mac-rom/Toolbox/SANE/ELEMS020_2.a
Elliot Nunn 0ba83392d4 Bring in CubeE sources
Resource forks are included only for .rsrc files. These are DeRezzed into their data fork. 'ckid' resources, from the Projector VCS, are not included.

The Tools directory, containing mostly junk, is also excluded.
2017-09-20 18:04:16 +08:00

967 lines
26 KiB
Plaintext

;
; File: ELEMS020_2.a
;
; Contains: More SANE Floating point package code
;
; Copyright: © 1990 by Apple Computer, Inc., all rights reserved.
;
; This file is used in these builds: Mac32
;
; Change History (most recent first):
;
; <4> 9/15/90 BG Removed <3>. 040s are behaving more reliably now.
; <3> 7/4/90 BG Added temporary EclipseNOPs to deal with flakey 040s.
; <2> 4/14/90 JJ Made changes to support new binary-to-decimal, 96-bit precision,
; and improved Pack 5.
; <1> 3/2/90 JJ First checked in.
;-----------------------------------------------------------
; File: ELEMS020_2.a
;-----------------------------------------------------------
;-----------------------------------------------------------
;-----------------------------------------------------------
; EXP(x) and EXP2(x) share the same exception code. To compute
; numerical results, express result as 2^K * ((2^frac - 1) + 1),
; and use EXPAPPROX to figure (2^frac - 1).
;-----------------------------------------------------------
;-----------------------------------------------------------
EXPTOP:
SUBQ.B #1,D1 ; HAVE SUB #CLINF ALREADY
BEQ.S P1STUFF ; EXP(+-0) IS +1
BGT.S EXPNONZERO
TST.W D1
BMI.S P0STUFF ; EXP(-INF) IS +0
BRA.S RESULTDELIVERED ; ALREADY HAVE +INF
EXPNONZERO:
BTST #BTLOGBASE2,D3 ; NONZERO IF EXP2X
BEQ.S EXPR
;-----------------------------------------------------------
; 2^T is easy, for general T.
; Set cell W to integer part of T.
; Set T to fraction part of itself.
; Use root computation to evaluate 2^T - 1 with LOGAPPROX;
; add 1 to T, and scale by W.
;-----------------------------------------------------------
EXP2R:
BSR.S SPLIT2
BRA.S EXPROOT
;-----------------------------------------------------------
; EXP(T) is just slightly more complicated than EXP2(T) above.
; Let T = K * LN(2) + F
; Then EXP(T) is 2^K + ((2^(F/LN(2)) - 1) + 1).
; So use EXP2ROOT with W set to K and T set to F/LN(2).
; Find F with REM modulo LN(2); then subtract from T and divide by LN(2)
; to get K.
;-----------------------------------------------------------
EXPR:
BSR.S SPLIT
BSR TESTOFLOW
BEQ.S EXPROOT
BSR FORCEINEXACT ; EITHER O/UFLOW
TST.W D1 ; OPERAND SIGN
BPL.S PINFSTUFF ; OFLOW TO +INF
BSR CLEAROFLOW
BSR FORCEUFLOW
BRA P0STUFF
;-----------------------------------------------------------
; This is the root of V^X where V is 2 or E.
; Compute ((2^T - 1) + 1) * 2*W. EXPAPPROX gives the innermost
; expression. W is presumed to be an integer, possibly huge.
;-----------------------------------------------------------
EXPROOT:
BSR EXPAPPROX ; 2^T - 1
PEA FPK1 ; (2^T - 1) + 1
PEA (A4)
ELFADDX
MOVEA.L A4,A0 ; RESULT PTR
LEA STW(A6),A1 ; INTEGER PART
BSR SCALBXX
BRA.S RESULTDELIVERED
;-----------------------------------------------------------
; Given general number in T, split into integer part in W
; and fraction in T, rounding.
;-----------------------------------------------------------
SPLIT2:
MOVEA.L A4,A0
LEA STW(A6),A1
BSR A0TOA1 ; COPY T
PEA (A1) ; CELL W
ELFRINTX ; INTEGER PART OF T, ROUNDED
BSR CLEARINEXACT ; DON'T RECORD ROUNDING ERROR
PEA (A1) ; INTEGER PART
PEA (A4) ; ALL OF NUMBER
ELFSUBX
RTS
;-----------------------------------------------------------
; Split T for EXP(x) and EXP(x)-1.
; Let T = K * LN(2) + F. Want W=K and T=F/LN(2).
