mpw-shell/lempar.cxx
2016-02-04 21:57:17 -05:00

1065 lines
33 KiB
C++

/*
January, 2016. Sample class-based version.
#define LEMON_SUPER as the name of a class which overrides lemon_base<TokenType>.
The parser will be implemented in terms of that.
add a %code section to instantiate it.
*/
/*
** 2000-05-29
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** Driver template for the LEMON parser generator.
**
** The "lemon" program processes an LALR(1) input grammar file, then uses
** this template to construct a parser. The "lemon" program inserts text
** at each "%%" line. Also, any "P-a-r-s-e" identifer prefix (without the
** interstitial "-" characters) contained in this template is changed into
** the value of the %name directive from the grammar. Otherwise, the content
** of this template is copied straight through into the generate parser
** source file.
**
** The following is the concatenation of all %include directives from the
** input grammar file:
*/
#include <cstdio>
#include <cassert>
#include <type_traits>
#include <new>
#include <memory>
namespace {
// use std::allocator etc?
// this is here so you can do something like Parse(void *, int, my_token &&) or (... const my_token &)
template<class T> struct yy_fix_type {
typedef typename std::remove_const<typename std::remove_reference<T>::type>::type type;
};
template<>
struct yy_fix_type<void> {
typedef struct {} type;
};
template<class T, class... Args>
typename yy_fix_type<T>::type &yy_constructor(void *vp, Args&&... args ) {
typedef typename yy_fix_type<T>::type TT;
TT *tmp = ::new(vp) TT(std::forward<Args>(args)...);
return *tmp;
}
template<class T>
typename yy_fix_type<T>::type &yy_cast(void *vp) {
typedef typename yy_fix_type<T>::type TT;
return *(TT *)vp;
}
template<class T>
void yy_destructor(void *vp) {
typedef typename yy_fix_type<T>::type TT;
((TT *)vp)->~TT();
}
template<class T>
void yy_destructor(T &t) {
t.~T();
}
template<class T>
void yy_move(void *dest, void *src) {
typedef typename yy_fix_type<T>::type TT;
TT &tmp = yy_cast<TT>(src);
yy_constructor<TT>(dest, std::move(tmp));
yy_destructor(tmp);
}
// this is to destruct references in the event of an exception.
// only the LHS needs to be deleted -- other items remain on the
// shift/reduce stack in a valid state
// (as long as the destructor) doesn't throw!
template<class T>
struct yy_auto_deleter {
yy_auto_deleter(T &t) : ref(t), enaged(true)
{}
yy_auto_deleter(const yy_auto_deleter &) = delete;
yy_auto_deleter(yy_auto_deleter &&) = delete;
yy_auto_deleter &operator=(const yy_auto_deleter &) = delete;
yy_auto_deleter &operator=(yy_auto_deleter &&) = delete;
~yy_auto_deleter() {
if (enaged) yy_destructor(ref);
}
void cancel() { enaged = false; }
private:
T& ref;
bool enaged=false;
};
template<class T>
class yy_storage {
private:
typedef typename yy_fix_type<T>::type TT;
public:
typedef typename std::conditional<
std::is_trivial<TT>::value,
TT,
typename std::aligned_storage<sizeof(TT),alignof(TT)>::type
>::type type;
};
}
/************ Begin %include sections from the grammar ************************/
%%
/**************** End of %include directives **********************************/
/* These constants specify the various numeric values for terminal symbols
** in a format understandable to "makeheaders". This section is blank unless
** "lemon" is run with the "-m" command-line option.
***************** Begin makeheaders token definitions *************************/
%%
/**************** End makeheaders token definitions ***************************/
/* The next sections is a series of control #defines.
