mirror of
https://github.com/elliotnunn/mac-rom.git
synced 2025-01-01 11:29:27 +00:00
0ba83392d4
Resource forks are included only for .rsrc files. These are DeRezzed into their data fork. 'ckid' resources, from the Projector VCS, are not included. The Tools directory, containing mostly junk, is also excluded.
671 lines
16 KiB
Plaintext
671 lines
16 KiB
Plaintext
;EASE$$$ READ ONLY COPY of file ÒElems68K3.aÓ
|
|
; 1.1 CCH 11/11/1988 Fixed Header.
|
|
; 1.0 CCH 11/ 9/1988 Adding to EASE.
|
|
; OLD REVISIONS BELOW
|
|
; 1.0 BBM 2/12/88 Adding file for the first time into EASEÉ
|
|
; END EASE MODIFICATION HISTORY
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; File: Elems68K3.a
|
|
;; Implementation of Elems68K for machines using the Motorola MC68881
|
|
;; Copyright Apple Computer, Inc. 1983,1984,1985,1986,1987
|
|
;; All Rights Reserved
|
|
;; Confidential and Proprietary to Apple Computer,Inc.
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;
|
|
; Sine function.
|
|
; Input: A4 = operand T
|
|
; D1 = class (1..6) reduced by #FCINF
|
|
; Output: A4 = result
|
|
; Uses: A0-A2
|
|
;
|
|
;
|
|
; About the argument reduction: T is reduced MOD approximate pi/2,
|
|
; leaving its magnitude no bigger than approximate pi/4.
|
|
; Recall the identities:
|
|
; sin(T) = sin(T)
|
|
; sin(pi/2 + T) = cos(T)
|
|
; sin(pi + T) = -sin(T)
|
|
; sin(3pi/2 + T) = -cos(T)
|
|
; sin(2pi + T) = sin(T)
|
|
; Then if input T = q*(pi/2) + r,
|
|
; q mod 2 determines whether to use sin (0) or cos (1), and
|
|
; q mod 4 determines whether to negate result (2 or 3).
|
|
; Note that KLH takes (q + 128) mod 4; this is because of the
|
|
; braindamaged Pascal MOD function, which cannot handle a negative
|
|
; numerator.
|
|
;
|
|
SINTOP
|
|
|
|
BLANKS ON
|
|
STRING ASIS
|
|
|
|
MOVEQ #NANTRIG,D0 ; ASSUME THE WORST
|
|
MOVEQ #0,D2 ; QUOTIENT ADJUSTMENT
|
|
SUBQ.B #1,D1 ; -1 FOR INF, 0 OR 0, ...
|
|
BEQ RESULTDELIVERED ; SIN(+-0) IS +-0
|
|
SINCOSCOM
|
|
BMI ERRORNAN ; INF IS ILLEGAL
|
|
|
|
;
|
|
; Have finite, nonzero argument.
|
|
;
|
|
BSR.S TRIGREDUCTION ; T <-- T REM PI/2
|
|
BTST #0,D2 ; QUO MOD 2
|
|
BNE.S @1
|
|
BSR.S SINGUTS ; EVEN, USE SIN
|
|
BRA.S @3
|
|
@1
|
|
BSR COSGUTS ; ODD, USE COS
|
|
@3
|
|
ANDI.W #3,D2 ; QUO MOD 4
|
|
SUBQ.W #2,D2 ; >= 0 ONLY IF MOD 2 OR 3
|
|
BMI.S @5
|
|
BCHG #7,(A4) ; NEGATE RESULT
|
|
@5
|
|
|
|
;
|
|
; Common trig finish:
|
|
; Clear uflow, except when denormalized.
|
|
; Set inexact.
|
|
; If result is denormal, set underflow.
|
|
; Exit.
|
|
;
|
|
TRIGFINI
|
|
BSR CLEARUFLOW ; WILL CHECK FOR ERROR LATER
|
|
BSR FORCEINEXACT
|
|
|
|
PEA (A4)
|
|
PEA STI(A6) ; CELL I FOR RETURN CODE
|
|
FCLASSX
|
|
MOVE.W STI(A6),D0 ; -6, -5, ..., -1, 1, ..., 6
|
|
BPL.S @11
|
|
NEG.W D0 ; 1, 2, ..., 6
|
|
@11
|
|
SUBQ.W #FCDENORM,D0 ; LEAVES ZERO IF DENORMAL
|
|
BNE.S @13
|
|
BSR FORCEUFLOW
|
|
@13
|
|
BRA RESULTDELIVERED
|
|
|
|
|
|
;
|
|
; Cosine function.
