mac-rom/Toolbox/SANE/Elems68K2.a
Elliot Nunn 5b0f0cc134 Bring in CubeE sources
Resource forks are included only for .rsrc files. These are DeRezzed into their data fork. 'ckid' resources, from the Projector VCS, are not included.

The Tools directory, containing mostly junk, is also excluded.
2017-12-26 10:02:57 +08:00

1012 lines
22 KiB
Plaintext

;
; File: Elems68K2.a
;
; Contains: xxx put contents here (or delete the whole line) xxx
;
; Written by: xxx put name of writer here (or delete the whole line) xxx
;
; Copyright: © 1983-1990 by Apple Computer, Inc., all rights reserved.
;
; This file is used in these builds: Mac32
;
; Change History (most recent first):
;
; <3> 9/15/90 BG Removed <2>. 040s are behaving more reliably now.
; <2> 7/4/90 BG Added temporary EclipseNOPs to deal with flakey 040s.
; <1.1> 11/11/88 CCH Fixed Header.
; <1.0> 11/9/88 CCH Adding to EASE.
; <1.1> 5/16/88 BBM FBcc -> FBccL (new macros that donÕt conflict w/ 881) <1.1>
; <1.0> 2/12/88 BBM Adding file for the first time into EASEÉ
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; File: Elems68K2.a
;; Implementation of Elems68K for machines using the Motorola MC68881
;; Copyright Apple Computer, Inc. 1983,1984,1985,1986,1987
;; All Rights Reserved
;; Confidential and Proprietary to Apple Computer,Inc.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; EXP(x) and EXP2(x) share the same exception code. To compute
; numerical results, express result as 2^K * ((2^frac - 1) + 1),
; and use EXPAPPROX to figure (2^frac - 1).
;
EXPTOP
BLANKS ON
STRING ASIS
SUBQ.B #1,D1 ; HAVE SUB #CLINF ALREADY
BEQ P1STUFF ; EXP(+-0) IS +1
BGT.S EXPNONZERO
TST.W D1
BMI P0STUFF ; EXP(-INF) IS +0
BRA RESULTDELIVERED ; ALREADY HAVE +INF
EXPNONZERO
BTST #BTLOGBASE2,D3 ; NONZERO IF EXP2X
BEQ.S EXPR
;
; 2^T is easy, for general T.
; Set cell W to integer part of T.
; Set T to fraction part of itself.
; Use root computation to evaluate 2^T - 1 with LOGAPPROX;
; add 1 to T, and scale by W.
;
EXP2R
BSR.S SPLIT2
BRA.S EXPROOT
;
; EXP(T) is just slightly more complicated than EXP2(T) above.
; Let T = K * LN(2) + F
; Then EXP(T) is 2^K + ((2^(F/LN(2)) - 1) + 1).
; So use EXP2ROOT with W set to K and T set to F/LN(2).
; Find F with REM modulo LN(2); then subtract from T and divide by LN(2)
; to get K.
;
EXPR
BSR SPLIT
BSR TESTOFLOW
BEQ.S EXPROOT
BSR FORCEINEXACT ; EITHER O/UFLOW
TST.W D1 ; OPERAND SIGN
BPL.S PINFSTUFF ; OFLOW TO +INF
BSR CLEAROFLOW
BSR FORCEUFLOW
BRA P0STUFF
;
; This is the root of V^X where V is 2 or E.
; Compute ((2^T - 1) + 1) * 2*W. EXPAPPROX gives the innermost
; expression. W is presumed to be an integer, possibly huge.
;
EXPROOT
BSR EXPAPPROX ; 2^T - 1
PEA FPK1 ; (2^T - 1) + 1
PEA (A4)
FADDX
MOVEA.L A4,A0 ; RESULT PTR
LEA STW(A6),A1 ; INTEGER PART
BSR SCALBXX
BRA RESULTDELIVERED
;ne 100
;
; Given general number in T, split into integer part in W
; and fraction in T, rounding.
;
SPLIT2
MOVEA.L A4,A0
LEA STW(A6),A1
BSR A0TOA1 ; COPY T
PEA (A1) ; CELL W
FRINTX ; INTEGER PART OF T, ROUNDED
BSR CLEARINEXACT ; DON'T RECORD ROUNDING ERROR
PEA (A1) ; INTEGER PART
PEA (A4) ; ALL OF NUMBER
FSUBX
RTS
;
; Split T for EXP(x) and EXP(x)-1.