** various aspects of the generated parser.
** YYCODETYPE is the data type used to store the integer codes
** that represent terminal and non-terminal symbols.
** "unsigned char" is used if there are fewer than
** 256 symbols. Larger types otherwise.
** YYNOCODE is a number of type YYCODETYPE that is not used for
** any terminal or nonterminal symbol.
** YYFALLBACK If defined, this indicates that one or more tokens
** (also known as: "terminal symbols") have fall-back
** values which should be used if the original symbol
** would not parse. This permits keywords to sometimes
** be used as identifiers, for example.
** YYACTIONTYPE is the data type used for "action codes" - numbers
** that indicate what to do in response to the next
** token.
** ParseTOKENTYPE is the data type used for minor type for terminal
** symbols. Background: A "minor type" is a semantic
** value associated with a terminal or non-terminal
** symbols. For example, for an "ID" terminal symbol,
** the minor type might be the name of the identifier.
** Each non-terminal can have a different minor type.
** Terminal symbols all have the same minor type, though.
** This macros defines the minor type for terminal
** symbols.
** YYMINORTYPE is the data type used for all minor types.
** This is typically a union of many types, one of
** which is ParseTOKENTYPE. The entry in the union
** for terminal symbols is called "yy0".
** YYSTACKDEPTH is the maximum depth of the parser's stack. If
** zero the stack is dynamically sized using realloc()
** YYERRORSYMBOL is the code number of the error symbol. If not
** defined, then do no error processing.
** YYNSTATE the combined number of states.
** YYNRULE the number of rules in the grammar
** YY_MAX_SHIFT Maximum value for shift actions
** YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
** YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions
** YY_MIN_REDUCE Maximum value for reduce actions
** YY_ERROR_ACTION The yy_action[] code for syntax error
** YY_ACCEPT_ACTION The yy_action[] code for accept
** YY_NO_ACTION The yy_action[] code for no-op
*/
#ifndef INTERFACE
# define INTERFACE 1
#endif
/************* Begin control #defines *****************************************/
%%
/************* End control #defines *******************************************/
namespace {
/* The yyzerominor constant is used to initialize instances of
** YYMINORTYPE objects to zero. */
const YYMINORTYPE yyzerominor = { 0 };
/* Define the yytestcase() macro to be a no-op if is not already defined
** otherwise.
**
** Applications can choose to define yytestcase() in the %include section
** to a macro that can assist in verifying code coverage. For production
** code the yytestcase() macro should be turned off. But it is useful
** for testing.
*/
#ifndef yytestcase
# define yytestcase(X)
#endif
/* Next are the tables used to determine what action to take based on the
** current state and lookahead token. These tables are used to implement
** functions that take a state number and lookahead value and return an
** action integer.
**
** Suppose the action integer is N. Then the action is determined as
** follows
**
** 0 <= N <= YY_MAX_SHIFT Shift N. That is, push the lookahead
** token onto the stack and goto state N.
**
** N between YY_MIN_SHIFTREDUCE Shift to an arbitrary state then
** and YY_MAX_SHIFTREDUCE reduce by rule N-YY_MIN_SHIFTREDUCE.
**
** N between YY_MIN_REDUCE Reduce by rule N-YY_MIN_REDUCE
** and YY_MAX_REDUCE
** N == YY_ERROR_ACTION A syntax error has occurred.
**
** N == YY_ACCEPT_ACTION The parser accepts its input.
**
** N == YY_NO_ACTION No such action. Denotes unused
** slots in the yy_action[] table.
**
** The action table is constructed as a single large table named yy_action[].
** Given state S and lookahead X, the action is computed as
**
** yy_action[ yy_shift_ofst[S] + X ]
**
** If the index value yy_shift_ofst[S]+X is out of range or if the value
** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S]
** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table
** and that yy_default[S] should be used instead.
**
** The formula above is for computing the action when the lookahead is
** a terminal symbol. If the lookahead is a non-terminal (as occurs after
** a reduce action) then the yy_reduce_ofst[] array is used in place of
** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of
** YY_SHIFT_USE_DFLT.
**
** The following are the tables generated in this section:
**
** yy_action[] A single table containing all actions.
** yy_lookahead[] A table containing the lookahead for each entry in
** yy_action. Used to detect hash collisions.
** yy_shift_ofst[] For each state, the offset into yy_action for
** shifting terminals.
** yy_reduce_ofst[] For each state, the offset into yy_action for
** shifting non-terminals after a reduce.
** yy_default[] Default action for each state.
**
*********** Begin parsing tables **********************************************/
%%
/********** End of lemon-generated parsing tables *****************************/
/* The next table maps tokens (terminal symbols) into fallback tokens.
