mirror of
https://github.com/elliotnunn/mac-rom.git
synced 2025-01-01 11:29:27 +00:00
0ba83392d4
Resource forks are included only for .rsrc files. These are DeRezzed into their data fork. 'ckid' resources, from the Projector VCS, are not included. The Tools directory, containing mostly junk, is also excluded.
554 lines
12 KiB
Plaintext
554 lines
12 KiB
Plaintext
;
|
|
; File: Hyperbolic.a
|
|
;
|
|
; Contains: Routines to emulate hyperbolic functions
|
|
;
|
|
; Originally Written by: Motorola Inc.
|
|
; Adapted to Apple/MPW: Jon Okada
|
|
;
|
|
; Copyright: © 1990, 1991 by Apple Computer, Inc., all rights reserved.
|
|
;
|
|
; This file is used in these builds: Mac32
|
|
;
|
|
; Change History (most recent first):
|
|
;
|
|
; <2> 3/30/91 BG Rolling in Jon Okada's latest changes.
|
|
; <1> 12/14/90 BG First checked into TERROR/BBS.
|
|
|
|
; hyperbolic.a
|
|
|
|
; Based upon Motorola files 'satanh.sa', 'scosh.sa', 'ssinh.sa', and 'stanh.sa'.
|
|
|
|
; CHANGE LOG:
|
|
; 04 Jan 91 JPO Moved constants T1, T2, and TWO16380 (used in scosh/ssinh)
|
|
; to file 'constants.a'. Renamed constant BOUNDS1 (used
|
|
; in stanh) to BNDTANH.
|
|
;
|
|
|
|
; satanh
|
|
|
|
*
|
|
* satanh.sa 3.1 12/10/90
|
|
*
|
|
* The entry point satanh computes the inverse
|
|
* hyperbolic tangent of
|
|
* an input argument; satanhd does the same except for denormalized
|
|
* input.
|
|
*
|
|
* Input: Double-extended number X in location pointed to
|
|
* by address register a0.
|
|
*
|
|
* Output: The value arctanh(X) returned in floating-point register Fp0.
|
|
*
|
|
* Accuracy and Monotonicity: The returned result is within 3 ulps in
|
|
* 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
|
|
* result is subsequently rounded to double precision. The
|
|
* result is provably monotonic in double precision.
|
|
*
|
|
* Speed: The program satanh takes approximately 270 cycles.
|
|
*
|
|
* Algorithm:
|
|
*
|
|
* ATANH
|
|
* 1. If |X| >= 1, go to 3.
|
|
*
|
|
* 2. (|X| < 1) Calculate atanh(X) by
|
|
* sgn := sign(X)
|
|
* y := |X|
|
|
* z := 2y/(1-y)
|
|
* atanh(X) := sgn * (1/2) * logp1(z)
|
|
* Exit.
|
|
*
|
|
* 3. If |X| > 1, go to 5.
|
|
*
|
|
* 4. (|X| = 1) Generate infinity with an appropriate sign and
|
|
* divide-by-zero by
|
|
* sgn := sign(X)
|
|
* atan(X) := sgn / (+0).
|
|
* Exit.
|
|
*
|
|
* 5. (|X| > 1) Generate an invalid operation by 0 * infinity.
|
|
* Exit.
|
|
*
|
|
|
|
* Copyright (C) Motorola, Inc. 1990
|
|
* All Rights Reserved
|
|
*
|
|
* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
|
|
* The copyright notice above does not evidence any
|
|
* actual or intended publication of such source code.
|
|
|
|
* satanh IDNT 2,1 Motorola 040 Floating Point Software Package
|
|
|
|
|
|
satanhd:
|
|
*--ATANH(X) = X FOR DENORMALIZED X
|
|
|
|
bra t_extdnrm
|
|
|
|
|
|
satanh:
|
|
move.l (a0),d0
|
|
move.w 4(a0),d0
|
|
ANDI.L #$7FFFFFFF,D0
|
|
CMPI.L #$3FFF8000,D0
|
|
BGE.B ATANHBIG
|
|
|
|
*--THIS IS THE USUAL CASE, |X| < 1
|
|
*--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z).