; Let T = K * LN(2) + F. Want W=K and T=F/LN(2).
; Find F with REM modulo LN(2); then subtract from T and divide by LN(2)
; to get K.
;
SPLIT
MOVEA.L A4,A0 ; T POINTER
LEA STW(A6),A1 ; COPY T INTO CELL W
BSR A0TOA1
PEA FPKLOGE2 ; NEED 3 COPIES OF LN(2)
MOVE.L (SP),-(SP)
MOVE.L (SP),-(SP)
PEA (A4)
FREMX ; T REM LN(2) IN T
PEA (A4)
PEA (A1)
FSUBX ; T - (T REM LN(2)) IN W
PEA (A1)
FDIVX ; T - (T REM...) / LN(2)
PEA (A1)
FRINTX ; MAKE SURE IT'S AN INT
PEA (A4)
FDIVX ; (T REM LN(2)) / LN(2)
BRA CLEARINEXACT ; ...AND EXIT
;ne 100
;
; EXP(x)-1 and EXP2(x)-1 share the same exception code. Then both exploit
; EXPAPPROX for the root computation 2^frac - 1.
;
EXP1TOP
SUBQ.B #1,D1 ; SUBTRACTED #CLINF BEFORE
BGT.S EXP1FINITE ; FINITE, NONZERO
BEQ EXPEASY ; Y^+-0 - 1 IS +-0
TST.W D1 ; TEST SIGN OF INF
BMI M1STUFF ; Y^-INF - 1 IS -1
EXPEASY
BRA RESULTDELIVERED ; Y^+INF - 1 IS +INF
EXP1FINITE
;
; If the number is denormalized, have easy case whether EXP1 or EXP21.
; Have subtracted #CLZERO so far. Subtracting 1 more from D1.B leaves
; 0 if normalized, 1 if denormalized.
;
SUBQ.B #1,D1 ; 0-NORM 1-DENORM
BTST #BTLOGBASE2,D3 ; NONZERO IF EXP2X
BEQ.S EXP1R
;
; As above, for 2^T-1 split T into fraction part in T and integer
; in W, and go to root computation.
;
EXP21R
TST.B D1
BEQ.S EXP21RNORM
PEA FPKLOGE2 ; 2^T-1 IS T*LN(2) FOR TINY T
PEA (A4)
FMULX
EXP1OUT
BSR FORCEUFLOW
BSR FORCEINEXACT
BRA.S EXP1RDONE
EXP21RNORM
BSR SPLIT2 ; ???? WAS BSR.S
BRA.S EXP1ROOT
;
; For E^T-1, split T into K and F/LN(2), where T = K*LN(2) + F.
; If overflow, then force INF or -1...
;
EXP1R
TST.B D1
BNE.S EXP1OUT ; E^T-1 IS T, WITH UFLOW FOR NOW
BSR.S SPLIT
BSR TESTOFLOW
BEQ.S EXP1ROOT
BSR FORCEINEXACT ; EITHER O/UFLOW
TST.W D1 ; OPERAND SIGN
BPL PINFSTUFF ; OFLOW TO +INF
BSR CLEAROFLOW ; LEAVE INEXACT SET
BRA M1STUFF ; FORCE -1
;
; This is the root of V^X-1 where V is 2 or E.
; Compute (2^T - 1) for fraction T. Then if (integer) W is
; nonzero, finish off with (((2^T - 1) + 1) * 2^W) - 1.
;
EXP1ROOT
BSR EXPAPPROX ; 2^T - 1
PEA FPK0
PEA STW(A6)
FCMPX
FBEQS EXP1RDONE
PEA FPK1 ; (2^T - 1) + 1
PEA (A4)
FADDX
MOVEA.L A4,A0 ; RESULT PTR
LEA STW(A6),A1 ; INTEGER PART
BSR SCALBXX ; ((2^T - 1) + 1) * 2^W
PEA FPK1 ; FINALLY, SUBTRACT 1
PEA (A4)
FSUBX
;
; Reset underflow, which cannot occur if W (as in 2^W) is nonzero.