** If a construct like the following:
**
** %fallback ID X Y Z.
**
** appears in the grammar, then ID becomes a fallback token for X, Y,
** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
** but it does not parse, the type of the token is changed to ID and
** the parse is retried before an error is thrown.
**
** This feature can be used, for example, to cause some keywords in a language
** to revert to identifiers if they keyword does not apply in the context where
** it appears.
*/
#ifdef YYFALLBACK
const YYCODETYPE yyFallback[] = {
%%
};
#endif /* YYFALLBACK */
/* The following structure represents a single element of the
** parser's stack. Information stored includes:
**
** + The state number for the parser at this level of the stack.
**
** + The value of the token stored at this level of the stack.
** (In other words, the "major" token.)
**
** + The semantic value stored at this level of the stack. This is
** the information used by the action routines in the grammar.
** It is sometimes called the "minor" token.
**
** After the "shift" half of a SHIFTREDUCE action, the stateno field
** actually contains the reduce action for the second half of the
** SHIFTREDUCE.
*/
struct yyStackEntry {
YYACTIONTYPE stateno; /* The state-number, or reduce action in SHIFTREDUCE */
YYCODETYPE major; /* The major token value. This is the code
** number for the token at this stack level */
YYMINORTYPE minor; /* The user-supplied minor token value. This
** is the value of the token */
};
/* The state of the parser is completely contained in an instance of
** the following structure */
#ifndef LEMON_SUPER
#error "LEMON_SUPER must be defined."
#endif
/* outside the class so the templates above are still accessible */
void yy_destructor(YYCODETYPE yymajor, YYMINORTYPE *yypminor);
void yy_move(YYCODETYPE yymajor, YYMINORTYPE *yyDest, YYMINORTYPE *yySource);
class yypParser : public LEMON_SUPER {
public:
using LEMON_SUPER::LEMON_SUPER;
virtual ~yypParser() override final;
virtual void parse(int, ParseTOKENTYPE &&) override final;
virtual void trace(FILE *, const char *) final override;
/*
** Return the peak depth of the stack for a parser.
*/
#ifdef YYTRACKMAXSTACKDEPTH
int yypParser::stack_peak(){
return yyidxMax;
}
#endif
const yyStackEntry *begin() const { return &yystack[0]; }
const yyStackEntry *end() const { return &yystack[yyidx > 0 ? yyidx + 1: 0]; }
protected:
private:
bool init = false;
int yyidx = -1; /* Index of top element in stack */
#ifdef YYTRACKMAXSTACKDEPTH
int yyidxMax = 0; /* Maximum value of yyidx */
#endif
int yyerrcnt = 0; /* Shifts left before out of the error */
#if YYSTACKDEPTH<=0
int yystksz = 0; /* Current side of the stack */
yyStackEntry *yystack = nullptr; /* The parser's stack */
void yyGrowStack();
#else
yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */
#endif
void initialize();
void yy_accept();
void yy_parse_failed();
void yy_syntax_error(int yymajor, YYMINORTYPE &yyminor);
void yy_transfer(yyStackEntry *yySource, yyStackEntry *yyDest);
void yy_pop_parser_stack();
int yy_find_shift_action(YYCODETYPE iLookAhead) const;
void yy_shift(int yyNewState, int yyMajor, YYMINORTYPE *yypMinor);
void yy_reduce(int yyruleno);
static int yy_find_reduce_action(int stateno, YYCODETYPE iLookAhead);
void yyStackOverflow(YYMINORTYPE *yypMinor);
#ifndef NDEBUG
void yyTraceShift(int yyNewState) const;
#else
# define yyTraceShift(X)
#endif
#ifndef NDEBUG
FILE *yyTraceFILE = 0;
const char *yyTracePrompt = 0;
#endif /* NDEBUG */
};