; Find F with REM modulo LN(2); then subtract from T and divide by LN(2)
; to get K.
;-----------------------------------------------------------
SPLIT:
MOVEA.L A4,A0 ; T POINTER
LEA STW(A6),A1 ; COPY T INTO CELL W
BSR A0TOA1
PEA FPKLOGE2 ; NEED 3 COPIES OF LN(2)
MOVE.L (SP),-(SP)
MOVE.L (SP),-(SP)
PEA (A4)
ELFREMX ; T REM LN(2) IN T
PEA (A4)
PEA (A1)
ELFSUBX ; T - (T REM LN(2)) IN W
PEA (A1)
ELFDIVX ; T - (T REM...) / LN(2)
PEA (A1)
ELFRINTX ; MAKE SURE IT'S AN INT
PEA (A4)
ELFDIVX ; (T REM LN(2)) / LN(2)
BRA CLEARINEXACT ; ...AND EXIT
;-----------------------------------------------------------
; EXP(x)-1 and EXP2(x)-1 share the same exception code. Then both exploit
; EXPAPPROX for the root computation 2^frac - 1.
;-----------------------------------------------------------
EXP1TOP:
SUBQ.B #1,D1 ; SUBTRACTED #CLINF BEFORE
BGT.S EXP1FINITE ; FINITE, NONZERO
BEQ.S EXPEASY ; Y^+-0 - 1 IS +-0
TST.W D1 ; TEST SIGN OF INF
BMI M1STUFF ; Y^-INF - 1 IS -1
EXPEASY:
BRA RESULTDELIVERED ; Y^+INF - 1 IS +INF
EXP1FINITE:
;-----------------------------------------------------------
; If the number is denormalized, have easy case whether EXP1 or EXP21.
; Have subtracted #CLZERO so far. Subtracting 1 more from D1.B leaves
; 0 if normalized, 1 if denormalized.
;-----------------------------------------------------------
SUBQ.B #1,D1 ; 0-NORM 1-DENORM
BTST #BTLOGBASE2,D3 ; NONZERO IF EXP2X
BEQ.S EXP1R
;-----------------------------------------------------------
; As above, for 2^T-1 split T into fraction part in T and integer
; in W, and go to root computation.
;-----------------------------------------------------------
EXP21R:
TST.B D1
BEQ.S EXP21RNORM
PEA FPKLOGE2 ; 2^T-1 IS T*LN(2) FOR TINY T
PEA (A4)
ELFMULX
EXP1OUT:
BSR FORCEUFLOW
BSR FORCEINEXACT
BRA.S EXP1RDONE
EXP21RNORM:
BSR SPLIT2 ; ???? WAS BSR.S
BRA.S EXP1ROOT
;-----------------------------------------------------------
; For E^T-1, split T into K and F/LN(2), where T = K*LN(2) + F.
; If overflow, then force INF or -1...
;-----------------------------------------------------------
EXP1R:
TST.B D1
BNE.S EXP1OUT ; E^T-1 IS T, WITH UFLOW FOR NOW
BSR.S SPLIT
BSR TESTOFLOW
BEQ.S EXP1ROOT
BSR FORCEINEXACT ; EITHER O/UFLOW
TST.W D1 ; OPERAND SIGN
BPL PINFSTUFF ; OFLOW TO +INF
BSR CLEAROFLOW ; LEAVE INEXACT SET
BRA M1STUFF ; FORCE -1
;-----------------------------------------------------------
; This is the root of V^X-1 where V is 2 or E.
; Compute (2^T - 1) for fraction T. Then if (integer) W is
; nonzero, finish off with (((2^T - 1) + 1) * 2^W) - 1.
;-----------------------------------------------------------
EXP1ROOT:
BSR.S EXPAPPROX ; 2^T - 1
PEA FPK0
PEA STW(A6)
ELFCMPX
FBEQS EXP1RDONE
PEA FPK1 ; (2^T - 1) + 1
PEA (A4)
ELFADDX
MOVEA.L A4,A0 ; RESULT PTR
LEA STW(A6),A1 ; INTEGER PART
BSR SCALBXX ; ((2^T - 1) + 1) * 2^W
PEA FPK1 ; FINALLY, SUBTRACT 1
PEA (A4)
ELFSUBX
;-----------------------------------------------------------
; Reset underflow, which cannot occur if W (as in 2^W) is nonzero.