;
BSR CLEARUFLOW
EXP1RDONE
BRA RESULTDELIVERED
; ne 100
;
; Compute approximate (2^T - 1) for T in (A4).
; Uses cells X and Y, regs D0-D2/A0-A2.
; Expression has the form
; ( 2 * T * P(T*T) ) / ( Q(T*T) - (T * P(T*T)) )
; One special case: if T is 0, just return 0, and don't set
; the inexact flag.
;
EXPAPPROX
PEA FPK0 ; COMPARE INPUT WITH 0
PEA (A4)
FCMPX
FBNES EXPHARD
RTS ; EASY IF 0
EXPHARD
LEA STY(A6),A1 ; CELL Y
MOVEA.L A4,A0
BSR A0TOA1 ; COPY INPUT T
PEA (A1)
PEA (A1)
FMULX ; T^2 INTO CELL Y
LEA STX(A6),A0 ; PLACE P(Y) INTO X
LEA EXP21P,A1 ; EXPONENT P COEFS
LEA STY(A6),A2 ; VAR IS T^2 IN Y
BSR POLYEVAL
PEA STX(A6)
PEA (A4)
FMULX ; T * P(T^2) IN RESULT
LEA STX(A6),A0 ; PLACE Q(Y) INTO X
LEA EXP21Q,A1
LEA STY(A6),A2
BSR POLYEVAL
PEA (A4)
PEA STX(A6)
FSUBX ; Q(Y) - T*P(Y)
PEA FPK2 ; 2.0
PEA (A4) ; Y*P(Y)
FMULX
PEA STX(A6)
PEA (A4)
FDIVX
;
; Finally, set inexact and clear any underflow messages.
;
BSR FORCEINEXACT
BRA CLEARUFLOW ; AND EXIT...
;
;
;ne 100
;
; Raise extended dst to integer src power.
;
XPWRITOP
MOVEA.L D4,A0 ; SRC PTR
MOVE.W (A0),D2 ; I OVERWRITES BOGUS CLASS
BEQ P1STUFF ; ANY^0 IS 1
SUBQ.B #1,D1 ; #CLINF ALREADY SUBTRACTED
BGT.S FINPWRI ; GT MEANS NONZERO^I
;
; Get here if INF^I or 0^I. If I is negative, must reciprocate
; (signaling div by 0 in case of 0^-N). If I is even, must clear
; sign.
;
ASR.W #1,D2 ; GET ODD BIT OF I INTO C,X
BCS.S @1 ; CARRY SET IF ODD
BCLR #7,(A4) ; ABS OF DST (LEAVES X BIT ALONE)
@1
ADDX.W D2,D2 ; REGAIN ORIGINAL VALUE I
BPL RESULTDELIVERED ; (INF OR ZERO)^POS ???? WAS BPL.S
TST.B D1 ; INF OR ZERO?
BPL.S ZPWRNEG
TST.B (A4)
BPL P0STUFF ; +INF^NEG IS +0
BRA M0STUFF ; -INF^NEG IS -0
ZPWRNEG
TST.B (A4)
BPL DIVP0STUFF ; +0^NEG IS +INF
BRA DIVM0STUFF ; -0^NEG IS -INF
;
; NONZERO^I is broken into two cases:
; If I is small, then just multiply out. Note that sign perseveres if
; I is odd.
; Otherwise, convert I to extended and evaluate with exponentials.
;
FINPWRI
MOVE.W D2,D0 ; ABS(D2) --> D0
BPL.S @1
NEG.W D0
@1
CMPI.W #SMALLEXP,D0
BHI.S XPWRBIG ; USE LOG AND EXP
BSR.S XPWRK ; MULTIPLY OUT
BRA RESULTDELIVERED
;
; Integer power is too large to multiply out, so convert to extended
; and use general x^y routine. Make copy of integer in cell W.
;
XPWRBIG
MOVE.W (A4),-(SP) ; SAVE SIGN OF INPUT
BCLR #7,(A4) ; ABS(DST) IN T
MOVE.L D4,-(SP) ; ADRS OF INT
PEA STW(A6) ; ADRS OF CELL W
MOVE.L (SP),D4 ; PRETEND IT'S SRC
FI2X ; CONVERT INT TO EXT IN W
BSR XPWRY ; COMPUTE (A4)^(D4)
;
; Note that XPWRY must preserve the integer value in D2.