|
|
; Input: A4 = operand T
|
|
; D1 = class (1..6) reduced by #FCINF
|
|
; Output: A4 = result
|
|
; Uses: A0-A2
|
|
;
|
|
;
|
|
; About the argument reduction: T is reduced MOD approximate pi/2,
|
|
; leaving its magnitude no bigger than approximate pi/4.
|
|
; Recall the identities:
|
|
; cos(T) = cos(T)
|
|
; cos(pi/2 + T) = -sin(T)
|
|
; cos(pi + T) = -cos(T)
|
|
; cos(3pi/2 + T) = sin(T)
|
|
; cos(2pi + T) = cos(T)
|
|
; Then if input T = q*(pi/2) + r,
|
|
; q mod 2 determines whether to use cos (0) or sin (1), and
|
|
; (q+1) mod 4 determines whether to negate result (2 or 3).
|
|
; Note that KLH takes (q + 129) mod 4; this is because of the
|
|
; braindamaged Pascal MOD function, which cannot handle a negative
|
|
; numerator.
|
|
;
|
|
COSTOP
|
|
MOVEQ #NANTRIG,D0 ; ASSUME THE WORST
|
|
MOVEQ #1,D2 ; QUO ADJUSTMENT
|
|
SUBQ.B #1,D1 ; -1 FOR INF, 0 OR 0, ...
|
|
BNE.S SINCOSCOM
|
|
BRA P1STUFF ; COS(+-0) IS 1
|
|
|
|
;
|
|
; Reduce A4 mod approximate pi/2, adding quotient to D2.
|
|
; Input: A4 = operand T
|
|
; D2 = quotient adjustment
|
|
; Output: A4 = reduced argument
|
|
; D2 = adjusted quotient
|
|
; Uses: D0
|
|
;
|
|
TRIGREDUCTION
|
|
PEA FPKPI2 ; APPROXIMATE PI/2
|
|
PEA (A4) ; T
|
|
FREMX ; T REM (PI/2), QUO IN D0
|
|
ADD.W D0,D2
|
|
RTS
|
|
|
|
;ne 100
|
|
;
|
|
; Evaluate sin(T) for reduced |T| <= pi/4.
|
|
; Use approximation (S = T*T) T - (T*S*(P(S) / Q(S)))
|
|
; Input: A4 = T
|
|
; Output: A4 = sin(T)
|
|
; Uses: A0-A2, cells W, X, Y
|
|
; Note use of sin/cos common routine depends on placement of Q coef table
|
|
; immediately before P coef table.
|
|
;
|
|
SINGUTS
|
|
LEA SINQ,A2 ; ADDRESS OF SIN Q TABLE
|
|
BSR.S POVERQ ; X <-- P/Q
|
|
|
|
PEA (A4) ; T
|
|
PEA (A2) ; T*T
|
|
FMULX ; W <-- T * (T*T)
|
|
|
|
PEA (A2) ; W = T^3
|
|
PEA (A0) ; X = P/Q
|
|
FMULX ; X <-- (T * (T*T)) * (P/Q)
|
|
|
|
PEA (A0) ; X
|
|
PEA (A4) ; T
|
|
FSUBX ; RES <-- T - (...)
|
|
RTS
|
|
|
|
|
|
;
|
|
; Common routine for trig functions guts.
|
|
; Input: A4 = operand T
|
|
; A2 = ptr to Q coef table, with P immediately after in memory
|
|
; Output: cell W = T*T
|
|
; cell X = (T*T) * (P(T*T) / Q(T*T))
|
|
; A0 = X
|
|
; A2 = W
|
|
; Uses: A0, A2, cell Y
|
|
;
|
|
T2POVERQ
|
|
BSR.S POVERQ
|
|
|
|
PEA (A2) ; W = T*T
|
|
PEA (A0) ; X = P/Q
|
|
FMULX ; X <-- (T*T) * P(T*T) / Q(T*T)
|
|
RTS
|
|
|
|
;
|
|
; Common routine for trig functions guts.
