mac-rom/Toolbox/InSANE/HWElemsTg.a
Elliot Nunn 5b0f0cc134 Bring in CubeE sources
Resource forks are included only for .rsrc files. These are DeRezzed into their data fork. 'ckid' resources, from the Projector VCS, are not included.

The Tools directory, containing mostly junk, is also excluded.
2017-12-26 10:02:57 +08:00

228 lines
10 KiB
Plaintext

;
; File: HWElemsTg.a
;
; Contains: Routines to calculate TAN(x)
;
; Written by: Apple Numerics Group, DSG
;
; Copyright: © 1985-1993 by Apple Computer, Inc., all rights reserved.
;
; Change History (most recent first):
;
; <SM2> 2/3/93 CSS Update from Horror:
; <H2> 9/29/92 BG Adding Jon Okada's latest fixes.
; <1> 10/24/91 SAM/KSM Rolled in Regatta file.
;
; Terror Change History:
;
; <1> 01/06/91 BG Added to TERROR/BBS for the time.
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; File 881ELEMStg.a, ;;
;; Function tg(x), ;;
;; Implementation of tg for ½SANE. ;;
;; For machines with MC68881/68882 FPU. ;;
;; ;;
;; Copyright Apple Computer, Inc. 1985-7, 1989, 1990, 1992, 1993. ;;
;; ;;
;; Written by Ali Sazegari, started on July 13 1989, ;;
;; ;;
;; Started testing on december 11, 1989. All flags are set correctly, ;;
;; except for small normalized numbers. One intersting fact: in the ;;
;; denormal case the underflow flag is automatically raised. The mystery ;;
;; about the 1/tg(x) when tg(x) = 0 still remains! It does not seem to ever ;;
;; happen. ;;
;; ;;
;; December 12, 1989. Fixed all the flags for denormals, small numbers and ;;
;; edge cases. tg now passes a bag full of test vectors with the correct ;;
;; flags. ;;
;; ;;
;; January 29, 1990. C. McMaster found the 1-ulp error which was occuring ;;
;; on a small portion of the test cases. The order of operation of the ;;
;; statment: t^5 * P(t*t)/Q(t*t) was not right. ;;
;; ;;
;; September 17, 1990. The mystery about 1/tg(x) is solved ( refer to the ;;
;; section below ). ±¹/2 arguments now give ±°. All the rest of the hex ;;
;; inputs for tg in the test file which were commented out work fine. ;;
;; ;;
;; Based on Elems881, package code for Macintosh by J. Coonen, ;;
;; who wrote it from pascal programs by D. Hough, C. McMaster and K. Hanson. ;;
;; ;;
;; Further Modification History: ;;
;; 23 Apr 92 Performance tuning done (better register usage, faster FPU ;;
;; ops used, front-end check for small operands eliminates ;;
;; spurious underflowing. ... JPO ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
Rtan
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Classification of the argument with a neat trick. ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
FMOVE.L FPSR,D0 ; what kind of arg? fpsr has the key
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Here is the strategy ( commonly known as the scoop ) by C. R. Lewis: ;;
;; Register D0 has N, Z, I, NaN burried in it. Mask off unwanted bits to ;;
;; get them. Then, left shift NZINaN to have Z at MSB position. If D0 = 0 ;;