|
|
|
|
FABS.X (a0),FP0 ;...Y = |X|
|
|
FMOVE.X FP0,FP1
|
|
FNEG.X FP1 ;...-Y
|
|
FADD.X FP0,FP0 ;...2Y
|
|
FADD.S #"$3F800000",FP1 ;...1-Y
|
|
FDIV.X FP1,FP0 ;...2Y/(1-Y)
|
|
move.l (a0),d0
|
|
ANDI.L #$80000000,D0
|
|
ORI.L #$3F000000,D0 ;...SIGN(X)*HALF
|
|
move.l d0,-(sp)
|
|
|
|
fmovem.x fp0,(a0) ;...overwrite input
|
|
move.l d1,-(sp)
|
|
clr.l d1
|
|
bsr slognp1 ;...LOG1P(Z)
|
|
fmove.l (sp)+,fpcr
|
|
FMUL.S (sp)+,FP0
|
|
bra t_frcinx
|
|
|
|
ATANHBIG:
|
|
FABS.X (a0),FP0 ;...|X|
|
|
FCMP.S #"$3F800000",FP0
|
|
fbgt t_operr
|
|
bra t_dz
|
|
|
|
|
|
|
|
; scosh
|
|
|
|
*
|
|
* scosh.sa 3.1 12/10/90
|
|
*
|
|
* The entry point sCosh computes the hyperbolic cosine of
|
|
* an input argument; sCoshd does the same except for denormalized
|
|
* input.
|
|
*
|
|
* Input: Double-extended number X in location pointed to
|
|
* by address register a0.
|
|
*
|
|
* Output: The value cosh(X) returned in floating-point register Fp0.
|
|
*
|
|
* Accuracy and Monotonicity: The returned result is within 3 ulps in
|
|
* 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
|
|
* result is subsequently rounded to double precision. The
|
|
* result is provably monotonic in double precision.
|
|
*
|
|
* Speed: The program sCOSH takes approximately 250 cycles.
|
|
*
|
|
* Algorithm:
|
|
*
|
|
* COSH
|
|
* 1. If |X| > 16380 log2, go to 3.
|
|
*
|
|
* 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae
|
|
* y = |X|, z = exp(Y), and
|
|
* cosh(X) = (1/2)*( z + 1/z ).
|
|
* Exit.
|
|
*
|
|
* 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5.
|
|
*
|
|
* 4. (16380 log2 < |X| <= 16480 log2)
|
|
* cosh(X) = sign(X) * exp(|X|)/2.
|
|
* However, invoking exp(|X|) may cause premature overflow.
|
|
* Thus, we calculate sinh(X) as follows:
|
|
* Y := |X|
|
|
* Fact := 2**(16380)
|
|
* Y' := Y - 16381 log2
|
|
* cosh(X) := Fact * exp(Y').
|
|
* Exit.
|
|
*
|
|
* 5. (|X| > 16480 log2) sinh(X) must overflow. Return
|
|
* Huge*Huge to generate overflow and an infinity with
|
|
* the appropriate sign. Huge is the largest finite number in
|
|
* extended format. Exit.
|
|
*
|
|
*
|
|
|
|
* Copyright (C) Motorola, Inc. 1990
|
|
* All Rights Reserved
|
|
*
|
|
* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
|
|
* The copyright notice above does not evidence any
|
|
* actual or intended publication of such source code.
|
|
|
|
* SCOSH IDNT 2,1 Motorola 040 Floating Point Software Package
|
|
|
|
scoshd:
|
|
*--COSH(X) = 1 FOR DENORMALIZED X
|
|
|
|
FMOVE.S #"$3F800000",FP0
|
|
|
|
FMOVE.L d1,FPCR
|
|
FADD.S #"$00800000",FP0
|
|
bra t_frcinx
|
|
|
|
|
|
scosh:
|
|
FMOVE.X (a0),FP0 ;...LOAD INPUT
|
|
|
|
move.l (a0),d0
|
|
move.w 4(a0),d0
|
|
ANDI.L #$7FFFFFFF,d0
|
|
CMPI.L #$400CB167,d0
|
|
BGT.B COSHBIG
|
|
|
|
