mac-rom/OS/FPUEmulation/Hyperbolic.a
Elliot Nunn 0ba83392d4 Bring in CubeE sources
Resource forks are included only for .rsrc files. These are DeRezzed into their data fork. 'ckid' resources, from the Projector VCS, are not included.

The Tools directory, containing mostly junk, is also excluded.
2017-09-20 18:04:16 +08:00

554 lines
12 KiB
Plaintext

;
; File: Hyperbolic.a
;
; Contains: Routines to emulate hyperbolic functions
;
; Originally Written by: Motorola Inc.
; Adapted to Apple/MPW: Jon Okada
;
; Copyright: © 1990, 1991 by Apple Computer, Inc., all rights reserved.
;
; This file is used in these builds: Mac32
;
; Change History (most recent first):
;
; <2> 3/30/91 BG Rolling in Jon Okada's latest changes.
; <1> 12/14/90 BG First checked into TERROR/BBS.
; hyperbolic.a
; Based upon Motorola files 'satanh.sa', 'scosh.sa', 'ssinh.sa', and 'stanh.sa'.
; CHANGE LOG:
; 04 Jan 91 JPO Moved constants T1, T2, and TWO16380 (used in scosh/ssinh)
; to file 'constants.a'. Renamed constant BOUNDS1 (used
; in stanh) to BNDTANH.
;
; satanh
*
* satanh.sa 3.1 12/10/90
*
* The entry point satanh computes the inverse
* hyperbolic tangent of
* an input argument; satanhd does the same except for denormalized
* input.
*
* Input: Double-extended number X in location pointed to
* by address register a0.
*
* Output: The value arctanh(X) returned in floating-point register Fp0.
*
* Accuracy and Monotonicity: The returned result is within 3 ulps in
* 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
* result is subsequently rounded to double precision. The
* result is provably monotonic in double precision.
*
* Speed: The program satanh takes approximately 270 cycles.
*
* Algorithm:
*
* ATANH
* 1. If |X| >= 1, go to 3.
*
* 2. (|X| < 1) Calculate atanh(X) by
* sgn := sign(X)
* y := |X|
* z := 2y/(1-y)
* atanh(X) := sgn * (1/2) * logp1(z)
* Exit.
*
* 3. If |X| > 1, go to 5.
*
* 4. (|X| = 1) Generate infinity with an appropriate sign and
* divide-by-zero by
* sgn := sign(X)
* atan(X) := sgn / (+0).
* Exit.
*
* 5. (|X| > 1) Generate an invalid operation by 0 * infinity.
* Exit.
*
* Copyright (C) Motorola, Inc. 1990
* All Rights Reserved
*
* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
* The copyright notice above does not evidence any
* actual or intended publication of such source code.
* satanh IDNT 2,1 Motorola 040 Floating Point Software Package
satanhd:
*--ATANH(X) = X FOR DENORMALIZED X
bra t_extdnrm
satanh:
move.l (a0),d0
move.w 4(a0),d0
ANDI.L #$7FFFFFFF,D0
CMPI.L #$3FFF8000,D0
BGE.B ATANHBIG
*--THIS IS THE USUAL CASE, |X| < 1
*--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z).
FABS.X (a0),FP0 ;...Y = |X|
FMOVE.X FP0,FP1
FNEG.X FP1 ;...-Y
FADD.X FP0,FP0 ;...2Y
FADD.S #"$3F800000",FP1 ;...1-Y
FDIV.X FP1,FP0 ;...2Y/(1-Y)
move.l (a0),d0
ANDI.L #$80000000,D0
ORI.L #$3F000000,D0 ;...SIGN(X)*HALF
move.l d0,-(sp)
fmovem.x fp0,(a0) ;...overwrite input
move.l d1,-(sp)
clr.l d1
bsr slognp1 ;...LOG1P(Z)
fmove.l (sp)+,fpcr
FMUL.S (sp)+,FP0
bra t_frcinx
ATANHBIG:
FABS.X (a0),FP0 ;...|X|
FCMP.S #"$3F800000",FP0
fbgt t_operr
bra t_dz
; scosh
*
* scosh.sa 3.1 12/10/90
*
* The entry point sCosh computes the hyperbolic cosine of
* an input argument; sCoshd does the same except for denormalized
* input.
