JPEGView/Independent JPEG Group/jccolor.c

1 line
14 KiB
C
Raw Permalink Normal View History

/* * jccolor.c * * Copyright (C) 1991-1994, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains input colorspace conversion routines. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* Private subobject */ typedef struct { struct jpeg_color_converter pub; /* public fields */ /* Private state for RGB->YCC conversion */ INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */ } my_color_converter; typedef my_color_converter * my_cconvert_ptr; /**************** RGB -> YCbCr conversion: most common case **************/ /* * YCbCr is defined per CCIR 601-1, except that Cb and Cr are * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. * The conversion equations to be implemented are therefore * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B * Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + MAXJSAMPLE/2 * Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + MAXJSAMPLE/2 * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.) * * To avoid floating-point arithmetic, we represent the fractional constants * as integers scaled up by 2^16 (about 4 digits precision); we have to divide * the products by 2^16, with appropriate rounding, to get the correct answer. * * For even more speed, we avoid doing any multiplications in the inner loop * by precalculating the constants times R,G,B for all possible values. * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); * for 12-bit samples it is still acceptable. It's not very reasonable for * 16-bit samples, but if you want lossless storage you shouldn't be changing * colorspace anyway. * The MAXJSAMPLE/2 offsets and the rounding fudge-factor of 0.5 are included * in the tables to save adding them separately in the inner loop. */ #define SCALEBITS 16 /* speediest right-shift on some machines */ #define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) #define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) /* We allocate one big table and divide it up into eight parts, instead of * doing eight alloc_small requests. This lets us use a single table base * address, which can be held in a register in the inner loops on many * machines (more than can hold all eight addresses, anyway). */ #define R_Y_OFF 0 /* offset to R => Y section */ #define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */ #define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */ #define R_CB_OFF (3*(MAXJSAMPLE+1)) #define G_CB_OFF (4*(MAXJSAMPLE+1)) #define B_CB_OFF (5*(MAXJSAMPLE+1)) #define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */ #define G_CR_OFF (6*(MAXJSAMPLE+1)) #define B_CR_OFF (7*(MAXJSAMPLE+1)) #define TABLE_SIZE (8*(MAXJSAMPLE+1)) /* * Initialize for RGB->YCC colorspace conversion. */ METHODDEF void rgb_ycc_start (j_compress_ptr cinfo) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; INT32 * rgb_ycc_tab; INT32 i; /* Allocate and fill in the conversion tables. */ cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (TABLE_SIZE * SIZEOF(INT32))); for (i = 0; i <= MAXJSAMPLE; i++) { rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i; rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i; rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF; rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i; rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i; rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i + ONE_HALF*(MAXJSAMPLE+1); /* B=>Cb and R=>Cr tables are the same rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i + ONE_HALF*(MAXJSAMPLE+1); */ rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i; rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i; } } /* * Convert some rows of samples to the JPEG colorspace. * * Note that we change from the application's interleaved-pixel format * to our internal noninterleaved, one-plane-per-component format. * The input buffer is therefore three t