/**************************************************************************//** * @file crypto_reg.h * @version V1.00 * @brief CRYPTO register definition header file * * SPDX-License-Identifier: Apache-2.0 * @copyright (C) 2019 Nuvoton Technology Corp. All rights reserved. *****************************************************************************/ #ifndef __CRYPTO_REG_H__ #define __CRYPTO_REG_H__ #if defined ( __CC_ARM ) #pragma anon_unions #endif /** @addtogroup REGISTER Control Register @{ */ /** @addtogroup CRPT Cryptographic Accelerator (CRPT) Memory Mapped Structure for Cryptographic Accelerator @{ */ typedef struct { /** * @var CRPT_T::INTEN * Offset: 0x00 Crypto Interrupt Enable Control Register * --------------------------------------------------------------------------------------------------- * |Bits |Field |Descriptions * | :----: | :----: | :---- | * |[0] |AESIEN |AES Interrupt Enable Bit * | | |0 = AES interrupt Disabled. * | | |1 = AES interrupt Enabled. * | | |In DMA mode, an interrupt will be triggered when amount of data set in AES_DMA_CNT is fed into the AES engine. * | | |In Non-DMA mode, an interrupt will be triggered when the AES engine finishes the operation. * |[1] |AESEIEN |AES Error Flag Enable Bit * | | |0 = AES error interrupt flag Disabled. * | | |1 = AES error interrupt flag Enabled. * @var CRPT_T::INTSTS * Offset: 0x04 Crypto Interrupt Flag * --------------------------------------------------------------------------------------------------- * |Bits |Field |Descriptions * | :----: | :----: | :---- | * |[0] |AESIF |AES Finish Interrupt Flag * | | |This bit is cleared by writing 1, and it has no effect by writing 0. * | | |0 = No AES interrupt. * | | |1 = AES encryption/decryption done interrupt. * |[1] |AESEIF |AES Error Flag * | | |This bit is cleared by writing 1, and it has no effect by writing 0. * | | |0 = No AES error. * | | |1 = AES encryption/decryption error interrupt. * @var CRPT_T::AES_FDBCK[4] * Offset: 0x50 ~ 0x5C AES Engine Output Feedback Data After Cryptographic Operation * --------------------------------------------------------------------------------------------------- * |Bits |Field |Descriptions * | :----: | :----: | :---- | * |[31:0] |FDBCK |AES Feedback Information * | | |The feedback value is 128 bits in size. * | | |The AES engine uses the data from CRPT_AES_FDBCKx as the data inputted to CRPT_AES_IVx for the next block in DMA cascade mode. * | | |The AES engine outputs feedback information for IV in the next block's operation * | | |Software can store that feedback value temporarily * | | |After switching back, fill the stored feedback value to CRPT_AES_IVx in the same operation, and then continue the operation with the original setting. * @var CRPT_T::AES_CTL * Offset: 0x100 AES Control Register * --------------------------------------------------------------------------------------------------- * |Bits |Field |Descriptions * | :----: | :----: | :---- | * |[0] |START |AES Engine Start * | | |0 = No effect. * | | |1 = Start AES engine. BUSY flag will be set. * | | |Note: This bit is always 0 when it's read