;
MOVE.W (SP)+,D0 ; RETRIEVE SIGN OF INPUT
BPL.S @3 ; IF POSITIVE, DON'T CARE
ASR.W #1,D2 ; LOW BIT TO CARRY
BCC.S @3
BSET #7,(A4) ; NEGATE OUTPUT
@3
BRA RESULTDELIVERED
;ne 100
;
; Raise T to the power D2, leaving the result in (A4). D0 = abs(D2).
; If D2 is negative, evaluate the positive power and reciprocate at
; the end. Know D2 is nonzero. Sign of (A4) is propagated correctly.
; Trash A0, A1, D0, and cells I, W and X.
;
XPWRK
MOVEA.L A4,A0 ; COPY T
LEA STX(A6),A1 ; INTO CELL W
BSR A0TOA1
BSR.S XPWRKLOOP
;
; Now that loop is finished, produce 1 * T^|I| or 1 / T^|I|, depending
; on sign of I. If overflow or underflow has occurred and I is negative,
; redo computation with pre-reciprocated T.
;
TST.W D2 ; IS I NEGATIVE?
BMI.S XPWRKDIV
XPWRKSTORE
MOVEA.L A1,A0 ; T^|I|
MOVEA.L A4,A1 ; RESULT ADRS
BRA A0TOA1 ; T <-- T^|I|, AND EXIT
XPWRKDIV
LEA FPK1,A0
LEA (A4),A1 ; LOSE ADRS OF CELL X FROM LOOP
BSR A0TOA1 ; T <-- 1
BSR TESTUFLOW
BNE.S XPWRKCLEAR
BSR TESTOFLOW
BNE.S XPWRKCLEAR
PEA STW(A6) ; W = T^|I| FROM XPWRKLOOP
PEA (A4) ; RES=1
FDIVX
RTS
XPWRKCLEAR
BSR CLEAROFLOW
BSR CLEARUFLOW
PEA STX(A6) ; SAVED INPUT T ATOP T^|I|
PEA (A4)
FDIVX
MOVE.W D2,D0 ; GET K AGAIN
BPL.S @11
NEG.W D0
@11
BSR.S XPWRKLOOP
BRA.S XPWRKSTORE
;
; Input: D0 = positive integer K
; A4 = X
; Output: A1 = W = X^K
; Uses: cell W, A0
; Trashes: D0
XPWRKLOOP
LEA FPK1,A0
LEA STW(A6),A1
BSR A0TOA1 ; SEED RESULT WITH 1.0
BRA.S XKLPENTRY
XKLPTOP
PEA (A4)
PEA (A4)
FMULX ; T^(2^(I+1))
XKLPENTRY
LSR.W #1,D0 ; GET LOW BIT INTO C
BCC.S XKLPSKIP
PEA (A4) ; T^(2^I)
PEA (A1) ; RESULT SO FAR
FMULX
XKLPSKIP
TST.W D0 ; ANY MORE BITS?
BNE.S XKLPTOP
RTS
;ne 100
;
; Simple routine to compute (A4)^(D4) into (A4).
; Know that (A4) is positive. Know that the FMULX will never
; encounter 0 * INF, so extreme cases, like INF^3, will be handled
; correctly. Fixed to use temp X while computing, in case sources and
; dest are the same.
;
XPWRY
MOVEA.L A4,A0 ; COPY DST ARG
LEA STX(A6),A1
BSR A0TOA1 ; CELL X <-- INPUT X
PEA (A1) ; X = INPUT
MOVE.W #FOLOG2X,-(SP)
IF FPFORMAC+FPFORDEBUG THEN
BSR ELEMS68K ; LOG2((A1))
ENDIF
IF FPFORLISA THEN
BSR elems68k
ENDIF
MOVE.L D4,-(SP)
PEA (A1)
FMULX ; (D4) * LOG2((A1))
PEA (A1)
MOVE.W #FOEXP2X,-(SP)
IF FPFORMAC+FPFORDEBUG THEN
BSR ELEMS68K ; (A1) ^ (D4)
ENDIF
IF FPFORLISA THEN
BSR elems68k
ENDIF
MOVEA.L A1,A0
MOVEA.L A4,A1
BRA A0TOA1
;ne 100
;
; General function x^y is beset by exceptional cases.