;-----------------------------------------------------------
BSR CLEARUFLOW
EXP1RDONE:
BRA RESULTDELIVERED
;-----------------------------------------------------------
; Compute approximate (2^T - 1) for T in (A4).
; Uses cells X and Y, regs D0-D2/A0-A2.
; Expression has the form
; ( 2 * T * P(T*T) ) / ( Q(T*T) - (T * P(T*T)) )
; One special case: if T is 0, just return 0, and don't set
; the inexact flag.
;-----------------------------------------------------------
EXPAPPROX:
PEA FPK0 ; COMPARE INPUT WITH 0
PEA (A4)
ELFCMPX
FBNES EXPHARD
RTS ; EASY IF 0
EXPHARD:
LEA STY(A6),A1 ; CELL Y
MOVEA.L A4,A0
BSR A0TOA1 ; COPY INPUT T
PEA (A1)
PEA (A1)
ELFMULX ; T^2 INTO CELL Y
LEA STX(A6),A0 ; PLACE P(Y) INTO X
LEA EXP21P,A1 ; EXPONENT P COEFS
LEA STY(A6),A2 ; VAR IS T^2 IN Y
BSR POLYEVAL
PEA STX(A6)
PEA (A4)
ELFMULX ; T * P(T^2) IN RESULT
LEA STX(A6),A0 ; PLACE Q(Y) INTO X
LEA EXP21Q,A1
LEA STY(A6),A2
BSR POLYEVAL
PEA (A4)
PEA STX(A6)
ELFSUBX ; Q(Y) - T*P(Y)
PEA FPK2 ; 2.0
PEA (A4) ; Y*P(Y)
ELFMULX
PEA STX(A6)
PEA (A4)
ELFDIVX
;-----------------------------------------------------------
; Finally, set inexact and clear any underflow messages.
;-----------------------------------------------------------
BSR FORCEINEXACT
BRA CLEARUFLOW ; AND EXIT...
;-----------------------------------------------------------
;-----------------------------------------------------------
; XPWRITOP---Raise extended dst to integer src power.
;-----------------------------------------------------------
;-----------------------------------------------------------
XPWRITOP:
MOVEA.L D4,A0 ; SRC PTR
MOVE.W (A0),D2 ; I OVERWRITES BOGUS CLASS
BEQ P1STUFF ; ANY^0 IS 1
SUBQ.B #1,D1 ; #CLINF ALREADY SUBTRACTED
BGT.S FINPWRI ; GT MEANS NONZERO^I
;-----------------------------------------------------------
; Get here if INF^I or 0^I. If I is negative, must reciprocate
; (signaling div by 0 in case of 0^-N). If I is even, must clear
; sign.
;-----------------------------------------------------------
ASR.W #1,D2 ; GET ODD BIT OF I INTO C,X
BCS.S @1 ; CARRY SET IF ODD
BCLR #7,(A4) ; ABS OF DST (LEAVES X BIT ALONE)
@1:
ADDX.W D2,D2 ; REGAIN ORIGINAL VALUE I
BPL RESULTDELIVERED ; (INF OR ZERO)^POS ???? WAS BPL.S
TST.B D1 ; INF OR ZERO?
BPL.S ZPWRNEG
TST.B (A4)
BPL P0STUFF ; +INF^NEG IS +0
BRA M0STUFF ; -INF^NEG IS -0
ZPWRNEG:
TST.B (A4)
BPL DIVP0STUFF ; +0^NEG IS +INF
BRA DIVM0STUFF ; -0^NEG IS -INF
;-----------------------------------------------------------
; NONZERO^I is broken into two cases:
; If I is small, then just multiply out. Note that sign perseveres if
; I is odd.
; Otherwise, convert I to extended and evaluate with exponentials.
;-----------------------------------------------------------
FINPWRI:
MOVE.W D2,D0 ; ABS(D2) --> D0
BPL.S @1
NEG.W D0
@1:
CMPI.W #SMALLEXP,D0
BHI.S XPWRBIG ; USE LOG AND EXP
BSR.S XPWRK ; MULTIPLY OUT
BRA RESULTDELIVERED
;-----------------------------------------------------------
; Integer power is too large to multiply out, so convert to extended
; and use general x^y routine. Make copy of integer in cell W.