|
|
; Called by T2POVERQ and ATANGUTS.
|
|
; Input: A4 = operand T
|
|
; A2 = ptr to Q coef table, with P immediately after in memory
|
|
; Output: cell W = T*T
|
|
; cell X = P(T*T) / Q(T*T)
|
|
; A0 = X
|
|
; A2 = W
|
|
; Uses: A0, A2, cell Y
|
|
;
|
|
POVERQ
|
|
MOVEA.L A4,A0 ; T
|
|
LEA STW(A6),A1 ; W
|
|
BSR A0TOA1 ; COPY W <-- T
|
|
|
|
PEA (A1) ; W
|
|
PEA (A1) ; W
|
|
FMULX ; W <-- W*W = T*T
|
|
|
|
EXG A1,A2 ; A1 = Q COEF TABLE, A2 = W
|
|
LEA STY(A6),A0 ; CELL Y
|
|
BSR POLYEVAL ; EVAL Y <-- Q(T*T)
|
|
; LEAVES A1 = P COEF TABLE
|
|
PEA (A0) ; NEED Y FOR P/Q DIVIDE LATER
|
|
|
|
LEA STX(A6),A0 ; CELL X
|
|
BSR POLYEVAL ; EVAL X <-- P(T*T)
|
|
|
|
PEA (A0) ; X
|
|
FDIVX ; X <-- P(T*T) / Q(T*T)
|
|
RTS
|
|
|
|
|
|
;
|
|
; Evaluate cos(T) for reduced |T| <= pi/4.
|
|
; Use approximation (S = T*T):
|
|
; (S < 1/4): 1 - S/2 + S*S*(P(S) / Q(S))
|
|
; else: with Z = |X| - 0.5
|
|
; 0.875 - (Z/2 + (Z*Z/2 - S*S*(P(S) / Q(S))))
|
|
; Input: A4 = T
|
|
; Output: A4 = cos(T)
|
|
; Uses: A0-A2, cells W, X, Y
|
|
; Note use of sin/cos common routine depends on placement of Q coef table
|
|
; immediately before P coef table.
|
|
;
|
|
COSGUTS
|
|
LEA COSQ,A2 ; COS Q COEF TABLE, P THEREAFTER
|
|
BSR.S T2POVERQ ; W <-- T*T, X <-- T*T*P/Q
|
|
|
|
PEA (A2) ; W = T*T
|
|
PEA (A0) ; X = (T*T) * P/Q
|
|
FMULX ; X <-- T^4 * P/Q
|
|
|
|
;
|
|
; Now compare T*T in W with 1/4, to determine which formula to continue with.
|
|
;
|
|
PEA FPKFOURTH ; 1/4
|
|
PEA (A2) ; W
|
|
FCMPX ; COMPARE AS W - 1/4
|
|
FBGTS CGBIG
|
|
|
|
;
|
|
; Finish with first formula above.
|
|
;
|
|
PEA FPKHALF ; 1/2
|
|
PEA (A2) ; W = T*T
|
|
FMULX ; W <-- T*T/2
|
|
|
|
PEA (A2) ; W
|
|
PEA (A0) ; X = T^4 * P/Q
|
|
FSUBX ; X <-- (T^4 * P/Q) - T*T/2
|
|
|
|
MOVEA.L A4,A1 ; A1 = RESULT
|
|
BSR A0TOA1 ; RESULT = CURRENT X
|
|
|
|
PEA FPK1 ; 1
|
|
PEA (A4) ; RESULT
|
|
FADDX ; RES = 1 - T*T/2 + T^4*P/Q
|
|
RTS
|
|
|
|
;
|
|
; Evaluate long form of expression.
|
|
;
|
|
CGBIG
|
|
BCLR #7,(A4) ; RES <-- |T|
|
|
|
|
PEA FPKHALF ; 1/2
|
|
PEA (A4) ; RES
|
|
FSUBX ; RES <-- T' = |T| - 0.5
|
|
|
|
PEA (A0) ; SAVE X FOR LATER SUB
|
|
MOVEA.L A4,A0 ; RES
|
|
MOVEA.L A2,A1 ; W
|
|
BSR A0TOA1 ; W <-- T'
|
|
|
|
PEA FPKHALF ; 1/2
|
|
PEA (A1) ; W
|
|
FMULX ; W <-- T'/2
|
|
|
|
PEA (A1) ; W
|
|
PEA (A4) ; RES
|
|
FMULX ; RES <-- T'*T'/2
|
|
|
|
; X = T^4*P/Q PUSHED ABOVE
|
|
PEA (A4) ; RES
|
|
FSUBX ; RES <-- T'*T'/2 - T^4*P/Q
|
|
|
|
PEA (A1) ; W = T'/2
|
|
PEA (A4) ; RES
|
|
FADDX ; RES <-- T'/2 + (T'*T'/2 ...)