#ifndef NDEBUG
/*
** Turn parser tracing on by giving a stream to which to write the trace
** and a prompt to preface each trace message. Tracing is turned off
** by making either argument NULL
**
** Inputs:
** <ul>
** <li> A FILE* to which trace output should be written.
** If NULL, then tracing is turned off.
** <li> A prefix string written at the beginning of every
** line of trace output. If NULL, then tracing is
** turned off.
** </ul>
**
** Outputs:
** None.
*/
void yypParser::trace(FILE *TraceFILE, const char *zTracePrompt){
yyTraceFILE = TraceFILE;
yyTracePrompt = zTracePrompt;
if( yyTraceFILE==0 ) yyTracePrompt = 0;
else if( yyTracePrompt==0 ) yyTraceFILE = 0;
}
#endif /* NDEBUG */
#ifndef NDEBUG
/* For tracing shifts, the names of all terminals and nonterminals
** are required. The following table supplies these names */
const char *const yyTokenName[] = {
%%
};
#endif /* NDEBUG */
#ifndef NDEBUG
/* For tracing reduce actions, the names of all rules are required.
*/
const char *const yyRuleName[] = {
%%
};
#endif /* NDEBUG */
#if YYSTACKDEPTH<=0
/*
** Try to increase the size of the parser stack.
*/
void yypParser::yyGrowStack(){
int newSize;
yyStackEntry *pNew;
yyStackEntry *pOld = yystack;
int oldSize = yystksz;
newSize = oldSize*2 + 100;
//pNew = realloc(yystack, newSize*sizeof(pNew[0]));
pNew = (yyStackEntry *)calloc(newSize, sizeof(pNew[0]));
if( pNew ){
yystack = pNew;
yystksz = newSize;
for (int i = 0; i < oldSize; ++i) {
pNew[i].stateno = pOld[i].stateno;
pNew[i].major = pOld[i].major;
yy_move(pOld[i].major, &pNew[i].minor, &pOld[i].minor);
}
free(pOld);
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE,"%sStack grows to %d entries!\n",
yyTracePrompt, yystksz);
}
#endif
}
}
#endif
/*
* this should be in the constructor, but we inherit the parent's
* constructors.
*/
void yypParser::initialize() {
if (!init) {
#if YYSTACKDEPTH<=0
yyGrowStack();
#else
memset(yystack, 0, sizeof(yystack));
#endif
}
init = true;
}
/* The following function deletes the "minor type" or semantic value
** associated with a symbol. The symbol can be either a terminal
** or nonterminal. "yymajor" is the symbol code, and "yypminor" is
** a pointer to the value to be deleted. The code used to do the
** deletions is derived from the %destructor and/or %token_destructor
** directives of the input grammar.
*/
void yy_destructor(
YYCODETYPE yymajor, /* Type code for object to destroy */
YYMINORTYPE *yypminor /* The object to be destroyed */
){
switch( yymajor ){
/* Here is inserted the actions which take place when a
** terminal or non-terminal is destroyed. This can happen
** when the symbol is popped from the stack during a
** reduce or during error processing or when a parser is
** being destroyed before it is finished parsing.
**
** Note: during a reduce, the only symbols destroyed are those
** which appear on the RHS of the rule, but which are *not* used
** inside the C code.
*/
/********* Begin destructor definitions ***************************************/
%%
/********* End destructor definitions *****************************************/
default: break; /* If no destructor action specified: do nothing */
}
}
/*
* moves an object (such as when growing the stack).
* Source is constructed.
* Destination is also destructed.
*
*/
void yy_move(
YYCODETYPE yymajor, /* Type code for object to move */
YYMINORTYPE *yyDest, /* */
YYMINORTYPE *yySource /* */
){
switch( yymajor ){
/********* Begin move definitions ***************************************/
%%
/********* End move &&definitions *****************************************/
default: break; /* If no move action specified: do nothing */
//yyDest.minor = yySource.minor;
}
}
/*
** Pop the parser's stack once.
**
** If there is a destructor routine associated with the token which
** is popped from the stack, then call it.
*/
void yypParser::yy_pop_parser_stack(){
yyStackEntry *yytos;
assert( yyidx>=0 );
yytos = &yystack[yyidx--];
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE,"%sPopping %s\n",
yyTracePrompt,
yyTokenName[yytos->major]);
}
#endif
yy_destructor(yytos->major, &yytos->minor);