*--THIS IS THE USUAL CASE, |X| < 16380 LOG2
|
|
*--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) )
|
|
|
|
FABS.X FP0 ;...|X|
|
|
|
|
move.l d1,-(sp)
|
|
clr.l d1
|
|
fmovem.x fp0,(a0) ;pass parameter to setox
|
|
bsr setox ;...FP0 IS EXP(|X|)
|
|
FMUL.S #"$3F000000",FP0 ;...(1/2)EXP(|X|)
|
|
move.l (sp)+,d1
|
|
|
|
FMOVE.S #"$3E800000",FP1 ;...(1/4)
|
|
FDIV.X FP0,FP1 ;...1/(2 EXP(|X|))
|
|
|
|
FMOVE.L d1,FPCR
|
|
FADD.X fp1,FP0
|
|
|
|
bra t_frcinx
|
|
|
|
COSHBIG:
|
|
CMPI.L #$400CB2B3,d0
|
|
BGT.B COSHHUGE
|
|
|
|
FABS.X FP0
|
|
FSUB.D T1(pc),FP0 ; ...(|X|-16381LOG2_LEAD)
|
|
FSUB.D T2(pc),FP0 ; ...|X| - 16381 LOG2, ACCURATE
|
|
|
|
move.l d1,-(sp)
|
|
clr.l d1
|
|
fmovem.x fp0,(a0)
|
|
bsr setox
|
|
fmove.l (sp)+,fpcr
|
|
|
|
FMUL.X TWO16380(pc),FP0
|
|
bra t_frcinx
|
|
|
|
COSHHUGE:
|
|
fmove.l #0,fpsr ;clr N bit if set by source
|
|
bclr.b #7,(a0) ;always return positive value
|
|
fmovem.x (a0),fp0
|
|
bra t_ovfl
|
|
|
|
|
|
|
|
; ssinh
|
|
|
|
*
|
|
* ssinh.sa 3.1 12/10/90
|
|
*
|
|
* The entry point sSinh computes the hyperbolic sine of
|
|
* an input argument; sSinhd does the same except for denormalized
|
|
* input.
|
|
*
|
|
* Input: Double-extended number X in location pointed to
|
|
* by address register a0.
|
|
*
|
|
* Output: The value sinh(X) returned in floating-point register Fp0.
|
|
*
|
|
* Accuracy and Monotonicity: The returned result is within 3 ulps in
|
|
* 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
|
|
* result is subsequently rounded to double precision. The
|
|
* result is provably monotonic in double precision.
|
|
*
|
|
* Speed: The program sSINH takes approximately 280 cycles.
|
|
*
|
|
* Algorithm:
|
|
*
|
|
* SINH
|
|
* 1. If |X| > 16380 log2, go to 3.
|
|
*
|
|
* 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formulae
|
|
* y = |X|, sgn = sign(X), and z = expm1(Y),
|
|
* sinh(X) = sgn*(1/2)*( z + z/(1+z) ).
|
|
* Exit.
|
|
*
|
|
* 3. If |X| > 16480 log2, go to 5.
|
|
*
|
|
* 4. (16380 log2 < |X| <= 16480 log2)
|
|
* sinh(X) = sign(X) * exp(|X|)/2.
|
|
* However, invoking exp(|X|) may cause premature overflow.
|
|
* Thus, we calculate sinh(X) as follows:
|
|
* Y := |X|
|
|
* sgn := sign(X)
|
|
* sgnFact := sgn * 2**(16380)
|
|
* Y' := Y - 16381 log2
|
|
* sinh(X) := sgnFact * exp(Y').
|
|
* Exit.
|
|
*
|
|
* 5. (|X| > 16480 log2) sinh(X) must overflow. Return
|
|
* sign(X)*Huge*Huge to generate overflow and an infinity with
|
|
* the appropriate sign. Huge is the largest finite number in
|
|
* extended format. Exit.
|
|
*
|
|
|
|
* Copyright (C) Motorola, Inc. 1990
|
|
* All Rights Reserved
|
|
*
|
|
* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
|
|
* The copyright notice above does not evidence any
|
|
* actual or intended publication of such source code.