;
XPWRYTOP
TST.W D1 ; IS X=DST NEG?
BMI.S NEGPWRY
BSR XPWRYCOM
BRA RESULTDELIVERED
;
; Signal X^Y error and stuff a NAN. Special entry accommodates branches from
; within subroutines, in which case a return address must be popped.
;
XPWRY9ERR
ADDQ.L #4,SP ; KILL RETURN ADDRESS
XPWRYERR
BSR CLEARINEXACT ; SIGNAL INVALID ONLY
MOVEQ #NANPOWER,D0
BRA ERRORNAN
;
; If X is negative, check that Y is integral; otherwise error.
; Save parity of Y to fix sign at end of XPWRYCOM.
;
NEGPWRY
TST.B D2 ; Y CLASS - INF
BEQ.S XPWRYERR
MOVEA.L D4,A0 ; Y=SRC
LEA STW(A6),A1 ; CELL W TEMP
BSR A0TOA1
PEA (A1) ; Y=SRC
FRINTX ; ROUND TO INTEGER
BSR TESTINEXACT
BNE XPWRYERR
;
; NEG ^ INT requires that parity of Y be saved in cell J for later
; setting of sign. To find low bit of floating integer, divide by
; 2 and test inexact.
;
PEA FPK2 ; 2.0
PEA (A1) ; CELL W
FDIVX ; W/2
PEA (A1)
FRINTX ; STRIP OFF ODD BIT OF W
PEA STJ(A6)
FGETENV ; SAVE FLAGS
BSR CLEARINEXACT
BCLR #7,(A4) ; ABS((A4))
BSR XPWRYCOM ; ABS((A4))^(D4)
;
; Fix sign of power, according to parity of Y. The parity is stored in
; the inexact flag, saved in cell J. It's in the high byte so just to
; a bit test.
;
BTST #FBINEXACT,STJ(A6)
BEQ.S @1
BCHG #7,(A4) ; NEGATE IF ODD (INEXACT)
@1
BRA RESULTDELIVERED
;ne 100
;
; Common routine to raise (A4) to (D4) power.
; Know (A4) >= 0 and (D4) is not a NAN.
; Have class codes, less CLINF, in D1 and D2, respectively.
; Can run through 2 ^ Y*LOG2(X) code so long as won't multiply
; INF and 0 to compute exponent. As a minor detail, if Y is 0 or INF,
; clear any inexact that may have been set by LOG2(X).
;
; Since this is called as a subroutine, exits to XPWRYERR must have a special
; pop for the return address.
;
XPWRYCOM
SUBQ.B #1,D1 ; CLINF ALREADY SUBTRACTED
BNE.S NONPWRY
;
; 0 ^ some
;
SUBQ.B #1,D2 ; CLINF ALREADY SUBTRACTED
BEQ XPWRY9ERR ; 0^0, 0^INF ERRORS, WITH RTS POP
TST.W D2 ; SIGN OF Y
BPL.S @1
;
; 0 ^ nonzero
;
BSR FORCEDIVZER ; SIGNAL DIV BY ZERO
LEA FPKINF,A0
BRA.S @2
@1
LEA FPK0,A0
@2
MOVEA.L A4,A1 ; RESULT PTR
BRA A0TOA1 ; STUFF RESULT AND EXIT
;
; nonzero ^ some
;
NONPWRY
BPL.S FINPWRY ; EXIT IF X FINITE
;
; inf ^ some
;
SUBQ.B #1,D2 ; CLINF ALREADY SUBTRACTED
BNE.S XPWRYOK
BRA XPWRY9ERR ; INF^O IS AN ERROR
;
; finite ^ some
;
FINPWRY
SUBQ.B #1,D2
BPL.S XPWRYOK ; FIN ^ FIN IS OK
;
; finite ^ inf has the special case 1^INF which is an error.
;
PEA FPK1
PEA (A4)
FCMPX
FBEQL XPWRY9ERR ; <1.1>
;
; Finally, compute finite^reasonable and return.
