Elliot Nunn 4325cdcc78 Bring in CubeE sources
Resource forks are included only for .rsrc files. These are DeRezzed into their data fork. 'ckid' resources, from the Projector VCS, are not included.

The Tools directory, containing mostly junk, is also excluded.
2017-12-26 09:52:23 +08:00

531 lines
16 KiB
Plaintext

;
; File: DecBin.a
;
; Contains: Packed Decimal to Binary conversion code
;
; Originally Written by: Motorola Inc.
; Adapted to Apple/MPW: Jon Okada
;
; Copyright: © 1990, 1991 by Apple Computer, Inc., all rights reserved.
;
; This file is used in these builds: Mac32
;
; Change History (most recent first):
;
; <2> 3/30/91 BG Rolling in Jon Okada's latest changes.
; <1> 12/14/90 BG First checked into TERROR/BBS.
; decbin.a
; Based upon Motorola file 'decbin.sa'
; CHANGE LOG:
; 02 Jan 91 JPO Removed constants FZERO, FONE, and FTEN; embedded
; constant values in instructions.
;
*
* decbin.sa 3.1 12/10/90
*
* Description: Converts normalized packed bcd value pointed to by
* register A6 to extended-precision value in FP0.
*
* Input: Normalized packed bcd value in ETEMP(a6).
*
* Output: Exact floating-point representation of the packed bcd value.
*
* Saves and Modifies: D2-D5
*
* Speed: The program decbin takes ??? cycles to execute.
*
* Object Size:
*
* External Reference(s): None.
*
* Algorithm:
* Expected is a normal bcd (i.e. non-exceptional; all inf, zero,
* and NaN operands are dispatched without entering this routine)
* value in 68881/882 format at location ETEMP(A6).
*
* A1. Convert the bcd exponent to binary by successive adds and muls.
* Set the sign according to SE. Subtract 16 to compensate
* for the mantissa which is to be interpreted as 17 integer
* digits, rather than 1 integer and 16 fraction digits.
* Note: this operation can never overflow.
*
* A2. Convert the bcd mantissa to binary by successive
* adds and muls in FP0. Set the sign according to SM.
* The mantissa digits will be converted with the decimal point
* assumed following the least-significant digit.
* Note: this operation can never overflow.
*
* A3. Count the number of leading/trailing zeros in the
* bcd string. If SE is positive, count the leading zeros;
* if negative, count the trailing zeros. Set the adjusted
* exponent equal to the exponent from A1 and the zero count
* added if SM = 1 and subtracted if SM = 0. Scale the
* mantissa the equivalent of forcing in the bcd value:
*
* SM = 0 a non-zero digit in the integer position
* SM = 1 a non-zero digit in Mant0, lsd of the fraction
*
* this will insure that any value, regardless of its
* representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted
* consistently.
*
* A4. Calculate the factor 10^exp in FP1 using a table of
* 10^(2^n) values. To reduce the error in forming factors
* greater than 10^27, a directed rounding scheme is used with
* tables rounded to RN, RM, and RP, according to the table
* in the comments of the pwrten section.
*
* A5. Form the final binary number by scaling the mantissa by
* the exponent factor. This is done by multiplying the
* mantissa in FP0 by the factor in FP1 if the adjusted
* exponent sign is positive, and dividing FP0 by FP1 if
* it is negative.
*
* Clean up and return. Check if the final mul or div resulted
* in an inex2 exception. If so, set inex1 in the fpsr and
* check if the inex1 exception is enabled. If so, set d7 upper
* word to $0100. This will signal unimp.sa that an enabled inex1
* exception occured. Unimp will fix the stack.
*
* Copyright (C) Motorola, Inc. 1990
* All Rights Reserved
*
* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
* The copyright notice above does not evidence any
* actual or intended publication of such source code.
* DECBIN IDNT 2,1 Motorola 040 Floating Point Software Package
*
* PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded
* to nearest, minus, and plus, respectively. The tables include
* 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding
* is required until the power is greater than 27, however, all
* tables include the first 5 for ease of indexing.