;-----------------------------------------------------------
XPWRBIG:
MOVE.W (A4),-(SP) ; SAVE SIGN OF INPUT
BCLR #7,(A4) ; ABS(DST) IN T
MOVE.L D4,-(SP) ; ADRS OF INT
PEA STW(A6) ; ADRS OF CELL W
MOVE.L (SP),D4 ; PRETEND IT'S SRC
ELFI2X ; CONVERT INT TO EXT IN W
BSR XPWRY ; COMPUTE (A4)^(D4)
;-----------------------------------------------------------
; Note that XPWRY must preserve the integer value in D2.
;-----------------------------------------------------------
MOVE.W (SP)+,D0 ; RETRIEVE SIGN OF INPUT
BPL.S @3 ; IF POSITIVE, DON'T CARE
ASR.W #1,D2 ; LOW BIT TO CARRY
BCC.S @3
BSET #7,(A4) ; NEGATE OUTPUT
@3:
BRA RESULTDELIVERED
;-----------------------------------------------------------
; Raise T to the power D2, leaving the result in (A4). D0 = abs(D2).
; If D2 is negative, evaluate the positive power and reciprocate at
; the end. Know D2 is nonzero. Sign of (A4) is propagated correctly.
; Trash A0, A1, D0, and cells I, W and X.
;-----------------------------------------------------------
XPWRK:
MOVEA.L A4,A0 ; COPY T
LEA STX(A6),A1 ; INTO CELL W
BSR A0TOA1
BSR.S XPWRKLOOP
;-----------------------------------------------------------
; Now that loop is finished, produce 1 * T^|I| or 1 / T^|I|, depending
; on sign of I. If overflow or underflow has occurred and I is negative,
; redo computation with pre-reciprocated T.
;-----------------------------------------------------------
TST.W D2 ; IS I NEGATIVE?
BMI.S XPWRKDIV
XPWRKSTORE:
MOVEA.L A1,A0 ; T^|I|
MOVEA.L A4,A1 ; RESULT ADRS
BRA A0TOA1 ; T <-- T^|I|, AND EXIT
XPWRKDIV:
LEA FPK1,A0
LEA (A4),A1 ; LOSE ADRS OF CELL X FROM LOOP
BSR A0TOA1 ; T <-- 1
BSR TESTUFLOW
BNE.S XPWRKCLEAR
BSR TESTOFLOW
BNE.S XPWRKCLEAR
PEA STW(A6) ; W = T^|I| FROM XPWRKLOOP
PEA (A4) ; RES=1
ELFDIVX
RTS
XPWRKCLEAR:
BSR CLEAROFLOW
BSR CLEARUFLOW
PEA STX(A6) ; SAVED INPUT T ATOP T^|I|
PEA (A4)
ELFDIVX
MOVE.W D2,D0 ; GET K AGAIN
BPL.S @11
NEG.W D0
@11:
BSR.S XPWRKLOOP
BRA.S XPWRKSTORE
;-----------------------------------------------------------
; Input: D0 = positive integer K
; A4 = X
; Output: A1 = W = X^K
; Uses: cell W, A0
; Trashes: D0
;-----------------------------------------------------------
XPWRKLOOP:
LEA FPK1,A0
LEA STW(A6),A1
BSR A0TOA1 ; SEED RESULT WITH 1.0
BRA.S XKLPENTRY
XKLPTOP:
PEA (A4)
PEA (A4)
ELFMULX ; T^(2^(I+1))
XKLPENTRY:
LSR.W #1,D0 ; GET LOW BIT INTO C
BCC.S XKLPSKIP
PEA (A4) ; T^(2^I)
PEA (A1) ; RESULT SO FAR
ELFMULX
XKLPSKIP:
TST.W D0 ; ANY MORE BITS?
BNE.S XKLPTOP
RTS
;-----------------------------------------------------------
; Simple routine to compute (A4)^(D4) into (A4).
; Know that (A4) is positive. Know that the FMULX will never
; encounter 0 * INF, so extreme cases, like INF^3, will be handled
; correctly. Fixed to use temp X while computing, in case sources and
; dest are the same.
;-----------------------------------------------------------
XPWRY:
MOVEA.L A4,A0 ; COPY DST ARG
LEA STX(A6),A1
BSR A0TOA1 ; CELL X <-- INPUT X
PEA (A1) ; X = INPUT
MOVE.W #FOLOG2X,-(SP)
BSR ELEMS020 ; LOG2((A1))
MOVE.L D4,-(SP)
PEA (A1)
ELFMULX ; (D4) * LOG2((A1))
PEA (A1)
MOVE.W #FOEXP2X,-(SP)
BSR ELEMS020 ; (A1) ^ (D4)
MOVEA.L A1,A0
MOVEA.L A4,A1
BRA A0TOA1
;-----------------------------------------------------------
;-----------------------------------------------------------
; XPWRYTOP---General function x^y is beset by exceptional cases.