*
* Input: Double-extended number X in location pointed to
* by address register a0.
*
* Output: The value cosh(X) returned in floating-point register Fp0.
*
* Accuracy and Monotonicity: The returned result is within 3 ulps in
* 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
* result is subsequently rounded to double precision. The
* result is provably monotonic in double precision.
*
* Speed: The program sCOSH takes approximately 250 cycles.
*
* Algorithm:
*
* COSH
* 1. If |X| > 16380 log2, go to 3.
*
* 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae
* y = |X|, z = exp(Y), and
* cosh(X) = (1/2)*( z + 1/z ).
* Exit.
*
* 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5.
*
* 4. (16380 log2 < |X| <= 16480 log2)
* cosh(X) = sign(X) * exp(|X|)/2.
* However, invoking exp(|X|) may cause premature overflow.
* Thus, we calculate sinh(X) as follows:
* Y := |X|
* Fact := 2**(16380)
* Y' := Y - 16381 log2
* cosh(X) := Fact * exp(Y').
* Exit.
*
* 5. (|X| > 16480 log2) sinh(X) must overflow. Return
* Huge*Huge to generate overflow and an infinity with
* the appropriate sign. Huge is the largest finite number in
* extended format. Exit.
*
*
* Copyright (C) Motorola, Inc. 1990
* All Rights Reserved
*
* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
* The copyright notice above does not evidence any
* actual or intended publication of such source code.
* SCOSH IDNT 2,1 Motorola 040 Floating Point Software Package
scoshd:
*--COSH(X) = 1 FOR DENORMALIZED X
FMOVE.S #"$3F800000",FP0
FMOVE.L d1,FPCR
FADD.S #"$00800000",FP0
bra t_frcinx
scosh:
FMOVE.X (a0),FP0 ;...LOAD INPUT
move.l (a0),d0
move.w 4(a0),d0
ANDI.L #$7FFFFFFF,d0
CMPI.L #$400CB167,d0
BGT.B COSHBIG
*--THIS IS THE USUAL CASE, |X| < 16380 LOG2
*--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) )
FABS.X FP0 ;...|X|
move.l d1,-(sp)
clr.l d1
fmovem.x fp0,(a0) ;pass parameter to setox
bsr setox ;...FP0 IS EXP(|X|)
FMUL.S #"$3F000000",FP0 ;...(1/2)EXP(|X|)
move.l (sp)+,d1
FMOVE.S #"$3E800000",FP1 ;...(1/4)
FDIV.X FP0,FP1 ;...1/(2 EXP(|X|))
FMOVE.L d1,FPCR
FADD.X fp1,FP0
bra t_frcinx
COSHBIG:
CMPI.L #$400CB2B3,d0
BGT.B COSHHUGE
FABS.X FP0
FSUB.D T1(pc),FP0 ; ...(|X|-16381LOG2_LEAD)
FSUB.D T2(pc),FP0 ; ...|X| - 16381 LOG2, ACCURATE
move.l d1,-(sp)
clr.l d1
fmovem.x fp0,(a0)
bsr setox
fmove.l (sp)+,fpcr
FMUL.X TWO16380(pc),FP0
bra t_frcinx
COSHHUGE:
fmove.l #0,fpsr ;clr N bit if set by source
bclr.b #7,(a0) ;always return positive value
fmovem.x (a0),fp0
bra t_ovfl
; ssinh
*
* ssinh.sa 3.1 12/10/90
*
* The entry point sSinh computes the hyperbolic sine of
* an input argument; sSinhd does the same except for denormalized
* input.
*
* Input: Double-extended number X in location pointed to
* by address register a0.
*
* Output: The value sinh(X) returned in floating-point register Fp0.
*
* Accuracy and Monotonicity: The returned result is within 3 ulps in
* 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
* result is subsequently rounded to double precision. The
* result is provably monotonic in double precision.
*
* Speed: The program sSINH takes approximately 280 cycles.
*
* Algorithm:
*
* SINH
* 1. If |X| > 16380 log2, go to 3.
*
* 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formulae
* y = |X|, sgn = sign(X), and z = expm1(Y),
* sinh(X) = sgn*(1/2)*( z + z/(1+z) ).
* Exit.