*
RTABLE dc.b 0,0,0,0
dc.b 2,3,2,3
dc.b 2,3,3,2
dc.b 3,2,2,3
*
FNIBS equ 7
FSTRT equ 0
*
ESTRT equ 4
EDIGITS equ 2
*
* Constants in single precision - removed <1/2/91, JPO>
;FZERO dc.l $00000000
;FONE dc.l $3F800000
;FTEN dc.l $41200000
TEN equ 10
*
decbin:
fmove.l #0,FPCR ;clr real fpcr
movem.l d2-d5,-(a7)
*
* Calculate exponent:
* 1. Copy bcd value in memory for use as a working copy.
* 2. Calculate absolute value of exponent in d1 by mul and add.
* 3. Correct for exponent sign.
* 4. Subtract 16 to compensate for interpreting the mant as all integer digits.
* (i.e., all digits assumed left of the decimal point.)
*
* Register usage:
*
* calc_e:
* (*) d0: temp digit storage
* (*) d1: accumulator for binary exponent
* (*) d2: digit count
* (*) d3: offset pointer
* ( ) d4: first word of bcd
* ( ) a0: pointer to working bcd value
* ( ) a6: pointer to original bcd value
* (*) FP_SCR1: working copy of original bcd value
* (*) L_SCR1: copy of original exponent word
*
;calc_e: ; label not referenced <1/2/91, JPO>
move.l #EDIGITS,d2 ;# of nibbles (digits) in fraction part
moveq.l #ESTRT,d3 ;counter to pick up digits
lea.l FP_SCR1(a6),a0 ;load tmp bcd storage address
move.l ETEMP(a6),(a0) ;save input bcd value
move.l ETEMP_HI(a6),4(a0) ;save words 2 and 3
move.l ETEMP_LO(a6),8(a0) ;and work with these
move.l (a0),d4 ;get first word of bcd
clr.l d1 ;zero d1 for accumulator
e_gd:
mulu.l #TEN,d1 ;mul partial product by one digit place
bfextu d4{d3:4},d0 ;get the digit and zero extend into d0
add.l d0,d1 ;d1 = d1 + d0
addq.b #4,d3 ;advance d3 to the next digit
dbf.w d2,e_gd ;if we have used all 3 digits, exit loop
btst #30,d4 ;get SE
beq.b e_pos ;don't negate if pos
neg.l d1 ;negate before subtracting
e_pos:
sub.l #16,d1 ;sub to compensate for shift of mant
bge.b e_save ;if still pos, do not neg
neg.l d1 ;now negative, make pos and set SE
or.l #$40000000,d4 ;set SE in d4,
or.l #$40000000,(a0) ;and in working bcd
e_save:
move.l d1,L_SCR1(a6) ;save exp in memory
*
*
* Calculate mantissa:
* 1. Calculate absolute value of mantissa in fp0 by mul and add.
* 2. Correct for mantissa sign.
* (i.e., all digits assumed left of the decimal point.)
*
* Register usage:
*
* calc_m:
* (*) d0: temp digit storage
* (*) d1: lword counter
* (*) d2: digit count
* (*) d3: offset pointer
* ( ) d4: words 2 and 3 of bcd
* ( ) a0: pointer to working bcd value
* ( ) a6: pointer to original bcd value
* (*) fp0: mantissa accumulator
* ( ) FP_SCR1: working copy of original bcd value
* ( ) L_SCR1: copy of original exponent word
*
;calc_m: ; label not referenced <1/2/91, JPO>
moveq.l #1,d1 ;word counter, init to 1
; fmove.s FZERO,fp0 ;accumulator <1/2/91, JPO>
fmove.b #0,fp0 ; <1/2/91, JPO>
*
*
* Since the packed number has a long word between the first & second parts,
* get the integer digit then skip down & get the rest of the
* mantissa. We will unroll the loop once.
*
bfextu (a0){28:4},d0 ;integer part is ls digit in long word
fadd.b d0,fp0 ;add digit to sum in fp0
*
*
* Get the rest of the mantissa.
*
loadlw:
move.l (a0,d1.L*4),d4 ;load mantissa lonqword into d4
moveq.l #FSTRT,d3 ;counter to pick up digits
moveq.l #FNIBS,d2 ;reset number of digits per a0 ptr
md2b:
; fmul.s FTEN,fp0 ;fp0 = fp0 * 10 <1/2/91, JPO>
fmul.b #TEN,fp0 ; <1/2/91, JPO>
bfextu d4{d3:4},d0 ;get the digit and zero extend
fadd.b d0,fp0 ;fp0 = fp0 + digit
*
*
* If all the digits (8) in that long word have been converted (d2=0),
* then inc d1 (=2) to point to the next long word and reset d3 to 0
* to initialize the digit offset, and set d2 to 7 for the digit count;
* else continue with this long word.