;-----------------------------------------------------------
;-----------------------------------------------------------
XPWRYTOP:
TST.W D1 ; IS X=DST NEG?
BMI.S NEGPWRY
BSR.S XPWRYCOM
BRA RESULTDELIVERED
;-----------------------------------------------------------
; Signal X^Y error and stuff a NAN. Special entry accommodates branches from
; within subroutines, in which case a return address must be popped.
;-----------------------------------------------------------
XPWRY9ERR:
ADDQ.L #4,SP ; KILL RETURN ADDRESS
XPWRYERR:
BSR CLEARINEXACT ; SIGNAL INVALID ONLY
MOVEQ #NANPOWER,D0
BRA ERRORNAN
;-----------------------------------------------------------
; If X is negative, check that Y is integral; otherwise error.
; Save parity of Y to fix sign at end of XPWRYCOM.
;-----------------------------------------------------------
NEGPWRY:
TST.B D2 ; Y CLASS - INF
BEQ.S XPWRYERR
MOVEA.L D4,A0 ; Y=SRC
LEA STW(A6),A1 ; CELL W TEMP
BSR A0TOA1
PEA (A1) ; Y=SRC
ELFRINTX ; ROUND TO INTEGER
BSR TESTINEXACT
BNE.S XPWRYERR
;-----------------------------------------------------------
; NEG ^ INT requires that parity of Y be saved in cell J for later
; setting of sign. To find low bit of floating integer, divide by
; 2 and test inexact.
;-----------------------------------------------------------
PEA FPK2 ; 2.0
PEA (A1) ; CELL W
ELFDIVX ; W/2
PEA (A1)
ELFRINTX ; STRIP OFF ODD BIT OF W
MOVE.W (FPSTATE).W,STJ(A6) ; save env in J cell
BSR CLEARINEXACT
BCLR #7,(A4) ; ABS((A4))
BSR.S XPWRYCOM ; ABS((A4))^(D4)
;-----------------------------------------------------------
; Fix sign of power, according to parity of Y. The parity is stored in
; the inexact flag, saved in cell J. It's in the high byte so just to
; a bit test.
;-----------------------------------------------------------
BTST #FBINEXACT,STJ(A6)
BEQ.S @1
BCHG #7,(A4) ; NEGATE IF ODD (INEXACT)
@1:
BRA RESULTDELIVERED
;-----------------------------------------------------------
; Common routine to raise (A4) to (D4) power.
; Know (A4) >= 0 and (D4) is not a NAN.
; Have class codes, less CLINF, in D1 and D2, respectively.
; Can run through 2 ^ Y*LOG2(X) code so long as won't multiply
; INF and 0 to compute exponent. As a minor detail, if Y is 0 or INF,
; clear any inexact that may have been set by LOG2(X).
;
; Since this is called as a subroutine, exits to XPWRYERR must have a special
; pop for the return address.
;-----------------------------------------------------------
XPWRYCOM:
SUBQ.B #1,D1 ; CLINF ALREADY SUBTRACTED
BNE.S NONPWRY
;-----------------------------------------------------------
; 0 ^ some
;-----------------------------------------------------------
SUBQ.B #1,D2 ; CLINF ALREADY SUBTRACTED
BEQ.S XPWRY9ERR ; 0^0, 0^INF ERRORS, WITH RTS POP
TST.W D2 ; SIGN OF Y
BPL.S @1
;-----------------------------------------------------------
; 0 ^ nonzero
;-----------------------------------------------------------
BSR FORCEDIVZER ; SIGNAL DIV BY ZERO
LEA FPKINF,A0
BRA.S @2
@1:
LEA FPK0,A0
@2:
MOVEA.L A4,A1 ; RESULT PTR
BRA A0TOA1 ; STUFF RESULT AND EXIT
;-----------------------------------------------------------
; nonzero ^ some
;-----------------------------------------------------------
NONPWRY:
BPL.S FINPWRY ; EXIT IF X FINITE
;-----------------------------------------------------------
; inf ^ some
;-----------------------------------------------------------
SUBQ.B #1,D2 ; CLINF ALREADY SUBTRACTED
BNE.S XPWRYOK
BRA XPWRY9ERR ; INF^O IS AN ERROR
;-----------------------------------------------------------
; finite ^ some
;-----------------------------------------------------------
FINPWRY:
SUBQ.B #1,D2
BPL.S XPWRYOK ; FIN ^ FIN IS OK
;-----------------------------------------------------------
; finite ^ inf has the special case 1^INF which is an error.