|
|
|
|
BCHG #7,(A4) ; RES <-- -RES
|
|
|
|
PEA FPK78 ; 0.875 = 7/8
|
|
PEA (A4) ; RES
|
|
FADDX ; RES <-- 0.875 + ...
|
|
RTS
|
|
|
|
;ne 100
|
|
;
|
|
; Tangent function.
|
|
; Input: A4 = operand T
|
|
; D1 = class (1..6) reduced by #FCINF
|
|
; Output: A4 = result
|
|
; Uses: A0-A2, D0-D2
|
|
;
|
|
;
|
|
; About the argument reduction: T is reduced MOD approximate pi/2,
|
|
; leaving its magnitude no bigger than approximate pi/4.
|
|
; Recall the identities:
|
|
; tan(T) = tan(T)
|
|
; tan(pi/2 + T) = -1/tan(T)
|
|
; tan(pi + T) = tan(T)
|
|
; Then if input T = q*(pi/2) + r,
|
|
; q mod 2 determines whether to negate and reciprocate tan.
|
|
;
|
|
TANTOP
|
|
MOVEQ #NANTRIG,D0 ; ASSUME THE WORST
|
|
MOVEQ #0,D2 ; NO QUO ADJUSTMENT FOR TAN
|
|
SUBQ.B #1,D1 ; -1 FOR INF, 0 OR 0, ...
|
|
BMI ERRORNAN ; INF IS ILLEGAL
|
|
BEQ RESULTDELIVERED ; TAN(+-0) IS +-0
|
|
|
|
;
|
|
; Have finite, nonzero argument.
|
|
;
|
|
BSR TRIGREDUCTION
|
|
BSR.S TANGUTS
|
|
|
|
;
|
|
; Check q mod 2 ...
|
|
;
|
|
ROR.W #1,D2 ; C BIT <-- QUO MOD 2
|
|
BCC.S @21
|
|
|
|
BCHG #7,(A4) ; NEGATE TAN
|
|
MOVEA.L A4,A0
|
|
LEA STW(A6),A1 ; MOVE TAN FOR RECIPROCAL
|
|
BSR A0TOA1 ; W <-- -TAN
|
|
PEA (A1) ; NEED W FOR DIVIDE
|
|
|
|
LEA FPK1,A0 ; A0 = 1
|
|
MOVEA.L A4,A1 ; RES
|
|
BSR A0TOA1 ; RES <-- 1
|
|
|
|
PEA (A4) ; RES
|
|
FDIVX ; RES <-- -1/TAN
|
|
|
|
; If TAN was 0 in last step, have infinity as result. In this case, copy the
|
|
; sign of the argument onto the resulting infinity. By the nature of the
|
|
; algorithm, flipping the result sign corrects the error.
|
|
|
|
BSR TESTDIVZER
|
|
BEQ.S @21
|
|
|
|
BCHG #7,(A4)
|
|
@21
|
|
BRA TRIGFINI
|
|
|
|
|
|
;
|
|
; Evaluate tan(T) for |T| <= pi/4.
|
|
; Use formulas: (S = T*T)
|
|
; S <= 1/4: T + (T^3/3 + T^5*P(S)/Q*S))
|
|
; else: T' = (T - 3/4)/3
|
|
; T + S/4 + S*(T' + T^3*P(S)/Q(S))
|
|
;
|
|
TANGUTS
|
|
LEA TANQ,A2 ; TAN Q COEFS, P IMMED AFTER
|
|
BSR T2POVERQ ; X <-- T^2*P/Q
|
|
|
|
;
|
|
; Compute T^5*P/Q, common to both formulas; save T^3 in cell Z.