*
* 3. If |X| > 16480 log2, go to 5.
*
* 4. (16380 log2 < |X| <= 16480 log2)
* sinh(X) = sign(X) * exp(|X|)/2.
* However, invoking exp(|X|) may cause premature overflow.
* Thus, we calculate sinh(X) as follows:
* Y := |X|
* sgn := sign(X)
* sgnFact := sgn * 2**(16380)
* Y' := Y - 16381 log2
* sinh(X) := sgnFact * exp(Y').
* Exit.
*
* 5. (|X| > 16480 log2) sinh(X) must overflow. Return
* sign(X)*Huge*Huge to generate overflow and an infinity with
* the appropriate sign. Huge is the largest finite number in
* extended format. Exit.
*
* Copyright (C) Motorola, Inc. 1990
* All Rights Reserved
*
* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
* The copyright notice above does not evidence any
* actual or intended publication of such source code.
* SSINH IDNT 2,1 Motorola 040 Floating Point Software Package
ssinhd:
*--SINH(X) = X FOR DENORMALIZED X
bra t_extdnrm
ssinh:
FMOVE.x (a0),FP0 ...LOAD INPUT
move.l (a0),d0
move.w 4(a0),d0
move.l d0,a1 ;save a copy of original (compacted) operand
AND.L #$7FFFFFFF,D0
CMP.L #$400CB167,D0
BGT.B SINHBIG
*--THIS IS THE USUAL CASE, |X| < 16380 LOG2
*--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) )
FABS.X FP0 ...Y = |X|
movem.l a1/d1,-(sp)
fmovem.x fp0,(a0)
clr.l d1
bsr setoxm1 ...FP0 IS Z = EXPM1(Y)
fmove.l #0,fpcr
movem.l (sp)+,a1/d1
FMOVE.X FP0,FP1
FADD.S #"$3F800000",FP1 ...1+Z
FMOVE.X FP0,-(sp)
FDIV.X FP1,FP0 ...Z/(1+Z)
MOVE.L a1,d0
AND.L #$80000000,D0
OR.L #$3F000000,D0
FADD.X (sp)+,FP0
MOVE.L D0,-(sp)
fmove.l d1,fpcr
fmul.s (sp)+,fp0 ;last fp inst - possible exceptions set
bra t_frcinx
SINHBIG:
cmp.l #$400CB2B3,D0
bgt t_ovfl
FABS.X FP0
FSUB.D T1(pc),FP0 ...(|X|-16381LOG2_LEAD)
move.l #0,-(sp)
move.l #$80000000,-(sp)
move.l a1,d0
AND.L #$80000000,D0
OR.L #$7FFB0000,D0
MOVE.L D0,-(sp) ...EXTENDED FMT
FSUB.D T2(pc),FP0 ...|X| - 16381 LOG2, ACCURATE
move.l d1,-(sp)
clr.l d1
fmovem.x fp0,(a0)
bsr setox
fmove.l (sp)+,fpcr
fmul.x (sp)+,fp0 ;possible exception
bra t_frcinx
; stanh
*
* stanh.sa 3.1 12/10/90
*
* The entry point sTanh computes the hyperbolic tangent of
* an input argument; sTanhd does the same except for denormalized
* input.
*
* Input: Double-extended number X in location pointed to
* by address register a0.
*
* Output: The value tanh(X) returned in floating-point register Fp0.
*
* Accuracy and Monotonicity: The returned result is within 3 ulps in
* 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
* result is subsequently rounded to double precision. The
* result is provably monotonic in double precision.
*
* Speed: The program stanh takes approximately 270 cycles.
*
* Algorithm:
*
* TANH
* 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3.
*
* 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by
* sgn := sign(X), y := 2|X|, z := expm1(Y), and
* tanh(X) = sgn*( z/(2+z) ).
* Exit.
*
* 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1,
* go to 7.
*
* 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6.
*
* 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by
* sgn := sign(X), y := 2|X|, z := exp(Y),
* tanh(X) = sgn - [ sgn*2/(1+z) ].
* Exit.
*
* 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we
* calculate Tanh(X) by
* sgn := sign(X), Tiny := 2**(-126),
* tanh(X) := sgn - sgn*Tiny.
* Exit.