;-----------------------------------------------------------
PEA FPK1
PEA (A4)
ELFCMPX
FBEQL XPWRY9ERR
;-----------------------------------------------------------
; Finally, compute finite^reasonable and return.
; Two cases: if exponent is a small integer, then just multiply;
; else use log and exp. To check for an integer, try converting to
; 16 bits. Overflow is Invalid, rounding error is Inexact.
; Must reset Invalid, but if Inexact the result will be anyway.
; Save D2=YClass in D6 across possible call to XPWRK.
;-----------------------------------------------------------
XPWRYOK:
MOVE.W D2,D6 ; COPY OF Y'S CLASS LESS CLNORM
MOVE.L D4,-(SP) ; EXPONENT ADDRESS
PEA STI(A6) ; INTEGER CELL I
ELFX2I ; CONVERT TO INTEGER
BSR TESTINVALID ; X2I OFLOW IS INVALID
SNE D7
BSR CLEARINVALID ; CLEAR UNDESERVED ERROR
BSR TESTINEXACT ; MAY HAVE JUST ROUNDED OFF
SNE D1
OR.B D1,D7 ; EITHER ERROR?
BNE.S XPWRYHARD
MOVE.W STI(A6),D2 ; GET INTEGER TO REG.
MOVE.W D2,D0
BPL.S @1
NEG.W D0
@1:
CMPI.W #SMALLEXP,D0
BLE XPWRK ; DO IT AS INTEGER AND EXIT
XPWRYHARD:
BSR CLEARINEXACT
BSR XPWRY
TST.B D6 ; CHECK FOR Y 0 OR INF
BMI CLEARINEXACT ; AND RETURN FROM THERE
RTS
;-----------------------------------------------------------
; Compute dst <-- (1 + src2)^src r = src2 n = src
; Watch for special cases:
; src2 < -1 is invalid
; else src = 0 yields 1
; else src2 = 0 and src = INF is invalid
; else src = INF yields 0 or INF according to src2
; else src2 = -1 yields 0, 1, or INF according to src
; else actually compute (1 + r)^n !!
;-----------------------------------------------------------
COMPOUNDTOP:
PEA FPKM1 ; -1
MOVE.L D5,-(SP) ; SRC2
ELFCMPX
FBULTL ERRFINAN ; UNORDERED OR LESS THAN -1
FBGTS CMPGTM1
;-----------------------------------------------------------
; Get here if SRC2 is -1. Check SRC (D2) for 0 or nonzero.
;-----------------------------------------------------------
SUBQ.B #1,D2 ; CLINF ALREADY SUBTRACTED
BNE.S CMPM1N
CMPTOZERO:
BRA P1STUFF ; (1 + SOME)^0 IS +1
CMPM1N:
MOVEA.L D4,A0 ; CHECK SIGN OF SRC
TST.B (A0)
BMI DIVP0STUFF ; (1 - 1)^NEG IS +INF
CMPZERO:
BRA P0STUFF ; (1 - 1)^POS IS +0
;-----------------------------------------------------------
; Get here if SRC2 (r) is > -1.
;-----------------------------------------------------------
CMPGTM1:
SUBQ.B #1,D2 ; CLINF ALREADY SUBTRACTED
BEQ.S CMPTOZERO ; (1 + SOME)^0 IS +1
BGT.S CMPTOFIN ; GO DO (1 + SOME)^FINITE
;-----------------------------------------------------------
; Get here if (1 + SOME)^INF. Check for 1^INF, an error, else have
; INF or 0 according to SRC and SRC2.
;-----------------------------------------------------------
SUBQ.B #1,D1 ; CLINF ALREADY SUBTRACTED
BEQ.S ERRFINAN
EOR.W D2,D1 ; GET XOR OF SRC, SRC2 SIGNS
BMI.S CMPZERO ; SIGNS DIFFER --> ZERO
BRA PINFSTUFF ; SIGNS SAME --> +INF
;-----------------------------------------------------------
; Finally, compute (1 + reasonable)^finite with the usual...