}
/*
** Deallocate and destroy a parser. Destructors are called for
** all stack elements before shutting the parser down.
**
** If the YYPARSEFREENEVERNULL macro exists (for example because it
** is defined in a %include section of the input grammar) then it is
** assumed that the input pointer is never NULL.
*/
yypParser::~yypParser() {
while(yyidx>=0 ) yy_pop_parser_stack();
#if YYSTACKDEPTH<=0
free(yystack);
#endif
}
/*
** Find the appropriate action for a parser given the terminal
** look-ahead token iLookAhead.
*/
int yypParser::yy_find_shift_action(
YYCODETYPE iLookAhead /* The look-ahead token */
) const {
int i;
int stateno = yystack[yyidx].stateno;
if( stateno>=YY_MIN_REDUCE ) return stateno;
assert( stateno <= YY_SHIFT_COUNT );
do{
i = yy_shift_ofst[stateno];
if( i==YY_SHIFT_USE_DFLT ) return yy_default[stateno];
assert( iLookAhead!=YYNOCODE );
i += iLookAhead;
if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
if( iLookAhead>0 ){
#ifdef YYFALLBACK
YYCODETYPE iFallback; /* Fallback token */
if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
&& (iFallback = yyFallback[iLookAhead])!=0 ){
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
}
#endif
assert( yyFallback[iFallback]==0 ); /* Fallback loop must terminate */
iLookAhead = iFallback;
continue;
}
#endif
#ifdef YYWILDCARD
{
int j = i - iLookAhead + YYWILDCARD;
if(
#if YY_SHIFT_MIN+YYWILDCARD<0
j>=0 &&
#endif
#if YY_SHIFT_MAX+YYWILDCARD>=YY_ACTTAB_COUNT
j<YY_ACTTAB_COUNT &&
#endif
yy_lookahead[j]==YYWILDCARD
){
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n",
yyTracePrompt, yyTokenName[iLookAhead],
yyTokenName[YYWILDCARD]);
}
#endif /* NDEBUG */
return yy_action[j];
}
}
#endif /* YYWILDCARD */
}
return yy_default[stateno];
}else{
return yy_action[i];
}
}while(1);
}
/*
** Find the appropriate action for a parser given the non-terminal
** look-ahead token iLookAhead.
*/
int yypParser::yy_find_reduce_action(
int stateno, /* Current state number */
YYCODETYPE iLookAhead /* The look-ahead token */
){
int i;
#ifdef YYERRORSYMBOL
if( stateno>YY_REDUCE_COUNT ){
return yy_default[stateno];
}
#else
assert( stateno<=YY_REDUCE_COUNT );
#endif
i = yy_reduce_ofst[stateno];
assert( i!=YY_REDUCE_USE_DFLT );
assert( iLookAhead!=YYNOCODE );
i += iLookAhead;
#ifdef YYERRORSYMBOL
if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
return yy_default[stateno];
}
#else
assert( i>=0 && i<YY_ACTTAB_COUNT );
assert( yy_lookahead[i]==iLookAhead );
#endif
return yy_action[i];
}
/*
** The following routine is called if the stack overflows.
*/
void yypParser::yyStackOverflow(YYMINORTYPE *yypMinor){
yyidx--;
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
}
#endif
while( yyidx>=0 ) yy_pop_parser_stack();
/* Here code is inserted which will execute if the parser
** stack every overflows */
/******** Begin %stack_overflow code ******************************************/
%%
/******** End %stack_overflow code ********************************************/
LEMON_SUPER::stack_overflow();
}
/*
** Print tracing information for a SHIFT action
*/
#ifndef NDEBUG
void yypParser::yyTraceShift(int yyNewState) const {
if( yyTraceFILE ){
if( yyNewState<YYNSTATE ){
fprintf(yyTraceFILE,"%sShift '%s', go to state %d\n",
yyTracePrompt,yyTokenName[yystack[yyidx].major],
yyNewState);
}else{
fprintf(yyTraceFILE,"%sShift '%s'\n",
yyTracePrompt,yyTokenName[yystack[yyidx].major]);