|
|
;
|
|
MOVEA.L A4,A0 ; RES = T
|
|
LEA STZ(A6),A1
|
|
BSR A0TOA1 ; Z = T
|
|
|
|
PEA (A2) ; W = T*T
|
|
PEA (A1) ; Z
|
|
FMULX ; Z = T^3
|
|
|
|
PEA (A1) ; Z = T^3
|
|
LEA STX(A6),A0
|
|
PEA (A0) ; X
|
|
FMULX ; T^5*P/Q
|
|
|
|
;
|
|
; Compare T*T with 1/4 to decide which formula to continue.
|
|
;
|
|
PEA FPKFOURTH ; 1/4
|
|
PEA (A2) ; W = T*T
|
|
FCMPX ; COMPARE AS W - 1/4
|
|
FBGTS TGBIG
|
|
|
|
;
|
|
; Using first, simpler formula.
|
|
;
|
|
PEA FPK3 ; 3
|
|
PEA (A1) ; Z = T^3
|
|
FDIVX ; Z <-- T^3/3
|
|
|
|
PEA (A1) ; Z
|
|
PEA (A0) ; X
|
|
FADDX ; X <-- T^3/3 + T^5*P/Q
|
|
BRA.S TGFIN ; GO ADD TO T AND EXIT
|
|
|
|
;
|
|
; Using more complicated formula.
|
|
;
|
|
TGBIG
|
|
PEA (A0) ; SAVE X ADRS FOR LATER ADD
|
|
|
|
MOVEA.L A4,A0 ; A0 = T
|
|
LEA STY(A6),A1 ; A1 = Y
|
|
BSR A0TOA1 ; Y <-- T
|
|
|
|
PEA FPK34 ; 3/4
|
|
PEA (A1) ; Y
|
|
FSUBX ; Y <-- T - 3/4
|
|
|
|
PEA FPK3 ; 3
|
|
PEA (A1) ; Y
|
|
FDIVX ; Y <-- (T - 3/4)/3
|
|
|
|
PEA (A2) ; W = T*T
|
|
PEA (A1) ; Y = T'
|
|
FMULX ; Y <-- T*T*T'
|
|
|
|
; X = T^5*P/Q ALREADY PUSHED
|
|
PEA (A1) ; Y
|
|
FADDX ; Y <-- T*T*T' + T^5*P/Q
|
|
|
|
PEA FPKFOURTH ; 1/4
|
|
PEA (A2) ; W = T*T
|
|
FMULX ; W <-- T*T/4
|
|
|
|
PEA (A2) ; W
|
|
PEA (A1) ; Y
|
|
FADDX ; Y <-- T*T/4 + T*T*T'/3 + ...
|
|
|
|
MOVEA.L A1,A0 ; SET UP FOR LAST ADD...
|
|
|
|
;
|
|
; Finish off tangent, adding (A0) into T in RES.
|
|
;
|
|
TGFIN
|
|
PEA (A0) ; EITHER X OR Y
|
|
PEA (A4) ; RES = T
|
|
FADDX ; RES <-- T + (...)
|
|
RTS
|
|
|
|
;ne 100
|
|
;
|
|
; Arctan(T) for any -INF <= T <= INF.
|
|
; Input: A4 = operand T
|
|
; D1 = class (1..6) reduced by #FCINF
|
|
; Output: A4 = result
|
|
; Uses: A0-A2, D0-D2
|
|
;
|
|
;
|
|
; About the argument reduction: ATAN(T) is evaluated for 0 <= T <= 1.
|
|
; Recall the identities:
|
|
; atan(T) = atan(T)
|
|
; atan(-T) = -atan(T)
|
|
; atan(1/T) = pi/2 - atan(T)
|
|
; If T < 0 then atan(-T) is computed, and the result negated.
|
|
; If |T| > 1 then atan(1/|T|) is computed, and the result subtracted from pi/2.
|
|
; To compute atan of reduced T use formulas:
|
|
; T <= ATnCons = 0.267... T - T * P(T*T) / Q(T*T)
|
|
; else T - (A + (B*P(B*B)/Q(B*B) + x2fx2))
|
|
; where x2 and x2fx2 are constants, about 0.5 and 0.05, and
|
|
; A = (T - x2)/(1 + (1/(T*x2))), and
|
|
; B = (T - x2)/(1 + (T*x2)).