*
addq.b #4,d3 ;advance d3 to the next digit
dbf.w d2,md2b ;check for last digit in this lw
;nextlw: ; label not referenced <1/2/91, JPO>
addq.l #1,d1 ;inc lw pointer in mantissa
cmp.l #2,d1 ;test for last lw
ble.b loadlw ;if not, get last one - short branch <1/2/91, JPO>
*
* Check the sign of the mant and make the value in fp0 the same sign.
*
;m_sign: ; label not referenced <1/2/91, JPO>
btst #31,(a0) ;test sign of the mantissa
beq.b ap_st_z ;if clear, go to append/strip zeros
fneg.x fp0 ;if set, negate fp0
*
* Append/strip zeros:
*
* For adjusted exponents which have an absolute value greater than 27*,
* this routine calculates the amount needed to normalize the mantissa
* for the adjusted exponent. That number is subtracted from the exp
* if the exp was positive, and added if it was negative. The purpose
* of this is to reduce the value of the exponent and the possibility
* of error in calculation of pwrten.
*
* 1. Branch on the sign of the adjusted exponent.
* 2p.(positive exp)
* 2. Check M16 and the digits in lwords 2 and 3 in decending order.
* 3. Add one for each zero encountered until a non-zero digit.
* 4. Subtract the count from the exp.
* 5. Check if the exp has crossed zero in #3 above; make the exp abs
* and set SE.
* 6. Multiply the mantissa by 10**count.
* 2n.(negative exp)
* 2. Check the digits in lwords 3 and 2 in decending order.
* 3. Add one for each zero encountered until a non-zero digit.
* 4. Add the count to the exp.
* 5. Check if the exp has crossed zero in #3 above; clear SE.
* 6. Divide the mantissa by 10**count.
*
* *Why 27? If the adjusted exponent is within -28 < expA < 28, than
* any adjustment due to append/strip zeros will drive the resultane
* exponent towards zero. Since all pwrten constants with a power
* of 27 or less are exact, there is no need to use this routine to
* attempt to lessen the resultant exponent.
*
* Register usage:
*
* ap_st_z:
* (*) d0: temp digit storage
* (*) d1: zero count
* (*) d2: digit count
* (*) d3: offset pointer
* ( ) d4: first word of bcd
* (*) d5: lword counter
* ( ) a0: pointer to working bcd value
* ( ) FP_SCR1: working copy of original bcd value
* ( ) L_SCR1: copy of original exponent word
*
*
* First check the absolute value of the exponent to see if this
* routine is necessary. If so, then check the sign of the exponent
* and do append (+) or strip (-) zeros accordingly.
* This section handles a positive adjusted exponent.
*
ap_st_z:
move.l L_SCR1(a6),d1 ;load expA for range test
cmp.l #27,d1 ;test is with 27
ble.w pwrten ;if abs(expA) <28, skip ap/st zeros
btst #30,(a0) ;check sign of exp
bne.b ap_st_n ;if neg, go to neg side
clr.l d1 ;zero count reg
move.l (a0),d4 ;load lword 1 to d4
bfextu d4{28:4},d0 ;get M16 in d0
bne.b ap_p_fx ;if M16 is non-zero, go fix exp
addq.l #1,d1 ;inc zero count
moveq.l #1,d5 ;init lword counter
move.l (a0,d5.L*4),d4 ;get lword 2 to d4
bne.b ap_p_cl ;if lw 2 is zero, skip it
addq.l #8,d1 ;and inc count by 8
addq.l #1,d5 ;inc lword counter
move.l (a0,d5.L*4),d4 ;get lword 3 to d4
ap_p_cl:
clr.l d3 ;init offset reg
moveq.l #7,d2 ;init digit counter
ap_p_gd:
bfextu d4{d3:4},d0 ;get digit
bne.b ap_p_fx ;if non-zero, go to fix exp
addq.l #4,d3 ;point to next digit
addq.l #1,d1 ;inc digit counter
dbf.w d2,ap_p_gd ;get next digit
ap_p_fx:
move.l d1,d0 ;copy counter to d2
move.l L_SCR1(a6),d1 ;get adjusted exp from memory
sub.l d0,d1 ;subtract count from exp
bge.b ap_p_fm ;if still pos, go to pwrten
neg.l d1 ;now its neg; get abs
move.l (a0),d4 ;load lword 1 to d4
or.l #$40000000,d4 ; and set SE in d4
or.l #$40000000,(a0) ; and in memory
*
* Calculate the mantissa multiplier to compensate for the striping of
* zeros from the mantissa.
