/* * sha256.c - Implementation of the Secure Hash Algorithm-256 (SHA-256). * * Implemented from the description on the NIST Web site: * http://csrc.nist.gov/cryptval/shs.html * * Copyright (C) 2002 Southern Storm Software, Pty Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "sha256.h" #include #include #include /* * Some helper macros for processing 32-bit values, while * being careful about 32-bit vs 64-bit system differences. */ #if SIZEOF_LONG > 4 #define TRUNCLONG(x) ((x) & IL_MAX_UINT32) #define ROTATE(x,n) (TRUNCLONG(((x) >> (n))) | ((x) << (32 - (n)))) #define SHIFT(x,n) (TRUNCLONG(((x) >> (n)))) #else #define TRUNCLONG(x) (x) #define ROTATE(x,n) (((x) >> (n)) | ((x) << (32 - (n)))) #define SHIFT(x,n) ((x) >> (n)) #endif /* * Helper macros used by the SHA-256 computation. */ #define CH(x,y,z) (((x) & (y)) ^ (TRUNCLONG(~(x)) & (z))) #define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #define SUM0(x) (ROTATE((x), 2) ^ ROTATE((x), 13) ^ ROTATE((x), 22)) #define SUM1(x) (ROTATE((x), 6) ^ ROTATE((x), 11) ^ ROTATE((x), 25)) #define RHO0(x) (ROTATE((x), 7) ^ ROTATE((x), 18) ^ SHIFT((x), 3)) #define RHO1(x) (ROTATE((x), 17) ^ ROTATE((x), 19) ^ SHIFT((x), 10)) /* * Constants used in each of the SHA-256 rounds. */ static unsigned int const K[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; void SHA256Init(SHA256Context *sha) { sha->inputLen = 0; sha->A = 0x6a09e667; sha->B = 0xbb67ae85; sha->C = 0x3c6ef372; sha->D = 0xa54ff53a; sha->E = 0x510e527f; sha->F = 0x9b05688c; sha->G = 0x1f83d9ab; sha->H = 0x5be0cd19; sha->totalLen[0] = 0; sha->totalLen[1] = 0; } /* * Process a single block of input using the hash algorithm. */ static void ProcessBlock(SHA256Context *sha, const unsigned char *block) { unsigned int W[64]; unsigned int a, b, c, d, e, f, g, h; unsigned int temp, temp2; int t; /* Unpack the block into 64 32-bit words */ for(t = 0; t < 16; ++t) { W[t] = (((unsigned int)(block[t * 4 + 0])) << 24) | (((unsigned int)(block[t * 4 + 1])) << 16) | (((unsigned int)(block[t * 4 + 2])) << 8) | ((unsigned int)(block[t * 4 + 3])); } for(t = 16; t < 64; ++t) { W[t] = TRUNCLONG(RHO1(W[t - 2]) + W[t - 7] + RHO0(W[t - 15]) + W[t - 16]); } /* Load the SHA-256 state into local variables */ a = sha->A; b = sha->B; c = sha->C; d = sha->D; e = sha->E; f = sha->F; g = sha->G; h = sha->H; /* Perform 64 rounds of hash computations */ for(t = 0; t < 64; ++t) { temp = TRUNCLONG(h + SUM1(e) + CH(e, f, g) + K[t] + W[t]); temp2 = TRUNCLONG(SUM0(a) + MAJ(a, b, c)); h = g; g = f; f = e; e = TRUNCLONG(d + temp); d = c; c = b; b = a; a = TRUNCLONG(temp + temp2); } /* Combine the previous SHA-256 state with the new state */ sha->A = TRUNCLONG(sha->A + a); sha->B = TRUNCLONG(sha->B + b); sha->C = TRUNCLONG(sha->C + c); sha->D = TRUNCLONG(sha->D + d); sha->E = TRUNCLONG(sha->E + e); sha->F = TRUNCLONG(sha->F + f); sha->G = TRUNCLONG(sha->G + g); sha->H = TRUNCLONG(sha->H + h); /* Clear the temporary state */ //ILMemZero(W, sizeof(unsigned int) * 64); memset(W, 0, sizeof(unsigned int) * 64); a = b = c = d = e = f = g = h = temp = temp2 = 0; } void SHA256Data(SHA256Context *sha, const void *buffer, unsigned long len) { unsigned long templen; /* Add to the total length of the input stream */ //sha->totalLen += (unsigned long long)len; sha->totalLen[1] += len; if ((sha->totalLen[1] & 0xFFFFFFFF) < len) sha->totalLen[0]++; /* Copy the blocks into the input buffer and process them */ while(len > 0) { if(!