; Two cases: if exponent is a small integer, then just multiply;
; else use log and exp. To check for an integer, try converting to
; 16 bits. Overflow is Invalid, rounding error is Inexact.
; Must reset Invalid, but if Inexact the result will be anyway.
; Save D2=YClass in D6 across possible call to XPWRK.
;
XPWRYOK
MOVE.W D2,D6 ; COPY OF Y'S CLASS LESS CLNORM
MOVE.L D4,-(SP) ; EXPONENT ADDRESS
PEA STI(A6) ; INTEGER CELL I
FX2I ; CONVERT TO INTEGER
BSR TESTINVALID ; X2I OFLOW IS INVALID
SNE D7
BSR CLEARINVALID ; CLEAR UNDESERVED ERROR
BSR TESTINEXACT ; MAY HAVE JUST ROUNDED OFF
SNE D1
OR.B D1,D7 ; EITHER ERROR?
BNE.S XPWRYHARD
MOVE.W STI(A6),D2 ; GET INTEGER TO REG.
MOVE.W D2,D0
BPL.S @1
NEG.W D0
@1
CMPI.W #SMALLEXP,D0
BLE XPWRK ; DO IT AS INTEGER AND EXIT
XPWRYHARD
BSR CLEARINEXACT
BSR XPWRY
TST.B D6 ; CHECK FOR Y 0 OR INF
BMI CLEARINEXACT ; AND RETURN FROM THERE
RTS
;ne 100
;
; Compute dst <-- (1 + src2)^src r = src2 n = src
; Watch for special cases:
; src2 < -1 is invalid
; else src = 0 yields 1
; else src2 = 0 and src = INF is invalid
; else src = INF yields 0 or INF according to src2
; else src2 = -1 yields 0, 1, or INF according to src
; else actually compute (1 + r)^n !!
;
COMPOUNDTOP
PEA FPKM1 ; -1
MOVE.L D5,-(SP) ; SRC2
FCMPX
FBULTL ERRFINAN ; UNORDERED OR LESS THAN -1 <1.1>
FBGTL CMPGTM1 ; <1.1>
;
; Get here if SRC2 is -1. Check SRC (D2) for 0 or nonzero.
;
SUBQ.B #1,D2 ; CLINF ALREADY SUBTRACTED
BNE.S CMPM1N
CMPTOZERO
BRA P1STUFF ; (1 + SOME)^0 IS +1
CMPM1N
MOVEA.L D4,A0 ; CHECK SIGN OF SRC
TST.B (A0)
BMI DIVP0STUFF ; (1 - 1)^NEG IS +INF
CMPZERO
BRA P0STUFF ; (1 - 1)^POS IS +0
;
; Get here if SRC2 (r) is > -1.
;
CMPGTM1
SUBQ.B #1,D2 ; CLINF ALREADY SUBTRACTED
BEQ.S CMPTOZERO ; (1 + SOME)^0 IS +1
BGT.S CMPTOFIN ; GO DO (1 + SOME)^FINITE
;
; Get here if (1 + SOME)^INF. Check for 1^INF, an error, else have
; INF or 0 according to SRC and SRC2.
;
SUBQ.B #1,D1 ; CLINF ALREADY SUBTRACTED
BEQ.S ERRFINAN
EOR.W D2,D1 ; GET XOR OF SRC, SRC2 SIGNS
BMI.S CMPZERO ; SIGNS DIFFER --> ZERO
BRA PINFSTUFF ; SIGNS SAME --> +INF
;
; Finally, compute (1 + reasonable)^finite with the usual...
;
CMPTOFIN
LEA STX(A6),A1 ; CELL X
MOVEA.L D5,A0 ; R = SRC2
BSR A0TOA1 ; COPY R TO X
MOVE (a1),d0 ; D0 gets sign/exponent of R.
BCLR #15,d0 ; Clear sign.
CMP #$3f7f,d0 ; Exponent -64.
BLT.S cmpbasee ; Natural log/exp for tiny
; exponents.
; COMPOUND BASE 2.