|
|
;
|
|
ATANTOP
|
|
SUBQ.B #1,D1 ; #FCINF ALREADY SUBTRACTED
|
|
BGE.S ATFINITE
|
|
|
|
LEA FPKPI2,A0 ; GET PI/2
|
|
MOVEA.L A4,A1 ; RESULT FIELD
|
|
BSR A0TOA1
|
|
CLR.B D1 ; ISOLATE SIGN IN HI BIT
|
|
OR.W D1,(A4) ; FORCE SIGN OF RESULT
|
|
BRA.S ATQUICK
|
|
ATFINITE
|
|
BNE.S ATHARD ; ZERO IF RESULT IS ZERO
|
|
ATQUICK
|
|
BRA RESULTDELIVERED
|
|
ATHARD
|
|
BCLR #7,(A4) ; |T|, SIGN IN D1.W
|
|
BSR.S ATANGUTS
|
|
CLR.B D1 ; CLEAR CLASS CODE
|
|
OR.W D1,(A4) ; REPLACE SIGN OF ATAN
|
|
BRA TRIGFINI
|
|
|
|
;
|
|
; Use D2 to store Boolean about whether input T was inverted in order
|
|
; to obtain an argument no bigger than one.
|
|
;
|
|
ATANGUTS
|
|
MOVEQ #0,D2 ; SET TO FALSE
|
|
PEA FPK1 ; 1
|
|
PEA (A4) ; T
|
|
FCMPX ; COMPARE AS T-1
|
|
FBLES AGNOINV
|
|
|
|
MOVEQ #-1,D2 ; SET TO TRUE
|
|
MOVEA.L A4,A0 ; RES = T
|
|
LEA STW(A6),A1 ; CELL W
|
|
BSR A0TOA1 ; W <-- T
|
|
PEA (A1) ; ADRS OF W FOR DIV BELOW
|
|
|
|
LEA FPK1,A0 ; 1
|
|
MOVEA.L A4,A1 ; RES
|
|
BSR A0TOA1 ; RES <-- 1
|
|
|
|
PEA (A1)
|
|
FDIVX ; RES <-- 1/T
|
|
AGNOINV
|
|
;
|
|
; Store a copy of reduced T on stack for later.
|
|
;
|
|
MOVE.L (A4)+,-(SP) ; HI ORDER LONG
|
|
MOVE.L (A4)+,-(SP) ; MED LONG
|
|
MOVE.W (A4),-(SP) ; LOW WORD
|
|
SUBQ.L #8,A4 ; RESTORE RES PTR
|
|
|
|
;
|
|
; Select short or long form based on RES vs ATnCons, about 0.268.
|
|
;
|
|
PEA FPKATNCONS
|
|
PEA (A4) ; RES
|
|
FCMPX ; COMPARE AS RES - ATNCONS
|
|
FBGTS AGLONGFORM
|
|
;
|
|
; Short form.
|
|
;
|
|
LEA ATANQ,A2
|
|
BSR POVERQ ; X <-- P(T*T)/Q(T*T)
|
|
PEA (A0) ; X = P(T*T)/Q(T*T)
|
|
PEA (A4) ; RES = T
|
|
FMULX ; RES <-- T*P/Q
|
|
BRA AGFINI
|
|
|
|
;
|
|
; Long form.