back. * |[1] |STOP |AES Engine Stop * | | |0 = No effect. * | | |1 = Stop AES engine. * | | |Note: This bit is always 0 when it's read back. * |[3:2] |KEYSZ |AES Key Size * | | |This bit defines three different key size for AES operation. * | | |2'b00 = 128 bits key. * | | |2'b01 = 192 bits key. * | | |2'b10 = 256 bits key. * | | |2'b11 = Reserved. * | | |If the AES accelerator is operating and the corresponding flag BUSY is 1, updating this register has no effect. * |[5] |DMALAST |AES Last Block * | | |In DMA mode, this bit must be set as beginning the last DMA cascade round. * | | |In Non-DMA mode, this bit must be set when feeding in the last block of data in ECB, CBC, CTR, OFB, and CFB mode, and feeding in the (last-1) block of data at CBC-CS1, CBC-CS2, and CBC-CS3 mode. * | | |This bit is always 0 when it's read back. Must be written again once START is triggered. * |[6] |DMACSCAD |AES Engine DMA with Cascade Mode * | | |0 = DMA cascade function Disabled. * | | |1 = In DMA cascade mode, software can update DMA source address register, destination address register, and byte count register during a cascade operation, without finishing the accelerator operation. * |[7] |DMAEN |AES Engine DMA Enable Bit * | | |0 = AES DMA engine Disabled. * | | |The AES engine operates in Non-DMA mode. The data need to be written in CRPT_AES_DATIN. * | | |1 = AES_DMA engine Enabled. * | | |The AES engine operates in DMA mode, and data movement from/to the engine is done by DMA logic. * |[15:8] |OPMODE |AES Engine Operation Modes * | | |0x00 = ECB (Electronic Codebook Mode) 0x01 = CBC (Cipher Block Chaining Mode). * | | |0x02 = CFB (Cipher Feedback Mode). * | | |0x03 = OFB (Output Feedback Mode). * | | |0x04 = CTR (Counter Mode). * | | |0x10 = CBC-CS1 (CBC Ciphertext-Stealing 1 Mode). * | | |0x11 = CBC-CS2 (CBC Ciphertext-Stealing 2 Mode). * | | |0x12 = CBC-CS3 (CBC Ciphertext-Stealing 3 Mode). * |[16] |ENCRYPTO |AES Encryption/Decryption * | | |0 = AES engine executes decryption operation. * | | |1 = AES engine executes encryption operation. * |[22] |OUTSWAP |AES Engine Output Data Swap * | | |0 = Keep the original order. * | | |1 = The order that CPU outputs data from the accelerator will be changed from {byte3, byte2, byte1, byte0} to {byte0, byte1, byte2, byte3}. * |[23] |INSWAP |AES Engine Input Data Swap * | | |0 = Keep the original order. * | | |1 = The order that CPU feeds data to the accelerator will be changed from {byte3, byte2, byte1, byte0} to {byte0, byte1, byte2, byte3}. * |[30:26] |KEYUNPRT |Unprotect Key * | | |Writing 0 to CRPT_AES_CTL[31] and "10110" to CRPT_AES_CTL[30:26] is to unprotect the AES key. * | | |The KEYUNPRT can be read and written * | | |When it is written as the AES engine is operating, BUSY flag is 1, there would be no effect on KEYUNPRT. * |[31] |KEYPRT |Protect Key * | | |Read as a flag to reflect KEYPRT. * | | |0 = No effect. * | | |1 = Protect the content of the AES key from reading * | | |The return value for reading CRPT_AES_KEYx is not the content of the registers CRPT_AES_KEYx * | | |Once it is set, it can be cleared by asserting KEYUNPRT * | | |And the key content would be cleared as well. * @var CRPT_T::AES_STS * Offset: 0x104 AES Engine Flag * --------------------------------------------------------------------------------------------------- * |Bits |Field |Descriptions * | :----: | :----: | :---- | * |[0] |BUSY |AES Engine Busy * | | |0 = The AES engine is idle or finished. * | | |1 = The AES engine is under processing. * |[8] |INBUFEMPTY|AES Input Buffer Empty * | | |0 = There are some data in input buffer waiting for the AES engine to process. * | | |1 = AES input buffer is empty * | | |Software needs to feed data to the AES engine * | | |Otherwise, the AES engine will be pending to wait for input data. * |[9] |INBUFFULL |AES Input Buffer Full Flag * | | |0 = AES input buffer is not full. Software can feed the data into the AES engine. * | | |1 = AES input buffer is full * | | |Software cannot feed data to the AES engine * | | |Otherwise, the flag INBUFERR will be set to 1. * |[10] |INBUFERR |AES Input Buffer Error Flag * | | |0 = No error. * | | |1 = Error happens during feeding data to the AES engine. * |[12] |CNTERR |CRPT_AES_CNT Setting Error * | | |0 = No error in CRPT_AES_CNT setting. * | | |1 = CRPT_AES_CNT is 0 if DMAEN (CRPT_AES_CTL[7]) is enabled. * |[16] |OUTBUFEMPTY|AES Out Buffer Empty * | | |0 = AES output buffer is not empty. There are some valid data kept in output buffer. * | | |1 = AES output buffer is empty * | | |Software cannot get data from CRPT_AES_DATOUT * | | |Otherwise, the flag OUTBUFERR will be set to 1 since the output buffer is empty. * |[17] |OUTBUFFULL|AES Out Buffer Full Flag * | | |0 = AES output buffer is not full. * | | |1 = AES output buffer is full, and software needs to get data from CRPT_AES_DATOUT * | | |Otherwise, the AES engine will be pending since the output buffer is full. * |[18] |OUTBUFERR |AES Out Buffer Error Flag * | | |0 = No error. * | | |1 = Error happens during getting the result from AES engine. * |[20] |BUSERR |AES DMA Access Bus Error Flag * | | |0 = No error. * | | |1 = Bus error will stop DMA operation and AES engine. * @var CRPT_T::AES_DATIN * Offset: 0x108 AES Engine Data Input Port Register * --------------------------------------------------------------------------------------------------- * |Bits |Field |Descriptions * | :----: | :----: | :---- | * |[31:0] |DATIN |AES Engine Input Port * | | |CPU feeds data to AES engine through this port by checking CRPT_AES_STS. Feed data as INBUFFULL is 0. * @var CRPT_T::AES_DATOUT * Offset: 0x10C AES Engine Data Output Port Register * --------------------------------------------------------------------------------------------------- * |Bits |Field |Descriptions * | :----: | :----: | :---- | * |[31:0] |DATOUT |AES Engine Output Port * | | |CPU gets results from the AES engine through this port by checking CRPT_AES_STS * | | |Get data as OUTBUFEMPTY is 0. * @var CRPT_T::AES_KEY[8] * Offset: 0x110 ~ 0x12C AES Key Word 0 ~ 7 Register * --------------------------------------------------------------------------------------------------- * |Bits |Field |Descriptions * | :----: | :----: | :---- | * |[31:0] |KEY |CRPT_AESn_KEYx * | | |The KEY keeps the security key for AES operation. * | | |x = 0, 1..7. * | | |The security key for AES accelerator can be 128, 192, or 256 bits and four, six, or eight 32-bit registers are to store each security key * | | |{CRPT_AES_KEY3, CRPT_AES_KEY2, CRPT_AES_KEY1, CRPT_AES_KEY0} stores the 128-bit security key for AES operation * | | |{CRPT_AES_KEY5, CRPT_AES_KEY4, CRPT_AES_KEY3, CRPT_AES_KEY2, CRPT_AES_KEY1, CRPT_AES_KEY0} stores the 192-bit security key for AES operation * | | |{CRPT_AES_KEY7, CRPT_AES_KEY6, CRPT_AES_KEY5, CRPT_AES_KEY4, CRPT_AES_KEY3, CRPT_AES_KEY2, CRPT_AES_KEY1, CRPT_AES_KEY0} stores the 256-bit security key for AES operation. * @var CRPT_T::AES_IV[4] * Offset: 0x130 ~ 0x13C AES Initial Vector Word 0 ~ 3 Register * --------------------------------------------------------------------------------------------------- * |Bits |Field |Descriptions * | :----: | :----: | :---- | * |[31:0] |IV |AES Initial Vectors * | | |x = 0, 1..3. * | | |Four initial vectors (CRPT_AES_IV0, CRPT_AES_IV1, CRPT_AES_IV2, and CRPT_AES_IV3) are for AES operating in CBC, CFB, and OFB mode * | | |Four registers (CRPT_AES_IV0, CRPT_AES_IV1, CRPT_AES_IV2, and CRPT_AES_IV3) act as Nonce counter when the AES engine is operating in CTR mode. * @var CRPT_T::AES_SADDR * Offset: 0x140 AES DMA Source Address Register * --------------------------------------------------------------------------------------------------- * |Bits |Field |Descriptions * | :----: | :----: | :---- | * |[31:0] |SADDR |AES DMA Source Address * | | |The AES accelerator supports DMA function to transfer the plain text between SRAM memory space and embedded FIFO * | | |The SADDR keeps the source address of the data buffer where the source text is stored * | | |Based on the source address, the AES accelerator can read the plain text (encryption) / cipher text (descryption) from SRAM memory space and do AES operation * | | |The start of source address should be located at word boundary * | | |In other words, bit 1 and 0 of SADDR are ignored. * | | |SADDR can be read and written * | | |Writing to SADDR while the AES accelerator is operating doesn't affect the current AES operation * | | |But the value of SADDR will be updated later on * | | |Consequently, software can prepare the DMA source address for the next AES operation. * | | |In DMA mode, software can update the next CRPT_AES_SADDR before triggering START. * | | |The value of CRPT_AES_SADDR and CRPT_AES_DADDR can be the same. * @var CRPT_T::AES_DADDR * Offset: 0x144 AES DMA Destination Address Register * --------------------------------------------------------------------------------------------------- * |Bits |Field |Descriptions * | :----: | :----: | :---- | * |[31:0] |DADDR |AES DMA Destination Address * | | |The AES accelerator supports DMA function to transfer the cipher text between SRAM memory space and embedded FIFO * | | |The DADDR keeps the destination address of the data buffer where the engine output's text will be stored * | | |Based on the destination address, the AES accelerator can write the cipher text (encryption) / plain text (decryption) back to SRAM memory space after the AES operation is finished * | | |The start of destination address should be located at word boundary * | | |In other words, bit 1 and 0 of DADDR are ignored. * | | |DADDR can be read and written * | | |Writing to DADDR while the AES accelerator is operating doesn't affect the current AES operation * | | |But the value of DADDR will be updated later on * | | |Consequently, software can prepare the destination address for the next AES operation. * | | |In DMA mode, software can update the next CRPT_AES_DADDR before triggering START. * | | |The value of CRPT_AES_SADDR and CRPT_AES_DADDR can be the same. * @var CRPT_T::AES_CNT * Offset: 0x148 AES Byte Count Register * --------------------------------------------------------------------------------------------------- * |Bits |Field |Descriptions * | :----: | :----: | :---- | * |[31:0] |CNT |AES Byte Count * | | |The CRPT_AES_CNT keeps the byte count of source text that is for the AES engine operating in DMA mode * | | |The CRPT_AES_CNT is 32-bit and the maximum of byte count is 4G bytes. * | | |CRPT_AESn_CNT can be read and written * | | |Writing to CRPT_AES_CNT while the AES accelerator is operating doesn't affect the current AES operation * | | |But the value of CRPT_AESn_CNT will be updated later on * | | |Consequently, software can prepare the byte count of data for the next AES operation. * | | |According to CBC-CS1, CBC-CS2, and CBC-CS3 standard, the count of operation data must be more than 16 bytes * | | |Operations that are qual or less than one block will output unexpected result. * | | |In Non-DMA ECB, CBC, CFB, OFB, and CTR mode, CRPT_AES_CNT must be set as byte count for the last block of data before feeding in the last block of data * | | |In Non-DMA CBC-CS1, CBC-CS2, and CBC-CS3 mode, CRPT_AES_CNT must be set as byte count for the last two blocks of data before feeding in the last two blocks of data. */ __IO uint32_t INTEN; /*!< [0x0000] Crypto Interrupt Enable Control Register */ __IO uint32_t INTSTS; /*!< [0x0004] Crypto Interrupt Flag */ __I uint32_t RESERVE0[18]; __I uint32_t AES_FDBCK[4]; /*!< [0x0050 ~ 0x005c] AES Engine Output Feedback Data After Cryptographic Operation*/ __I uint32_t RESERVE1[40]; __IO uint32_t AES_CTL; /*!< [0x0100] AES Control Register */ __I uint32_t AES_STS; /*!< [0x0104] AES Engine Flag */ __IO uint32_t AES_DATIN; /*!< [0x0108] AES Engine Data Input Port Register */ __I uint32_t AES_DATOUT; /*!< [0x010c] AES Engine Data Output Port Register */ __IO uint32_t AES_KEY[8]; /*!< [0x0110 ~ 0x012c] AES Key Word 0 ~ 7 Register */ __IO uint32_t AES_IV[4]; /*!< [0x0130 ~ 0x013c] AES Initial Vector Word 0 ~3 Register */ __IO uint32_t AES_SADDR; /*!< [0x0140] AES DMA Source Address Register */ __IO uint32_t AES_DADDR; /*!< [0x0144] AES DMA Destination Address Register */ __IO uint32_t AES_CNT; /*!< [0x0148] AES Byte Count Register */ } CRPT_T; /** @addtogroup CRPT_CONST CRYPTO Bit Field Definition Constant Definitions for CRYPTO Controller @{ */ #define CRPT_INTEN_AESIEN_Pos (0) /*!