;-----------------------------------------------------------
CMPTOFIN:
LEA STX(A6),A1 ; CELL X
MOVEA.L D5,A0 ; R = SRC2
BSR A0TOA1 ; COPY R TO X
MOVE (a1),d0 ; D0 gets sign/exponent of R.
BCLR #15,d0 ; Clear sign.
CMP #$3f7f,d0 ; Exponent -64.
BLT.S cmpbasee ; Natural log/exp for tiny
;-----------------------------------------------------------
; COMPOUND BASE 2.
;-----------------------------------------------------------
PEA (A1)
MOVE.W #FOLOG21X,-(SP)
BSR ELEMS020 ; LOG2(1 + (A1))
MOVE.L D4,-(SP) ; N = SRC ADDRESS
PEA (A1) ; LOG2(1+R)
ELFMULX ; N * LOG2(1+R)
PEA (A1)
MOVE.W #FOEXP2X,-(SP)
BRA.S cmpresult
cmpbasee: ; COMPOUND BASE E.
MOVE.L D4,-(SP) ; N = SRC ADDRESS
PEA (A1) ; LOG2(1+R)
ELFMULX ; N * LOG2(1+R)
PEA (A1)
MOVE.W #FOEXPX,-(SP)
cmpresult:
BSR clearuflow ; Irrelevant!
BSR ELEMS020 ; EXP2 OR EXPE((A1))
MOVEA.L A1,A0 ; CELL X
MOVEA.L A4,A1
BSR A0TOA1
BRA RESULTDELIVERED
;-----------------------------------------------------------
; Routine to stuff the financial NAN and go.
;-----------------------------------------------------------
ERRFINAN:
MOVEQ #NANFINAN,D0
BRA ERRORNAN
;-----------------------------------------------------------
; Compute annuity factor:
; ( 1 - (1 + r)^-n ) / r
; for r = SRC2 and n = SRC.
; Multitudinous special cases handled piece by piece.
;-----------------------------------------------------------
ANNUITYTOP:
PEA FPKM1 ; -1
MOVE.L D5,-(SP) ; R = SRC2
ELFCMPX ; R VS. -1
FBULTS ERRFINAN ; R < -1 IS AN ERROR
FBNES ANNOK
;-----------------------------------------------------------
; Get here if have (1 - 1)^ANY. Just check n = SRC.
;-----------------------------------------------------------
SUBQ.B #1,D2 ; CLINF ALREADY SUBTRACTED
BEQ.S ANN0 ; ANN(-1, 0) IS +0
TST.W D2 ; CHECK SIGN OF NONZERO N
BPL DIVP0STUFF
ANNM1:
BRA M1STUFF
;-----------------------------------------------------------
; Know that R=SRC2 exceeds -1. Check first for N=SRC=0.
;-----------------------------------------------------------
ANNOK:
SUBQ.B #1,D2 ; CLINF ALREADY SUBTRACTED
BNE.S ANNXN
ANN0:
BRA P0STUFF
;-----------------------------------------------------------
; Now check for unusual, 0 or INF, R=SRC2.
;-----------------------------------------------------------
ANNXN:
SUBQ.B #1,D1 ; CLINF ALREADY SUBTRACTED
BGT.S ANNROK
BLT.S ANNRINF
;-----------------------------------------------------------
; R=SRC2=0. Limit gives result of N=SRC.
;-----------------------------------------------------------
ANNSRC:
MOVEA.L A4,A1 ; DST PTR
MOVEA.L D4,A0 ; SRC=N PTR
BSR A0TOA1
BRA RESULTDELIVERED
;-----------------------------------------------------------
; R=SRC2=+INF. If N=SRC is nonnegative have 0, else test N=SRC versus -1.
;-----------------------------------------------------------
ANNRINF:
TST.W D2 ; IT'S NONZERO, JUST TEST SIGN
BPL.S ANN0 ; FORCE +0
PEA FPKM1 ; -1
MOVE.L D4,-(SP) ; SRC
ELFCMPX
FBEQS ANNM1 ; N = -1, STUFF -1
FBGTL M0STUFF
BRA MINFSTUFF
;-----------------------------------------------------------
; Way down here, we have R=SRC2 a normal or denormal number.
; Last check is for N=SRC=INF.