;; then arg is finite. ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; MOVE.L #ExcMask,D1 ; mask it kid DELETED <4/23/92, JPO>
; AND.L D1,D0 ; we now have the meat DELETED <4/23/92, JPO>
ANDI.L #ExcMask,D0
LSL.L #ShiftIt,D0 ; N->C, Z->MSB, I->30th & NaN->29th bit
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; If arg is a non zero finite number, great! let's fall through, otherwise ;;
;; take the problem cases. ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
BNE.W BadBoys ; take care of the bad guys (Z bar set)
; MOVEM.L A1,-(SP) ; use a1 for denormal flag use DELETED <4/23/92, JPO>
; MOVEA.L A0,A1 ; keep a copy of the pointer to argument DELETED <4/23/92, JPO>
BFEXTU (A0){1:15},D0 ; |arg| < 2^(-32)? <4/23/92, JPO>
CMPI.W #$3FDF,D0 ; <4/23/92, JPO>
BGE.B @tanred ; too big, reduce argument <4/23/92, JPO>
MOVE.L #SetInexact,D0 ; small, signal INEXACT <4/23/92, JPO>
BFTST (A0){1:16} ; denorm signals UNDERFLOW <4/23/92, JPO>
BNE.B @tinydone ; <4/23/92, JPO>
OR.L #SetUFlow,D0 ; <4/23/92, JPO>
@tinydone: ; label ADDED <4/23/92, JPO>
JMP (A4) ; return arg as result <4/23/92, JPO>
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; About the argument reduction: t is reduced REM approximate Pi/2, leaving ;;
;; its magnitude no bigger than approximate Pi/4. ;;
;; ;;
;; Recall that: ;;
;; ;;
;; tg(pi/2 + t) = -1/tg(t) ;;
;; tg(pi + t) = tg(t) ;;
;; ;;
;; Then if input t = q*(Pi/2) + r, ;;
;; q MOD 2 determines whether to negate and reciprocate tg(t). ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
@tanred: ; label ADDED <4/23/92, JPO>
; FMOVE.X FPKPI2,FP1 ; get the approximate Pi/2 DELETED <4/23/92, JPO>
; FREM.X FP1,FP0 ; t = arg REM Pi/2, quotient q in fpsr DELETED <4/23/92, JPO>
FREM.X FPKPI2,FP0 ; t = arg REM ¹/2, quo q in FPSR <4/23/92, JPO>
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Evaluate tg(t) for |t| <= pi/4. ;;
;; ;;
;; Use the change of variable s = t*t ;;
;; ;;
;; if ( s <= 1/4 ) then tg(t) = t + ( t^3/3 + t^5 * P(s)/Q(s) ) ;;
;; else t' = (t - 3/4)/3 ;;
;; tg(t) = t + s/4 + s * t' + s * ( t^3 * P(s)/Q(s) ) ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
FMOVE.X FP0,FP3 ; fp0 = t, fp1 = Pi/2, fp3 = t
FMUL.X FP0,FP0 ; fp0 = t*t, fp1 = Pi/2, fp3 = t
LEA TANP,A0 ; A0 = coeff table ptr for PolyEval
BSR PolyEval ; fp1 = PolyEval(P, t*t)
FMOVE.X FP1,FP2 ; save P(arg)
LEA TANQ,A0 ; A0 = coeff table ptr for PolyEval
BSR PolyEval ; fp1 = PolyEval(Q, t*t)
FDIV.X FP1,FP2 ; form fp2 = P(t*t)/Q(t*t)
FMUL.X FP0,FP2 ; form fp2 = (t*t) * P(t*t)/Q(t*t)
FMOVE.X FP0,FP1 ; fp1 = fp0 = t*t
FMUL.X FP3,FP1 ; form fp1 = t^3
FMUL.X FP1,FP2 ; form fp2 = t^5 * P(t*t)/Q(t*t)
FCMP.S #"0.25",FP0 ; decide which formula to continue
FBGT.W BigBabe ; well, we decided to use the big babe
FMUL.X FP3,FP0 ; compute fp0 = t^3
; FDIV.W #3,FP0 ; we have fp0 = t^3/3 DELETED <4/23/92, JPO>
FDIV.S #"$40400000",FP0 ; FP0 <- t^3/3.0 <4/23/92, JPO>
FADD.X FP2,FP0 ; almost got it fp0 = t^3/3 + t^5 * P/Q
FADD.X FP3,FP0 ; fp0 = t + t^3/3 + t^5 * P(t*t)/Q(t*t)
BRA.B LastCheck ; see if it needs more massaging