< CRPT_T::INTEN: AESIEN Position */ #define CRPT_INTEN_AESIEN_Msk (0x1ul << CRPT_INTEN_AESIEN_Pos) /*!< CRPT_T::INTEN: AESIEN Mask */ #define CRPT_INTEN_AESEIEN_Pos (1) /*!< CRPT_T::INTEN: AESEIEN Position */ #define CRPT_INTEN_AESEIEN_Msk (0x1ul << CRPT_INTEN_AESEIEN_Pos) /*!< CRPT_T::INTEN: AESEIEN Mask */ #define CRPT_INTSTS_AESIF_Pos (0) /*!< CRPT_T::INTSTS: AESIF Position */ #define CRPT_INTSTS_AESIF_Msk (0x1ul << CRPT_INTSTS_AESIF_Pos) /*!< CRPT_T::INTSTS: AESIF Mask */ #define CRPT_INTSTS_AESEIF_Pos (1) /*!< CRPT_T::INTSTS: AESEIF Position */ #define CRPT_INTSTS_AESEIF_Msk (0x1ul << CRPT_INTSTS_AESEIF_Pos) /*!< CRPT_T::INTSTS: AESEIF Mask */ #define CRPT_AES_FDBCKx_FDBCK_Pos (0) /*!< CRPT_T::AES_FDBCK[4]: FDBCK Position */ #define CRPT_AES_FDBCKx_FDBCK_Msk (0xfffffffful << CRPT_AES_FDBCKx_FDBCK_Pos) /*!< CRPT_T::AES_FDBCK[4]: FDBCK Mask */ #define CRPT_AES_CTL_START_Pos (0) /*!< CRPT_T::AES_CTL: START Position */ #define CRPT_AES_CTL_START_Msk (0x1ul << CRPT_AES_CTL_START_Pos) /*!< CRPT_T::AES_CTL: START Mask */ #define CRPT_AES_CTL_STOP_Pos (1) /*!< CRPT_T::AES_CTL: STOP Position */ #define CRPT_AES_CTL_STOP_Msk (0x1ul << CRPT_AES_CTL_STOP_Pos) /*!< CRPT_T::AES_CTL: STOP Mask */ #define CRPT_AES_CTL_KEYSZ_Pos (2) /*!< CRPT_T::AES_CTL: KEYSZ Position */ #define CRPT_AES_CTL_KEYSZ_Msk (0x3ul << CRPT_AES_CTL_KEYSZ_Pos) /*!< CRPT_T::AES_CTL: KEYSZ Mask */ #define CRPT_AES_CTL_DMALAST_Pos (5) /*!< CRPT_T::AES_CTL: DMALAST Position */ #define CRPT_AES_CTL_DMALAST_Msk (0x1ul << CRPT_AES_CTL_DMALAST_Pos) /*!< CRPT_T::AES_CTL: DMALAST Mask */ #define CRPT_AES_CTL_DMACSCAD_Pos (6) /*!< CRPT_T::AES_CTL: DMACSCAD Position */ #define CRPT_AES_CTL_DMACSCAD_Msk (0x1ul << CRPT_AES_CTL_DMACSCAD_Pos) /*!< CRPT_T::AES_CTL: DMACSCAD Mask */ #define CRPT_AES_CTL_DMAEN_Pos (7) /*!< CRPT_T::AES_CTL: DMAEN Position */ #define CRPT_AES_CTL_DMAEN_Msk (0x1ul << CRPT_AES_CTL_DMAEN_Pos) /*!< CRPT_T::AES_CTL: DMAEN Mask */ #define CRPT_AES_CTL_OPMODE_Pos (8) /*!< CRPT_T::AES_CTL: OPMODE Position */ #define CRPT_AES_CTL_OPMODE_Msk (0xfful << CRPT_AES_CTL_OPMODE_Pos) /*!< CRPT_T::AES_CTL: OPMODE Mask */ #define CRPT_AES_CTL_ENCRYPTO_Pos (16) /*!< CRPT_T::AES_CTL: ENCRYPTO Position */ #define CRPT_AES_CTL_ENCRYPTO_Msk (0x1ul << CRPT_AES_CTL_ENCRYPTO_Pos) /*!< CRPT_T::AES_CTL: ENCRYPTO Mask */ #define CRPT_AES_CTL_OUTSWAP_Pos (22) /*!< CRPT_T::AES_CTL: OUTSWAP Position */ #define CRPT_AES_CTL_OUTSWAP_Msk (0x1ul << CRPT_AES_CTL_OUTSWAP_Pos) /*!< CRPT_T::AES_CTL: OUTSWAP Mask */ #define CRPT_AES_CTL_INSWAP_Pos (23) /*!< CRPT_T::AES_CTL: INSWAP Position */ #define CRPT_AES_CTL_INSWAP_Msk (0x1ul << CRPT_AES_CTL_INSWAP_Pos) /*!< CRPT_T::AES_CTL: INSWAP Mask */ #define CRPT_AES_CTL_KEYUNPRT_Pos (26) /*!< CRPT_T::AES_CTL: KEYUNPRT Position */ #define CRPT_AES_CTL_KEYUNPRT_Msk (0x1ful << CRPT_AES_CTL_KEYUNPRT_Pos) /*!< CRPT_T::AES_CTL: KEYUNPRT Mask */ #define CRPT_AES_CTL_KEYPRT_Pos (31) /*!< CRPT_T::AES_CTL: KEYPRT Position */ #define CRPT_AES_CTL_KEYPRT_Msk (0x1ul << CRPT_AES_CTL_KEYPRT_Pos) /*!< CRPT_T::AES_CTL: KEYPRT Mask */ #define CRPT_AES_STS_BUSY_Pos (0) /*!< CRPT_T::AES_STS: BUSY Position */ #define CRPT_AES_STS_BUSY_Msk (0x1ul << CRPT_AES_STS_BUSY_Pos) /*!