*
ap_p_fm:
; move.l #PTENRN,a1 ;get address of power-of-ten table - deleted <1/2/91, JPO>
lea PTENRN,a1 ; <1/2/91, JPO>
clr.l d3 ;init table index
; fmove.s FONE,fp1 ;init fp1 to 1 <1/2/91, JPO>
fmove.b #1,fp1 ; <1/2/91, JPO>
moveq.l #3,d2 ;init d2 to count bits in counter
ap_p_el:
asr.l #1,d0 ;shift lsb into carry
bcc.b ap_p_en ;if 1, mul fp1 by pwrten factor
fmul.x (a1,d3),fp1 ;mul by 10**(d3_bit_no)
ap_p_en:
add.l #12,d3 ;inc d3 to next rtable entry
tst.l d0 ;check if d0 is zero
bne.b ap_p_el ;if not, get next bit
fmul.x fp1,fp0 ;mul mantissa by 10**(no_bits_shifted)
bra.b pwrten ;go calc pwrten
*
* This section handles a negative adjusted exponent.
*
ap_st_n:
clr.l d1 ;clr counter
moveq.l #2,d5 ;set up d5 to point to lword 3
move.l (a0,d5.L*4),d4 ;get lword 3
bne.b ap_n_cl ;if not zero, check digits
sub.l #1,d5 ;dec d5 to point to lword 2
addq.l #8,d1 ;inc counter by 8
move.l (a0,d5.L*4),d4 ;get lword 2
ap_n_cl:
move.l #28,d3 ;point to last digit
moveq.l #7,d2 ;init digit counter
ap_n_gd:
bfextu d4{d3:4},d0 ;get digit
bne.b ap_n_fx ;if non-zero, go to exp fix
subq.l #4,d3 ;point to previous digit
addq.l #1,d1 ;inc digit counter
dbf.w d2,ap_n_gd ;get next digit
ap_n_fx:
move.l d1,d0 ;copy counter to d0
move.l L_SCR1(a6),d1 ;get adjusted exp from memory
sub.l d0,d1 ;subtract count from exp
bgt.b ap_n_fm ;if still pos, go fix mantissa
neg.l d1 ;take abs of exp and clr SE
move.l (a0),d4 ;load lword 1 to d4
and.l #$bfffffff,d4 ; and clr SE in d4
and.l #$bfffffff,(a0) ; and in memory
*
* Calculate the mantissa multiplier to compensate for the appending of
* zeros to the mantissa.
*
ap_n_fm:
; move.l #PTENRN,a1 ;get address of power-of-ten table - deleted <1/2/91, JPO>
lea PTENRN,a1 ; <1/2/91, JPO>
clr.l d3 ;init table index
; fmove.s FONE,fp1 ;init fp1 to 1 <1/2/91, JPO>
fmove.b #1,fp1 ; <1/2/91, JPO>
moveq.l #3,d2 ;init d2 to count bits in counter
ap_n_el:
asr.l #1,d0 ;shift lsb into carry
bcc.b ap_n_en ;if 1, mul fp1 by pwrten factor
fmul.x (a1,d3),fp1 ;mul by 10**(d3_bit_no)
ap_n_en:
add.l #12,d3 ;inc d3 to next rtable entry
tst.l d0 ;check if d0 is zero
bne.b ap_n_el ;if not, get next bit
fdiv.x fp1,fp0 ;div mantissa by 10**(no_bits_shifted)
*
*
* Calculate power-of-ten factor from adjusted and shifted exponent.