PEA (A1)
MOVE.W #FOLOG21X,-(SP)
IF FPFORMAC+FPFORDEBUG THEN
BSR ELEMS68K ; LOG2(1 + (A1))
ENDIF
IF FPFORLISA THEN
BSR elems68k
ENDIF
MOVE.L D4,-(SP) ; N = SRC ADDRESS
PEA (A1) ; LOG2(1+R)
FMULX ; N * LOG2(1+R)
PEA (A1)
MOVE.W #FOEXP2X,-(SP)
BRA.S cmpresult
cmpbasee ; COMPOUND BASE E.
MOVE.L D4,-(SP) ; N = SRC ADDRESS
PEA (A1) ; LOG2(1+R)
FMULX ; N * LOG2(1+R)
PEA (A1)
MOVE.W #FOEXPX,-(SP)
cmpresult
BSR clearuflow ; Irrelevant!
IF FPFORMAC+FPFORDEBUG THEN
BSR ELEMS68K ; EXP2 OR EXPE((A1))
ENDIF
IF FPFORLISA THEN
BSR elems68k
ENDIF
MOVEA.L A1,A0 ; CELL X
MOVEA.L A4,A1
BSR A0TOA1
BRA RESULTDELIVERED
;
; Routine to stuff the financial NAN and go.
;
ERRFINAN
MOVEQ #NANFINAN,D0
BRA ERRORNAN
;ne 100
;
; Compute annuity factor:
; ( 1 - (1 + r)^-n ) / r
; for r = SRC2 and n = SRC.
; Multitudinous special cases handled piece by piece.
;
ANNUITYTOP
PEA FPKM1 ; -1
MOVE.L D5,-(SP) ; R = SRC2
FCMPX ; R VS. -1
FBULTL ERRFINAN ; R < -1 IS AN ERROR <1.1>
FBNES ANNOK
;
; Get here if have (1 - 1)^ANY. Just check n = SRC.
;
SUBQ.B #1,D2 ; CLINF ALREADY SUBTRACTED
BEQ.S ANN0 ; ANN(-1, 0) IS +0
TST.W D2 ; CHECK SIGN OF NONZERO N
BPL DIVP0STUFF
ANNM1
BRA M1STUFF
;
; Know that R=SRC2 exceeds -1. Check first for N=SRC=0.
;
ANNOK
SUBQ.B #1,D2 ; CLINF ALREADY SUBTRACTED
BNE.S ANNXN
ANN0
BRA P0STUFF
;
; Now check for unusual, 0 or INF, R=SRC2.
;
ANNXN
SUBQ.B #1,D1 ; CLINF ALREADY SUBTRACTED
BGT.S ANNROK
BLT.S ANNRINF
;
; R=SRC2=0. Limit gives result of N=SRC.
;
ANNSRC
MOVEA.L A4,A1 ; DST PTR
MOVEA.L D4,A0 ; SRC=N PTR
BSR A0TOA1
BRA RESULTDELIVERED
;
; R=SRC2=+INF. If N=SRC is nonnegative have 0, else test N=SRC versus -1.
;
ANNRINF
TST.W D2 ; IT'S NONZERO, JUST TEST SIGN
BPL.S ANN0 ; FORCE +0
PEA FPKM1 ; -1
MOVE.L D4,-(SP) ; SRC
FCMPX
FBEQL ANNM1 ; N = -1, STUFF -1 <1.1>
FBGTL M0STUFF ; <1.1>
BRA MINFSTUFF
;
; Way down here, we have R=SRC2 a normal or denormal number.
; Last check is for N=SRC=INF.
;
ANNROK
TST.B D2 ; (CLINF + 1) ALREADY SUB
BPL.S ANNDOIT
EOR.W D2,D1 ; DO R AND N SIGNS MATCH
BMI ANNSRC
MOVEA.L D5,A0 ; ADDRESS OF 4=SRC2, DIVISOR
LEA STX(A6),A1
BSR A0TOA1
PEA (A1) ; FOR DIVIDE BELOW
MOVEA.L A4,A1
LEA FPK1,A0
BSR A0TOA1 ; DST <-- +1
PEA (A1) ; ADDRESS OF DST
FDIVX ; RESULT IS 1/R
BRA RESULTDELIVERED
;
; Finally, compute ( 1 - (1 + r)^-n ) / r.
; Distinguish two cases:
; r normal:
; log2(1 + r)
; n * log2(1 + r)
; -n * log2(1 + r)
; 2^(...) - 1
; 1 - 2^(...)