< CRPT_T::AES_STS: BUSY Mask */ #define CRPT_AES_STS_INBUFEMPTY_Pos (8) /*!< CRPT_T::AES_STS: INBUFEMPTY Position */ #define CRPT_AES_STS_INBUFEMPTY_Msk (0x1ul << CRPT_AES_STS_INBUFEMPTY_Pos) /*!< CRPT_T::AES_STS: INBUFEMPTY Mask */ #define CRPT_AES_STS_INBUFFULL_Pos (9) /*!< CRPT_T::AES_STS: INBUFFULL Position */ #define CRPT_AES_STS_INBUFFULL_Msk (0x1ul << CRPT_AES_STS_INBUFFULL_Pos) /*!< CRPT_T::AES_STS: INBUFFULL Mask */ #define CRPT_AES_STS_INBUFERR_Pos (10) /*!< CRPT_T::AES_STS: INBUFERR Position */ #define CRPT_AES_STS_INBUFERR_Msk (0x1ul << CRPT_AES_STS_INBUFERR_Pos) /*!< CRPT_T::AES_STS: INBUFERR Mask */ #define CRPT_AES_STS_CNTERR_Pos (12) /*!< CRPT_T::AES_STS: CNTERR Position */ #define CRPT_AES_STS_CNTERR_Msk (0x1ul << CRPT_AES_STS_CNTERR_Pos) /*!< CRPT_T::AES_STS: CNTERR Mask */ #define CRPT_AES_STS_OUTBUFEMPTY_Pos (16) /*!< CRPT_T::AES_STS: OUTBUFEMPTY Position*/ #define CRPT_AES_STS_OUTBUFEMPTY_Msk (0x1ul << CRPT_AES_STS_OUTBUFEMPTY_Pos) /*!< CRPT_T::AES_STS: OUTBUFEMPTY Mask */ #define CRPT_AES_STS_OUTBUFFULL_Pos (17) /*!< CRPT_T::AES_STS: OUTBUFFULL Position */ #define CRPT_AES_STS_OUTBUFFULL_Msk (0x1ul << CRPT_AES_STS_OUTBUFFULL_Pos) /*!< CRPT_T::AES_STS: OUTBUFFULL Mask */ #define CRPT_AES_STS_OUTBUFERR_Pos (18) /*!< CRPT_T::AES_STS: OUTBUFERR Position */ #define CRPT_AES_STS_OUTBUFERR_Msk (0x1ul << CRPT_AES_STS_OUTBUFERR_Pos) /*!< CRPT_T::AES_STS: OUTBUFERR Mask */ #define CRPT_AES_STS_BUSERR_Pos (20) /*!< CRPT_T::AES_STS: BUSERR Position */ #define CRPT_AES_STS_BUSERR_Msk (0x1ul << CRPT_AES_STS_BUSERR_Pos) /*!< CRPT_T::AES_STS: BUSERR Mask */ #define CRPT_AES_DATIN_DATIN_Pos (0) /*!< CRPT_T::AES_DATIN: DATIN Position */ #define CRPT_AES_DATIN_DATIN_Msk (0xfffffffful << CRPT_AES_DATIN_DATIN_Pos) /*!< CRPT_T::AES_DATIN: DATIN Mask */ #define CRPT_AES_DATOUT_DATOUT_Pos (0) /*!< CRPT_T::AES_DATOUT: DATOUT Position */ #define CRPT_AES_DATOUT_DATOUT_Msk (0xfffffffful << CRPT_AES_DATOUT_DATOUT_Pos) /*!< CRPT_T::AES_DATOUT: DATOUT Mask */ #define CRPT_AES_KEYx_KEY_Pos (0) /*!< CRPT_T::AES_KEY[8]: KEY Position */ #define CRPT_AES_KEYx_KEY_Msk (0xfffffffful << CRPT_AES_KEYx_KEY_Pos) /*!< CRPT_T::AES_KEY[8]: KEY Mask */ #define CRPT_AES_IVx_IV_Pos (0) /*!< CRPT_T::AES_IV[4]: IV Position */ #define CRPT_AES_IVx_IV_Msk (0xfffffffful << CRPT_AES_IVx_IV_Pos) /*!< CRPT_T::AES_IV[4]: IV Mask */ #define CRPT_AES_SADDR_SADDR_Pos (0) /*!< CRPT_T::AES_SADDR: SADDR Position */ #define CRPT_AES_SADDR_SADDR_Msk (0xfffffffful << CRPT_AES_SADDR_SADDR_Pos) /*!< CRPT_T::AES_SADDR: SADDR Mask */ #define CRPT_AES_DADDR_DADDR_Pos (0) /*!< CRPT_T::AES_DADDR: DADDR Position */ #define CRPT_AES_DADDR_DADDR_Msk (0xfffffffful << CRPT_AES_DADDR_DADDR_Pos) /*!< CRPT_T::AES_DADDR: DADDR Mask */ #define CRPT_AES_CNT_CNT_Pos (0) /*!< CRPT_T::AES_CNT: CNT Position */ #define CRPT_AES_CNT_CNT_Msk (0xfffffffful << CRPT_AES_CNT_CNT_Pos) /*!< CRPT_T::AES_CNT: CNT Mask */ /** @} CRPT_CONST CRYPTO */ /** @} end of CRYPTO register group */ /** @} end of REGISTER group */ #if defined ( __CC_ARM ) #pragma no_anon_unions #endif #endif /* __CRYPTO_REG_H__ */