|
|
;
|
|
AGLONGFORM
|
|
MOVEA.L A4,A0 ; RES = T
|
|
LEA STW(A6),A1 ; CELL W
|
|
BSR A0TOA1 ; W <-- T
|
|
|
|
PEA FPKX2 ; X2
|
|
PEA (A1) ; W = T
|
|
FMULX ; W <-- T*X2
|
|
PEA (A1) ; SAVE W FOR DIV BELOW
|
|
|
|
LEA FPK1,A0 ; 1
|
|
LEA STY(A6),A1 ; CELL Y
|
|
BSR A0TOA1 ; Y <-- 1
|
|
|
|
; W = T*X2 PUSHED ABOVE
|
|
PEA (A1) ; Y
|
|
FDIVX ; Y <-- 1/(T*X2)
|
|
|
|
PEA FPK1 ; 1
|
|
PEA (A1) ; Y = 1/(T*X2)
|
|
FADDX ; Y <-- 1 + 1/(T*X2)
|
|
|
|
PEA FPK1 ; 1
|
|
PEA STW(A6) ; W = T*X2
|
|
FADDX ; W <-- 1 + T*X2
|
|
|
|
PEA FPKX2 ; CONSTANT X2
|
|
PEA (A4) ; RES = T
|
|
FSUBX ; RES <-- T-X2
|
|
|
|
MOVEA.L A4,A0 ; RES = T-X2
|
|
LEA STZ(A6),A1 ; CELL Z
|
|
BSR A0TOA1 ; Z <-- T-X2
|
|
|
|
PEA STW(A6) ; W = 1 + T*X2
|
|
PEA (A4) ; RES = T-X2
|
|
FDIVX ; RES <-- (T-X2)/(1 + T*X2) = B
|
|
|
|
PEA STY(A6) ; Y = 1 + 1/(T*X2)
|
|
PEA (A1) ; Z = T-X2
|
|
FDIVX ; Z <-- (T-X2)/(1+1/(T*X2)) = A
|
|
|
|
LEA ATANQ,A2
|
|
BSR POVERQ ; X <-- P(B*B)/Q(B*B)
|
|
; W <-- B*B, UNUSED
|
|
; Y <-- JUNK
|
|
; Z = A, STILL
|
|
; RES = B, STILL
|
|
|
|
PEA (A0) ; X = P(B*B)/Q(B*B)
|
|
PEA (A4) ; RES = B
|
|
FMULX ; RES <-- B*P/Q
|
|
|
|
PEA FPKX2FX2 ; CONSTANT X2FX2
|
|
PEA (A4) ; RES = B*P/Q
|
|
FADDX ; RES <-- B*P/Q + X2FX2
|
|
|
|
PEA STZ(A6) ; Z = A
|
|
PEA (A4) ; RES = ...
|
|
FADDX ; RES = A + B*P/Q + X2FX2
|
|
|
|
;
|
|
; Finish up by computing:
|
|
; no inversion above: T - RES in RES
|
|
; inversion above: pi/2 - (T - RES) in RES
|
|
; Remember that T was pushed onto stack earlier.
|
|
;
|
|
AGFINI
|
|
LEA STW+8(A6),A1 ; 8 BYTES INTO CELL W
|
|
MOVE.W (SP)+,(A1) ; LOW WORD
|
|
MOVE.L (SP)+,-(A1)
|
|
MOVE.L (SP)+,-(A1) ; W <-- SAVED T
|
|
|
|
PEA (A1) ; W = SAVED T
|
|
PEA (A4) ; RES
|
|
FSUBX ; RES - T
|
|
|
|
TST.W D2 ; NONZERO IF INVERTED
|
|
BNE.S AGSUBPI2
|
|
|
|
BCHG #7,(A4) ; NEGATE TO T-RES
|
|
RTS ; RETURN TO BELOW ATANTOP
|
|
AGSUBPI2
|
|
PEA FPKPI2 ; PI/2
|
|
PEA (A4) ; RES
|
|
FADDX ; PI/2 - (T - RES)
|
|
RTS ; RETURN TO BELOW ATANTOP
|
|
|
|
;ne 100
|
|
;
|
|
; Random number generator. Adapted from "A More Portable FORTRAN Random
|
|
; Number Generator," Linus Schrage, ACM Transactions on Mathematical
|
|
; Software, Vol. 5, No. 2, June 1979, pp. 132-138.
|
|
;
|
|
; NextT <-- ARand * T + PRand
|
|
; where ARand = 7^5 and PRand = 2^31-1
|
|
; X is presumed to be an integer strictly between 0 and 2^31-1.
|
|
; Input: A4 = T
|
|
; Output: A4 = NextT
|
|
; Uses: D0
|
|
;
|
|
RANDTOP
|
|
PEA FPKARAND
|
|
PEA (A4) ; T
|
|
FMULX ; RES <-- T * ARAND
|
|
|
|
PEA FPKPRAND
|
|
PEA (A4) ; RES = T * ARAND
|
|
FREMX ; RES <-- (T * ARAND) REM PRAND
|
|
|
|
TST.B (A4) ; IF RES < 0, MUST ADJUST UP
|
|
BPL.S @1
|
|
|
|
PEA FPKPRAND
|
|
PEA (A4)
|
|
FADDX ; RES <-- (...) + PRAND
|
|
@1
|
|
BRA RESULTDELIVERED
|
|
|
|
|