JPEGView/Independent JPEG Group/jccoefct.c

1 line
5.2 KiB
C
Raw Permalink Normal View History

/* * jccoefct.c * * Copyright (C) 1994, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains the coefficient buffer controller for compression. * This controller is the top level of the JPEG compressor proper. * The coefficient buffer lies between forward-DCT and entropy encoding steps. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* Private buffer controller object */ typedef struct { struct jpeg_c_coef_controller pub; /* public fields */ JDIMENSION MCU_row_num; /* keep track of MCU row # within image */ /* When not doing entropy optimization, it's sufficient to buffer just * one MCU (although this may prove a bit slow in practice). We allocate a * workspace of MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each * MCU constructed and sent. On 80x86, the workspace is FAR even though * it's not really very big; this is to keep the module interfaces unchanged * when a large coefficient buffer is necessary. */ JBLOCKROW MCU_buffer[MAX_BLOCKS_IN_MCU]; } my_coef_controller; typedef my_coef_controller * my_coef_ptr; /* * Initialize for a processing pass. */ METHODDEF void start_pass (j_compress_ptr cinfo, J_BUF_MODE pass_mode) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; switch (pass_mode) { case JBUF_PASS_THRU: break; default: ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); break; } coef->MCU_row_num = 0; } /* * Process some data. * * NB: input_buf contains a plane for each component in scan. */ METHODDEF void compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_mcu_ctr) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; JDIMENSION last_MCU_row = cinfo->MCU_rows_in_scan - 1; int blkn, bi, ci, yindex, blockcnt; JDIMENSION ypos, xpos; jpeg_component_info *compptr; /* Loop to write as much as one whole MCU row */ for (MCU_col_num = *in_mcu_ctr; MCU_col_num <= last_MCU_col; MCU_col_num++) { /* Determine where data comes from in input_buf and do the DCT thing. * Each call on forward_DCT processes a horizontal row of DCT blocks * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks * sequentially. Dummy blocks at the right or bottom edge are filled in * specially. The data in them does not matter for image reconstruction, * so we fill them with values that will encode to the smallest amount of * data, viz: all zeroes in the AC entries, DC entries equal to previous * block's DC value. (Thanks to Thomas Kinsman for this idea.) */ blkn = 0; for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; if (MCU_col_num < last_MCU_col) blockcnt = compptr->MCU_width; else blockcnt = compptr->last_col_width; xpos = MCU_col_num * compptr->MCU_sample_width; ypos = 0; for (yindex = 0; yindex < compptr->MCU_height; yindex++) { if (coef->MCU_row_num < last_MCU_row || yindex < compptr->last_row_height) { (*cinfo->fdct->forward_DCT) (cinfo, compptr, input_buf[ci], coef->MCU_buffer[blkn], ypos, xpos, (JDIMENSION) blockcnt); if (blockcnt < compptr->MCU_width) { /* Create some dummy blocks at the right edge of the image. */ jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt], (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK)); for (bi = blockcnt; bi < compptr->MCU_width; bi++) { coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0]; } } } else { /* Create a whole row of dummy blocks at the bottom of the image. */ jzero_far((void FAR *) coef->MCU_buffer[blkn], compptr->MCU_width * SIZEOF(JBLOCK)); for (bi = 0; bi < compptr->MCU_width; bi++) { coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0]; } } blkn += com