*
* Register usage:
*
* pwrten:
* (*) d0: temp
* ( ) d1: exponent
* (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp
* (*) d3: FPCR work copy
* ( ) d4: first word of bcd
* (*) a1: RTABLE pointer
* calc_p:
* (*) d0: temp
* ( ) d1: exponent
* (*) d3: PWRTxx table index
* ( ) a0: pointer to working copy of bcd
* (*) a1: PWRTxx pointer
* (*) fp1: power-of-ten accumulator
*
* Pwrten calculates the exponent factor in the selected rounding mode
* according to the following table:
*
* Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode
*
* ANY ANY RN RN
*
* + + RP RP
* - + RP RM
* + - RP RM
* - - RP RP
*
* + + RM RM
* - + RM RP
* + - RM RP
* - - RM RM
*
* + + RZ RM
* - + RZ RM
* + - RZ RP
* - - RZ RP
*
*
pwrten:
move.l USER_FPCR(a6),d3 ;get user's FPCR
bfextu d3{26:2},d2 ;isolate rounding mode bits
move.l (a0),d4 ;reload 1st bcd word to d4
asl.l #2,d2 ;format d2 to be
bfextu d4{0:2},d0 ; {FPCR[6],FPCR[5],SM,SE}
add.l d0,d2 ;in d2 as index into RTABLE
lea.l RTABLE,a1 ;load rtable base
move.b (a1,d2),d0 ;load new rounding bits from table
clr.l d3 ;clear d3 to force no exc and extended
bfins d0,d3{26:2} ;stuff new rounding bits in FPCR
fmove.l d3,FPCR ;write new FPCR
asr.l #1,d0 ;write correct PTENxx table
bcc.b not_rp ;to a1
lea.l PTENRP,a1 ;it is RP
bra.b calc_p ;go to init section
not_rp:
asr.l #1,d0 ;keep checking
bcc.b not_rm
lea.l PTENRM,a1 ;it is RM
bra.b calc_p ;go to init section
not_rm:
lea.l PTENRN,a1 ;it is RN
calc_p:
move.l d1,d0 ;copy exp to d0;use d0
bpl.b no_neg ;if exp is negative,
neg.l d0 ;invert it
or.l #$40000000,(a0) ;and set SE bit
no_neg:
clr.l d3 ;table index
; fmove.s FONE,fp1 ;init fp1 to 1 <1/2/91, JPO>
fmove.b #1,fp1 ; <1/2/91, JPO>
e_loop:
asr.l #1,d0 ;shift next bit into carry
bcc.b e_next ;if zero, skip the mul
fmul.x (a1,d3),fp1 ;mul by 10**(d3_bit_no)
e_next:
add.l #12,d3 ;inc d3 to next rtable entry
tst.l d0 ;check if d0 is zero
bne.b e_loop ;not zero, continue shifting
*
*
* Check the sign of the adjusted exp and make the value in fp0 the
* same sign. If the exp was pos then multiply fp1*fp0;
* else divide fp0/fp1.
*
* Register Usage:
* norm:
* ( ) a0: pointer to working bcd value
* (*) fp0: mantissa accumulator
* ( ) fp1: scaling factor - 10**(abs(exp))
*
norm:
btst #30,(a0) ;test the sign of the exponent
beq.b mul ;if clear, go to multiply
;div: ; label not referenced <1/2/91, JPO>
fdiv.x fp1,fp0 ;exp is negative, so divide mant by exp
bra.b end_dec
mul:
fmul.x fp1,fp0 ;exp is positive, so multiply by exp
*
*
* Clean up and return with result in fp0.
*
* If the final mul/div in decbin incurred an inex exception,
* it will be inex2, but will be reported as inex1 by get_op.
*
end_dec:
fmove.l FPSR,d0 ;get status register
bclr.l #inex2_bit+8,d0 ;test for inex2 and clear it
fmove.l d0,FPSR ;return status reg w/o inex2
; beq.b no_exc ;skip this if no exc - label changed <1/2/91, JPO>
beq.b dbno_exc ; <1/2/91, JPO>
or.l #inx1a_mask,USER_FPSR(a6) ;set inex1/ainex
;no_exc: ; label changed <1/2/91, JPO>
dbno_exc: ; <1/2/91, JPO>
movem.l (a7)+,d2-d5
rts