|
|
|
|
* SSINH IDNT 2,1 Motorola 040 Floating Point Software Package
|
|
|
|
ssinhd:
|
|
*--SINH(X) = X FOR DENORMALIZED X
|
|
|
|
bra t_extdnrm
|
|
|
|
|
|
ssinh:
|
|
FMOVE.x (a0),FP0 ...LOAD INPUT
|
|
|
|
move.l (a0),d0
|
|
move.w 4(a0),d0
|
|
move.l d0,a1 ;save a copy of original (compacted) operand
|
|
AND.L #$7FFFFFFF,D0
|
|
CMP.L #$400CB167,D0
|
|
BGT.B SINHBIG
|
|
|
|
*--THIS IS THE USUAL CASE, |X| < 16380 LOG2
|
|
*--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) )
|
|
|
|
FABS.X FP0 ...Y = |X|
|
|
|
|
movem.l a1/d1,-(sp)
|
|
fmovem.x fp0,(a0)
|
|
clr.l d1
|
|
bsr setoxm1 ...FP0 IS Z = EXPM1(Y)
|
|
fmove.l #0,fpcr
|
|
movem.l (sp)+,a1/d1
|
|
|
|
FMOVE.X FP0,FP1
|
|
FADD.S #"$3F800000",FP1 ...1+Z
|
|
FMOVE.X FP0,-(sp)
|
|
FDIV.X FP1,FP0 ...Z/(1+Z)
|
|
MOVE.L a1,d0
|
|
AND.L #$80000000,D0
|
|
OR.L #$3F000000,D0
|
|
FADD.X (sp)+,FP0
|
|
MOVE.L D0,-(sp)
|
|
|
|
fmove.l d1,fpcr
|
|
fmul.s (sp)+,fp0 ;last fp inst - possible exceptions set
|
|
|
|
bra t_frcinx
|
|
|
|
SINHBIG:
|
|
cmp.l #$400CB2B3,D0
|
|
bgt t_ovfl
|
|
FABS.X FP0
|
|
FSUB.D T1(pc),FP0 ...(|X|-16381LOG2_LEAD)
|
|
move.l #0,-(sp)
|
|
move.l #$80000000,-(sp)
|
|
move.l a1,d0
|
|
AND.L #$80000000,D0
|
|
OR.L #$7FFB0000,D0
|
|
MOVE.L D0,-(sp) ...EXTENDED FMT
|
|
FSUB.D T2(pc),FP0 ...|X| - 16381 LOG2, ACCURATE
|
|
|
|
move.l d1,-(sp)
|
|
clr.l d1
|
|
fmovem.x fp0,(a0)
|
|
bsr setox
|
|
fmove.l (sp)+,fpcr
|
|
|
|
fmul.x (sp)+,fp0 ;possible exception
|
|
bra t_frcinx
|
|
|
|
|
|
|
|
; stanh
|
|
|
|
*
|
|
* stanh.sa 3.1 12/10/90
|
|
*
|
|
* The entry point sTanh computes the hyperbolic tangent of
|
|
* an input argument; sTanhd does the same except for denormalized
|
|
* input.
|
|
*
|
|
* Input: Double-extended number X in location pointed to
|
|
* by address register a0.
|
|
*
|
|
* Output: The value tanh(X) returned in floating-point register Fp0.
|
|
*
|
|
* Accuracy and Monotonicity: The returned result is within 3 ulps in
|
|
* 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
|
|
* result is subsequently rounded to double precision. The
|
|
* result is provably monotonic in double precision.
|
|
*
|
|
* Speed: The program stanh takes approximately 270 cycles.
|
|
*
|
|
* Algorithm:
|
|
*
|
|
* TANH
|
|
* 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3.
|
|
*
|
|
* 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by
|
|
* sgn := sign(X), y := 2|X|, z := expm1(Y), and
|
|
* tanh(X) = sgn*( z/(2+z) ).
|
|
* Exit.
|
|
*
|
|
* 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1,
|
|
* go to 7.
|
|
*
|
|
* 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6.
|
|
*
|
|
* 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by
|
|
* sgn := sign(X), y := 2|X|, z := exp(Y),
|
|
* tanh(X) = sgn - [ sgn*2/(1+z) ].
|
|
* Exit.
|
|
*
|
|
* 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we
|
|
* calculate Tanh(X) by
|
|
* sgn := sign(X), Tiny := 2**(-126),
|
|
* tanh(X) := sgn - sgn*Tiny.
|
|
* Exit.
|
|
*
|
|
* 7. (|X| < 2**(-40)). Tanh(X) = X. Exit.
|
|
*
|
|
|
|
* Copyright (C) Motorola, Inc. 1990
|
|
* All Rights Reserved
|
|
*
|
|
* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
|
|
* The copyright notice above does not evidence any
|
|
* actual or intended publication of such source code.
|
|
|
|
* STANH IDNT 2,1 Motorola 040 Floating Point Software Package
|
|
|
|
X equ FP_SCR5
|
|
XDCARE equ X+2
|
|
XFRAC equ X+4
|
|
|
|
SGN equ L_SCR3
|
|
|
|
V equ FP_SCR6
|
|
|
|
BNDTANH DC.L $3FD78000,$3FFFDDCE ; 2^(-40), (5/2)LOG2 - label changed <1/4/91, JPO>
|
|
|
|
|
|
stanhd:
|
|
*--TANH(X) = X FOR DENORMALIZED X
|
|
|
|
bra t_extdnrm
|
|
|
|
|
|
stanh:
|
|
FMOVE.X (a0),FP0 ...LOAD INPUT
|
|
|
|
FMOVE.X FP0,X(a6)
|
|
move.l (a0),d0
|
|
move.w 4(a0),d0
|
|
MOVE.L D0,X(a6)
|
|
AND.L #$7FFFFFFF,D0
|
|
CMP2.L BNDTANH(pc),D0 ...2**(-40) < |X| < (5/2)LOG2 ?