BigBabe
FMOVE.X FP3,FP1 ; fp0 = t*t fp1=t fp2 = t^5*P/Q fp3 = t
; FADD.X #"-0.75",FP1 ; fp1 = t - 3/4 DELETED <4/23/92, JPO>
; FDIV.W #3,FP1 ; fp1 = t' = ( t - 3/4 ) / 3 DELETED <4/23/92, JPO>
FADD.S #"$BF400000",FP1 ; FP1 <- t - 0.75 <4/23/92, JPO>
FDIV.S #"$40400000",FP1 ; FP1 <- t' = (t - 0.75)/3.0 <4/23/92, JPO>
FMUL.X FP0,FP1 ; fp1 = t' * s = t' * t * t
FADD.X FP2,FP1 ; fp1 = t' * s + t^5 * P(s)/Q(s)
; FDIV.W #4,FP0 ; before fp0 = t*t, now t*t/4 DELETED <4/23/92, JPO>
FMUL.S #"$3E800000",FP0 ; FP0 <- t*t*0.25 <4/23/92, JPO>
FADD.X FP1,FP0 ; fp0 = s/4 + s*t' + s*(t^3*P(s)/Q(s))
FADD.X FP3,FP0 ; finished, this is tg(t)
LastCheck
FMOVE.L FPSR,D0 ; q is in 1st byte of higher word
SWAP D0 ; q is in 1st byte of lower word
LSR.B #1,D0 ; is it 0 or 1? ( odd or even )
BCC.B @1 ; ok, get ready to fly out
; FMOVE.W #-1,FP1 ; it is odd so invert & negate tg(t) DELETED <4/23/92, JPO>
FMOVE.S #"$BF800000",FP1 ; odd, so invert and negate result <4/23/92, JPO>
FDIV.X FP0,FP1 ; fp1 = -1/tg(t)
FMOVE.X FP1,FP0 ; get ready to go: fp0 = -1/tg(t)
; still to do is to check for tg(t) = 0. if true then return infinity
; it does not seem to ever happen. what do we do?
;
; it does happen! take the ¹ representation used in REM above and ¹/2 gives °.
; If tg was ±INF in last step by the nature of the algorithm, flipping the
; result sign corrects the error. 9/17/90 ... ali
BTST #10,D0 ; we already have fpsr, see if fp0 was 0
BEQ.S @1 ; if it is zero, then
FNEG.X FP0 ; flip the sign of INF in fp0
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; The algorithm for tg requires the computation of t^5, which will set the ;;
;; underflow flag when t is small enough ( in the order of 1.0e-1000 ) but ;;
;; not demormal. In that case we clear the underflow flag. 12/12/89...ali ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
@1:
; BFEXTU (A1) {1:16},D0 ; get the exponent & 1st mantissa bit DELETED <4/23/92, JPO>
; MOVEA.L (SP)+,A1 ; restore the register after use DELETED <4/23/92, JPO>
; BEQ.B @2 ; if D0 = 0 then current s = denorm DELETED <4/23/92, JPO>
MOVE.L #SetInexact,D0 ; set the inexact flag
; MOVE.B #ClrUflow ,D0 ; and clear the underflow bit DELETED <4/23/92, JPO>
JMP (A4)
;@2 MOVE.L #SetInexact + SetUflow,D0 ; signal inexact DELETED <4/23/92, JPO>
; JMP (A4) ; deliver the result DELETED <4/23/92, JPO>
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Problem cases: NaN, +° and zero. ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
BadBoys BMI.B tgOut ; is arg = 0 ? ( N set )
BTST #29,D0 ; is arg a NaN? ( bit position 29 )
BNE.B tgOut ; scream, arg = NaN detected!
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; All right boys & girls, at this time it is apparent that the good old arg ;;
;; is an infinity or a NaN. ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
FMOVE.X #NaNTrig,FP0 ; arg = +° => tg(arg) = NaN
MOVE.L #SetInvalid,D0 ; signal invalid
JMP (A4) ; bye
tgOut MOVEQ #0,D0 ; signal no exceptions
JMP (A4) ; return either NaN, +° or +-0