static void send_header_start(spi_device_handle_t spi, int xpos, int ypos, int w, int h)
{
esp_err_t ret;
int x;
//Transaction descriptors. Declared static so they're not allocated on the stack; we need this memory even when this
//function is finished because the SPI driver needs access to it even while we're already calculating the next line.
static spi_transaction_t trans[5];
//In theory, it's better to initialize trans and data only once and hang on to the initialized
//variables. We allocate them on the stack, so we need to re-init them each call.
for (x=0; x<5; x++) {
memset(&trans[x], 0, sizeof(spi_transaction_t));
if ((x&1)==0) {
//Even transfers are commands
trans[x].length=8;
trans[x].user=(void*)0;
} else {
//Odd transfers are data
trans[x].length=8*4;
trans[x].user=(void*)1;
}
trans[x].flags=SPI_TRANS_USE_TXDATA;
}
trans[0].tx_data[0]=0x2A; //Column Address Set
trans[1].tx_data[0]=xpos>>8; //Start Col High
trans[1].tx_data[1]=xpos; //Start Col Low
trans[1].tx_data[2]=(xpos+w-1)>>8; //End Col High
trans[1].tx_data[3]=(xpos+w-1)&0xff; //End Col Low
trans[2].tx_data[0]=0x2B; //Page address set
trans[3].tx_data[0]=ypos>>8; //Start page high
trans[3].tx_data[1]=ypos&0xff; //start page low
trans[3].tx_data[2]=(ypos+h-1)>>8; //end page high
trans[3].tx_data[3]=(ypos+h-1)&0xff; //end page low
trans[4].tx_data[0]=0x2C; //memory write
//Queue all transactions.
for (x=0; x<5; x++) {
ret=spi_device_queue_trans(spi, &trans[x], portMAX_DELAY);
assert(ret==ESP_OK);
}
//When we are here, the SPI driver is busy (in the background) getting the transactions sent. That happens
//mostly using DMA, so the CPU doesn't have much to do here. We're not going to wait for the transaction to
//finish because we may as well spend the time calculating the next line. When that is done, we can call
//send_line_finish, which will wait for the transfers to be done and check their status.
}
void send_header_cleanup(spi_device_handle_t spi)
{
spi_transaction_t *rtrans;
esp_err_t ret;
//Wait for all 5 transactions to be done and get back the results.
for (int x=0; x<5; x++) {
ret=spi_device_get_trans_result(spi, &rtrans, portMAX_DELAY);
assert(ret==ESP_OK);
//We could inspect rtrans now if we received any info back. The LCD is treated as write-only, though.
}
}
volatile static uint8_t *currFbPtr=NULL;
SemaphoreHandle_t dispSem = NULL;
#define NO_SIM_TRANS 5
#define MEM_PER_TRANS 1024
void IRAM_ATTR displayTask(void *arg) {
int x, i;
int idx=0;
int inProgress=0;
static uint16_t *dmamem[NO_SIM_TRANS];
spi_transaction_t trans[NO_SIM_TRANS];
spi_transaction_t *rtrans;
esp_err_t ret;
spi_bus_config_t buscfg={
.miso_io_num=PIN_NUM_MISO,
.mosi_io_num=PIN_NUM_MOSI,
.sclk_io_num=PIN_NUM_CLK,
.quadwp_io_num=-1,
.quadhd_io_num=-1
};
spi_device_interface_config_t devcfg={
.clock_speed_hz=26000000, //Clock out at 40 MHz. Yes, that's heavily overclocked.
.mode=0, //SPI mode 0
.spics_io_num=PIN_NUM_CS, //CS pin
.queue_size=10, //We want to be able to queue 7 transactions at a time
.pre_cb=ili_spi_pre_transfer_callback, //Specify pre-transfer callback to handle D/C line
};
printf("*** Display task starting.\n");
//Initialize the SPI bus
ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
assert(ret==ESP_OK);
//Attach the LCD to the SPI bus
ret=spi_bus_add_device(HSPI_HOST, &devcfg, &spi);
assert(ret==ESP_OK);
//Initialize the LCD
ili_init(spi);
for (x=0; x<NO_SIM_TRANS; x++) {
dmamem[x]=pvPortMallocCaps(MEM_PER_TRANS*2, MALLOC_CAP_DMA);
assert(dmamem[x]);
memset(&trans[x], 0, sizeof(spi_transaction_t));
trans[x].length=MEM_PER_TRANS*4;
trans[x].user=(void*)1;
trans[x].tx_buffer=&dmamem[x];
}
while(1) {
xSemaphoreTake(dispSem, portMAX_DELAY);
uint8_t *myData=(uint8_t*)currFbPtr;
send_header_start(spi, 0, 0, 320, 240);
send_header_cleanup(spi);
int xpos=0;
for (x=0; x<320*240; x+=MEM_PER_TRANS) {
i=0;
while (i<MEM_PER_TRANS) {
for (int j=0x80; j!=0; j>>=1) {
dmamem[idx][i++]=(*myData&j)?0:0xffff;
}
myData++;
xpos+=8;
if (xpos>=320) {
xpos=0;
myData+=((512-320)/8);
}
}
trans[idx].length=MEM_PER_TRANS*16;
trans[idx].user=(void*)1;
trans[idx].tx_buffer=dmamem[idx];
ret=spi_device_queue_trans(spi, &trans[idx], portMAX_DELAY);
assert(ret==ESP_OK);
idx++;
if (idx>=NO_SIM_TRANS) idx=0;
if (inProgress==NO_SIM_TRANS-1) {
ret=spi_device_get_trans_result(spi, &rtrans, portMAX_DELAY);
assert(ret==ESP_OK);
} else {
inProgress++;
}
}
while(inProgress) {
ret=spi_device_get_trans_result(spi, &rtrans, portMAX_DELAY);
assert(ret==ESP_OK);
inProgress--;
}
}
}
void dispDraw(uint8_t *mem) {
int dx, dy, btn;
currFbPtr=mem;
xSemaphoreGive(dispSem);
mpuMouseGetDxDyBtn(&dx, &dy, &btn);
mouseMove(dx, dy, btn);
}
void dispInit() {
printf("spi_lcd_init()\n");
dispSem=xSemaphoreCreateBinary();
#if CONFIG_FREERTOS_UNICORE
xTaskCreatePinnedToCore(&displayTask, "display", 3000, NULL, 6, NULL, 0);
#else
xTaskCreatePinnedToCore(&displayTask, "display", 3000, NULL, 6, NULL, 1);
#endif
}