|
|
BCS.B TANHBORS
|
|
|
|
*--THIS IS THE USUAL CASE
|
|
*--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2).
|
|
|
|
MOVE.L X(a6),D0
|
|
MOVE.L D0,SGN(a6)
|
|
AND.L #$7FFF0000,D0
|
|
ADD.L #$00010000,D0 ...EXPONENT OF 2|X|
|
|
MOVE.L D0,X(a6)
|
|
AND.L #$80000000,SGN(a6)
|
|
FMOVE.X X(a6),FP0 ...FP0 IS Y = 2|X|
|
|
|
|
move.l d1,-(a7)
|
|
clr.l d1
|
|
fmovem.x fp0,(a0)
|
|
bsr setoxm1 ...FP0 IS Z = EXPM1(Y)
|
|
move.l (a7)+,d1
|
|
|
|
FMOVE.X FP0,FP1
|
|
FADD.S #"$40000000",FP1 ...Z+2
|
|
MOVE.L SGN(a6),D0
|
|
FMOVE.X FP1,V(a6)
|
|
EOR.L D0,V(a6)
|
|
|
|
FMOVE.L d1,FPCR ;restore users exceptions
|
|
FDIV.X V(a6),FP0
|
|
bra t_frcinx
|
|
|
|
TANHBORS:
|
|
CMP.L #$3FFF8000,D0
|
|
BLT.B TANHSM
|
|
|
|
CMP.L #$40048AA1,D0
|
|
BGT.W TANHHUGE
|
|
|
|
*-- (5/2) LOG2 < |X| < 50 LOG2,
|
|
*--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X),
|
|
*--TANH(X) = SGN - SGN*2/[EXP(Y)+1].
|
|
|
|
MOVE.L X(a6),D0
|
|
MOVE.L D0,SGN(a6)
|
|
AND.L #$7FFF0000,D0
|
|
ADD.L #$00010000,D0 ...EXPO OF 2|X|
|
|
MOVE.L D0,X(a6) ...Y = 2|X|
|
|
AND.L #$80000000,SGN(a6)
|
|
MOVE.L SGN(a6),D0
|
|
FMOVE.X X(a6),FP0 ...Y = 2|X|
|
|
|
|
move.l d1,-(a7)
|
|
clr.l d1
|
|
fmovem.x fp0,(a0)
|
|
bsr setox ...FP0 IS EXP(Y)
|
|
move.l (a7)+,d1
|
|
move.l SGN(a6),d0
|
|
FADD.S #"$3F800000",FP0 ...EXP(Y)+1
|
|
|
|
EOR.L #$C0000000,D0 ...-SIGN(X)*2
|
|
FMOVE.S d0,FP1 ...-SIGN(X)*2 IN SGL FMT
|
|
FDIV.X FP0,FP1 ...-SIGN(X)2 / [EXP(Y)+1 ]
|
|
|
|
MOVE.L SGN(a6),D0
|
|
OR.L #$3F800000,D0 ...SGN
|
|
FMOVE.S d0,FP0 ...SGN IN SGL FMT
|
|
|
|
FMOVE.L d1,FPCR ;restore users exceptions
|
|
FADD.X fp1,FP0
|
|
|
|
bra t_frcinx
|
|
|
|
TANHSM:
|
|
MOVE.W #$0000,XDCARE(a6)
|
|
|
|
FMOVE.L d1,FPCR ;restore users exceptions
|
|
FMOVE.X X(a6),FP0 ;last inst - possible exception set
|
|
|
|
bra t_frcinx
|
|
|
|
TANHHUGE:
|
|
*---RETURN SGN(X) - SGN(X)EPS
|
|
MOVE.L X(a6),D0
|
|
AND.L #$80000000,D0
|
|
OR.L #$3F800000,D0
|
|
FMOVE.S d0,FP0
|
|
AND.L #$80000000,D0
|
|
EOR.L #$80800000,D0 ...-SIGN(X)*EPS
|
|
|
|
FMOVE.L d1,FPCR ;restore users exceptions
|
|
FADD.S d0,FP0
|
|
|
|
bra t_frcinx
|
|
|
|
|