*
* 7. (|X| < 2**(-40)). Tanh(X) = X. Exit.
*
* Copyright (C) Motorola, Inc. 1990
* All Rights Reserved
*
* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
* The copyright notice above does not evidence any
* actual or intended publication of such source code.
* STANH IDNT 2,1 Motorola 040 Floating Point Software Package
X equ FP_SCR5
XDCARE equ X+2
XFRAC equ X+4
SGN equ L_SCR3
V equ FP_SCR6
BNDTANH DC.L $3FD78000,$3FFFDDCE ; 2^(-40), (5/2)LOG2 - label changed <1/4/91, JPO>
stanhd:
*--TANH(X) = X FOR DENORMALIZED X
bra t_extdnrm
stanh:
FMOVE.X (a0),FP0 ...LOAD INPUT
FMOVE.X FP0,X(a6)
move.l (a0),d0
move.w 4(a0),d0
MOVE.L D0,X(a6)
AND.L #$7FFFFFFF,D0
CMP2.L BNDTANH(pc),D0 ...2**(-40) < |X| < (5/2)LOG2 ?
BCS.B TANHBORS
*--THIS IS THE USUAL CASE
*--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2).
MOVE.L X(a6),D0
MOVE.L D0,SGN(a6)
AND.L #$7FFF0000,D0
ADD.L #$00010000,D0 ...EXPONENT OF 2|X|
MOVE.L D0,X(a6)
AND.L #$80000000,SGN(a6)
FMOVE.X X(a6),FP0 ...FP0 IS Y = 2|X|
move.l d1,-(a7)
clr.l d1
fmovem.x fp0,(a0)
bsr setoxm1 ...FP0 IS Z = EXPM1(Y)
move.l (a7)+,d1
FMOVE.X FP0,FP1
FADD.S #"$40000000",FP1 ...Z+2
MOVE.L SGN(a6),D0
FMOVE.X FP1,V(a6)
EOR.L D0,V(a6)
FMOVE.L d1,FPCR ;restore users exceptions
FDIV.X V(a6),FP0
bra t_frcinx
TANHBORS:
CMP.L #$3FFF8000,D0
BLT.B TANHSM
CMP.L #$40048AA1,D0
BGT.W TANHHUGE
*-- (5/2) LOG2 < |X| < 50 LOG2,
*--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X),
*--TANH(X) = SGN - SGN*2/[EXP(Y)+1].
MOVE.L X(a6),D0
MOVE.L D0,SGN(a6)
AND.L #$7FFF0000,D0
ADD.L #$00010000,D0 ...EXPO OF 2|X|
MOVE.L D0,X(a6) ...Y = 2|X|
AND.L #$80000000,SGN(a6)
MOVE.L SGN(a6),D0
FMOVE.X X(a6),FP0 ...Y = 2|X|
move.l d1,-(a7)
clr.l d1
fmovem.x fp0,(a0)
bsr setox ...FP0 IS EXP(Y)
move.l (a7)+,d1
move.l SGN(a6),d0
FADD.S #"$3F800000",FP0 ...EXP(Y)+1
EOR.L #$C0000000,D0 ...-SIGN(X)*2
FMOVE.S d0,FP1 ...-SIGN(X)*2 IN SGL FMT
FDIV.X FP0,FP1 ...-SIGN(X)2 / [EXP(Y)+1 ]
MOVE.L SGN(a6),D0
OR.L #$3F800000,D0 ...SGN
FMOVE.S d0,FP0 ...SGN IN SGL FMT
FMOVE.L d1,FPCR ;restore users exceptions
FADD.X fp1,FP0
bra t_frcinx
TANHSM:
MOVE.W #$0000,XDCARE(a6)
FMOVE.L d1,FPCR ;restore users exceptions
FMOVE.X X(a6),FP0 ;last inst - possible exception set
bra t_frcinx
TANHHUGE:
*---RETURN SGN(X) - SGN(X)EPS
MOVE.L X(a6),D0
AND.L #$80000000,D0
OR.L #$3F800000,D0
FMOVE.S d0,FP0
AND.L #$80000000,D0
EOR.L #$80800000,D0 ...-SIGN(X)*EPS
FMOVE.L d1,FPCR ;restore users exceptions
FADD.S d0,FP0
bra t_frcinx