(sha->inputLen) && len >= 64) { /* Short cut: no point copying the data twice */ ProcessBlock(sha, (const unsigned char *)buffer); buffer = (const void *)(((const unsigned char *)buffer) + 64); len -= 64; } else { templen = len; if(templen > (64 - sha->inputLen)) { templen = 64 - sha->inputLen; } memcpy(sha->input + sha->inputLen, buffer, templen); if((sha->inputLen += templen) >= 64) { ProcessBlock(sha, sha->input); sha->inputLen = 0; } buffer = (const void *)(((const unsigned char *)buffer) + templen); len -= templen; } } } /* * Write a 32-bit big-endian long value to a buffer. */ static void WriteLong(unsigned char *buf, unsigned int value) { buf[0] = (unsigned char)(value >> 24); buf[1] = (unsigned char)(value >> 16); buf[2] = (unsigned char)(value >> 8); buf[3] = (unsigned char)value; } void SHA256Finalize(SHA256Context *sha, unsigned char hash[SHA256_HASH_SIZE]) { //unsigned long long totalBits; unsigned long totalBits[2]; /* Compute the final hash if necessary */ if(hash) { /* Pad the input data to a multiple of 512 bits */ if(sha->inputLen >= 56) { /* Need two blocks worth of padding */ sha->input[(sha->inputLen)++] = (unsigned char)0x80; while(sha->inputLen < 64) { sha->input[(sha->inputLen)++] = (unsigned char)0x00; } ProcessBlock(sha, sha->input); sha->inputLen = 0; } else { /* Need one block worth of padding */ sha->input[(sha->inputLen)++] = (unsigned char)0x80; } while(sha->inputLen < 56) { sha->input[(sha->inputLen)++] = (unsigned char)0x00; } //totalBits = (sha->totalLen << 3); //WriteLong(sha->input + 56, (unsigned int)(totalBits >> 32)); //WriteLong(sha->input + 60, (unsigned int)totalBits); totalBits[0] = (sha->totalLen[0]<<3) | ( (sha->totalLen[1]>>29)&7 ); totalBits[1] = sha->totalLen[1]<<3; WriteLong(sha->input+56, totalBits[0]); WriteLong(sha->input+60, totalBits[1]); ProcessBlock(sha, sha->input); /* Write the final hash value to the supplied buffer */ WriteLong(hash, sha->A); WriteLong(hash + 4, sha->B); WriteLong(hash + 8, sha->C); WriteLong(hash + 12, sha->D); WriteLong(hash + 16, sha->E); WriteLong(hash + 20, sha->F); WriteLong(hash + 24, sha->G); WriteLong(hash + 28, sha->H); } /* Fill the entire context structure with zeros to blank it */ memset(sha, 0, sizeof(SHA256Context)); } int SHA256File(const char *path, unsigned char hash[SHA256_HASH_SIZE]) { FILE *f; unsigned char buffer[16384]; size_t readlen; SHA256Context ctx; f = fopen(path, "rb"); if (f == NULL) return -1; SHA256Init(&ctx); for (;;) { readlen = fread(buffer, 1, sizeof(buffer), f); if (readlen == 0) break; SHA256Data(&ctx, buffer, readlen); } if (ferror(f) != 0) { int e = errno; fclose(f); errno = e; return -1; } if (fclose(f) != 0) return -1; SHA256Finalize(&ctx, hash); return 0; }