;-----------------------------------------------------------
ANNROK:
TST.B D2 ; (CLINF + 1) ALREADY SUB
BPL.S ANNDOIT
EOR.W D2,D1 ; DO R AND N SIGNS MATCH
BMI.S ANNSRC
MOVEA.L D5,A0 ; ADDRESS OF 4=SRC2, DIVISOR
LEA STX(A6),A1
BSR A0TOA1
PEA (A1) ; FOR DIVIDE BELOW
MOVEA.L A4,A1
LEA FPK1,A0
BSR A0TOA1 ; DST <-- +1
PEA (A1) ; ADDRESS OF DST
ELFDIVX ; RESULT IS 1/R
BRA RESULTDELIVERED
;-----------------------------------------------------------
; Finally, compute ( 1 - (1 + r)^-n ) / r.
; Distinguish two cases:
; r normal:
; log2(1 + r)
; n * log2(1 + r)
; -n * log2(1 + r)
; 2^(...) - 1
; 1 - 2^(...)
; (1 - 2^(...)) / r
;
; r denormal:
; log(1 + r) is about r
; n * r
; -n * r
; e^(...) - 1
; 1 - e^(...)
; (1 - e^(...)) / r
; Use D1.B, from which CLZERO has already been subtracted.
; Subtracting one more (CLNORMAL) leaves D1.B 0 for normal, 1 for denormal.
;-----------------------------------------------------------
ANNDOIT:
LEA STX(A6),A1 ; CELL X FOR TEMP
MOVEA.L D5,A0 ; SRC2 PTR
BSR A0TOA1
MOVE (a1),d0 ; D0 gets sign/exponent of R.
BCLR #15,d0 ; Clear sign.
CMP #$3f7f,d0 ; Exponent -64.
BLT.S annbasee ; Natural log/exp for tiny
;-----------------------------------------------------------
; Annuity base two.
;-----------------------------------------------------------
PEA (A1) ; X
MOVE.W #FOLOG21X,-(SP)
BSR ELEMS020 ; LOG2(1 + R)
MOVE.L D4,-(SP) ; N=SRC PTR
PEA (A1)
ELFMULX ; N * LOG2(1 + R)
BCHG #7,(A1) ; -(N * LOG2(1 + R))
CMP #$4007,(a1)
BLT.S @1 ; Branch if exp(-n*log(1+r)) not huge.
MOVE.L d5,a0
CMP #$407f,(a0)
BGE.S annspecial ; Branch if r huge.
@1:
PEA (A1)
MOVE.W #FOEXP21X,-(SP)
BRA.S annresult
annbasee: ; Annuity base e.
MOVE.L D4,-(SP) ; N=SRC PTR
PEA (A1)
ELFMULX ; N * LOG2(1 + R)
BCHG #7,(A1) ; -(N * LOG2(1 + R))
PEA (A1)
MOVE.W #FOEXP1X,-(SP)
annresult:
BSR ELEMS020 ; (1 + R)^-N - 1
BCHG #7,(A1) ; 1 - (1 + R)^-N
MOVE.L D5,-(SP) ; R=SRC2
PEA (A1)
ELFDIVX ; ( 1 - (1 + R)^-N ) / R
annclear:
BSR CLEARUFLOW
BSR CLEAROFLOW
MOVEA.L A1,A0 ; SET UP REGS FOR CLASS
BSR CLASSIFY
SUBQ.B #FCINF,D0 ; IS IT INF?
BNE.S @1
BSR FORCEOFLOW
BRA.S ANNDOUT
@1:
SUBQ.B #2,D0 ; IS IT NORMAL?
BEQ.S ANNDOUT
BSR FORCEUFLOW
ANNDOUT:
LEA STX(A6),A0 ; STORE TO DESTINATION
MOVEA.L A4,A1
BSR A0TOA1
BRA RESULTDELIVERED
annspecial:
MOVEA.L D5,A0 ; SRC2 PTR
BSR A0TOA1
PEA (A1) ; X := r
MOVE.W #FOLOG2X,-(SP)
BSR ELEMS020 ; x := LOG2( R)
LEA sty(a6),a1
MOVE.L d4,a0
BSR a0toa1 ; Y gets N.
PEA fpk1
PEA (a1)
ELFADDX ; Y gets N+1.
PEA (A1)
LEA stx(a6),a1 ; A1 gets X again.
PEA (a1)
ELFMULX ; x gets (n+1) * LOG2( R)
BCHG #7,(A1) ; -(N+1) * LOG2( R)
PEA (A1)
MOVE.W #FOEXP2X,-(SP)
BSR ELEMS020 ; ( R)^-(n+1)
BCHG #7,(A1) ; - (R)^-(N+1)
BRA.S annclear