; (1 - 2^(...)) / r
;
; r denormal:
; log(1 + r) is about r
; n * r
; -n * r
; e^(...) - 1
; 1 - e^(...)
; (1 - e^(...)) / r
; Use D1.B, from which CLZERO has already been subtracted.
; Subtracting one more (CLNORMAL) leaves D1.B 0 for normal, 1 for denormal.
;
ANNDOIT
LEA STX(A6),A1 ; CELL X FOR TEMP
MOVEA.L D5,A0 ; SRC2 PTR
BSR A0TOA1
MOVE (a1),d0 ; D0 gets sign/exponent of R.
BCLR #15,d0 ; Clear sign.
CMP #$3f7f,d0 ; Exponent -64.
BLT.S annbasee ; Natural log/exp for tiny
; exponents.
; Annuity base two.
PEA (A1) ; X
MOVE.W #FOLOG21X,-(SP)
IF FPFORMAC+FPFORDEBUG THEN
BSR ELEMS68K ; LOG2(1 + R)
ENDIF
IF FPFORLISA THEN
BSR elems68k
ENDIF
MOVE.L D4,-(SP) ; N=SRC PTR
PEA (A1)
FMULX ; N * LOG2(1 + R)
BCHG #7,(A1) ; -(N * LOG2(1 + R))
CMP #$4007,(a1)
BLT.S @1 ; Branch if exp(-n*log(1+r)) not huge.
MOVE.L d5,a0
CMP #$407f,(a0)
BGE.S annspecial ; Branch if r huge.
@1
PEA (A1)
MOVE.W #FOEXP21X,-(SP)
BRA.S annresult
annbasee ; Annuity base e.
MOVE.L D4,-(SP) ; N=SRC PTR
PEA (A1)
FMULX ; N * LOG2(1 + R)
BCHG #7,(A1) ; -(N * LOG2(1 + R))
PEA (A1)
MOVE.W #FOEXP1X,-(SP)
annresult
IF FPFORMAC+FPFORDEBUG THEN
BSR ELEMS68K ; (1 + R)^-N - 1
ENDIF
IF FPFORLISA THEN
BSR elems68k
ENDIF
BCHG #7,(A1) ; 1 - (1 + R)^-N
MOVE.L D5,-(SP) ; R=SRC2
PEA (A1)
FDIVX ; ( 1 - (1 + R)^-N ) / R
annclear
BSR CLEARUFLOW
BSR CLEAROFLOW
MOVEA.L A1,A0 ; SET UP REGS FOR CLASS
BSR CLASSIFY
SUBQ.B #FCINF,D0 ; IS IT INF?
BNE.S @1
BSR FORCEOFLOW
BRA.S ANNDOUT
@1
SUBQ.B #2,D0 ; IS IT NORMAL?
BEQ.S ANNDOUT
BSR FORCEUFLOW
ANNDOUT
LEA STX(A6),A0 ; STORE TO DESTINATION
MOVEA.L A4,A1
BSR A0TOA1
BRA RESULTDELIVERED
annspecial
MOVEA.L D5,A0 ; SRC2 PTR
BSR A0TOA1
PEA (A1) ; X := r
MOVE.W #FOLOG2X,-(SP)
IF FPFORMAC+FPFORDEBUG THEN
BSR ELEMS68K ; x := LOG2( R)
ENDIF
IF FPFORLISA THEN
BSR elems68k
ENDIF
LEA sty(a6),a1
MOVE.L d4,a0
BSR a0toa1 ; Y gets N.
PEA fpk1
PEA (a1)
FADDX ; Y gets N+1.
PEA (A1)
LEA stx(a6),a1 ; A1 gets X again.
PEA (a1)
FMULX ; x gets (n+1) * LOG2( R)
BCHG #7,(A1) ; -(N+1) * LOG2( R)
PEA (A1)
MOVE.W #FOEXP2X,-(SP)
IF FPFORMAC+FPFORDEBUG THEN
BSR ELEMS68K ; ( R)^-(n+1)
ENDIF
IF FPFORLISA THEN
BSR elems68k
ENDIF
BCHG #7,(A1) ; - (R)^-(N+1)
BRA.S annclear
;ne 100