}
}
}
#else
# define yyTraceShift(X,Y)
#endif
/*
** Perform a shift action.
*/
void yypParser::yy_shift(
int yyNewState, /* The new state to shift in */
int yyMajor, /* The major token to shift in */
YYMINORTYPE *yypMinor /* Pointer to the minor token to shift in */
){
yyStackEntry *yytos;
yyidx++;
#ifdef YYTRACKMAXSTACKDEPTH
if( yyidx>yyidxMax ){
yyidxMax = yyidx;
}
#endif
#if YYSTACKDEPTH>0
if( yyidx>=YYSTACKDEPTH ){
yyStackOverflow(yypMinor);
return;
}
#else
if( yyidx>=yystksz ){
yyGrowStack();
if( yyidx>=yystksz ){
yyStackOverflow(yypMinor);
return;
}
}
#endif
yytos = &yystack[yyidx];
yytos->stateno = (YYACTIONTYPE)yyNewState;
yytos->major = (YYCODETYPE)yyMajor;
//yytos->minor = *yypMinor;
yy_move(yyMajor, &yytos->minor, yypMinor);
yyTraceShift(yyNewState);
}
/* The following table contains information about every rule that
** is used during the reduce.
*/
const struct {
YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */
unsigned char nrhs; /* Number of right-hand side symbols in the rule */
} yyRuleInfo[] = {
%%
};
/*
** Perform a reduce action and the shift that must immediately
** follow the reduce.
*/
void yypParser::yy_reduce(
int yyruleno /* Number of the rule by which to reduce */
){
int yygoto; /* The next state */
int yyact; /* The next action */
YYMINORTYPE yygotominor; /* The LHS of the rule reduced */
yyStackEntry *yymsp; /* The top of the parser's stack */
int yysize; /* Amount to pop the stack */
yymsp = &yystack[yyidx];
#ifndef NDEBUG
if( yyTraceFILE && yyruleno>=0
&& yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
yysize = yyRuleInfo[yyruleno].nrhs;
fprintf(yyTraceFILE, "%sReduce [%s], go to state %d.\n", yyTracePrompt,
yyRuleName[yyruleno], yymsp[-yysize].stateno);
}
#endif /* NDEBUG */
yygotominor = yyzerominor;
switch( yyruleno ){
/* Beginning here are the reduction cases. A typical example
** follows:
** case 0:
** #line <lineno> <grammarfile>
** { ... } // User supplied code
** #line <lineno> <thisfile>
** break;
*/
/********** Begin reduce actions **********************************************/
%%
/********** End reduce actions ************************************************/
};
assert( yyruleno>=0 && yyruleno<sizeof(yyRuleInfo)/sizeof(yyRuleInfo[0]) );
yygoto = yyRuleInfo[yyruleno].lhs;
yysize = yyRuleInfo[yyruleno].nrhs;
yyidx -= yysize;
yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto);
if( yyact <= YY_MAX_SHIFTREDUCE ){
if( yyact>YY_MAX_SHIFT ) yyact += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
/* If the reduce action popped at least
** one element off the stack, then we can push the new element back
** onto the stack here, and skip the stack overflow test in yy_shift().
** That gives a significant speed improvement. */
if( yysize ){
yyidx++;
yymsp -= yysize-1;
yymsp->stateno = (YYACTIONTYPE)yyact;
yymsp->major = (YYCODETYPE)yygoto;
//yymsp->minor = yygotominor;
yy_move(yygoto, &yymsp->minor, &yygotominor);
yyTraceShift(yyact);
}else{
yy_shift(yyact,yygoto,&yygotominor);
}
}else{
assert( yyact == YY_ACCEPT_ACTION );
yy_accept();
//yy_destructor(yygoto, &yygotominor); // ??? only an issue if terminal has rhs?
// yygotominor will not be deletable if now rhs.
}
}
/*
** The following code executes when the parse fails
*/
#ifndef YYNOERRORRECOVERY
void yypParser::yy_parse_failed(){
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
}
#endif
while( yyidx>=0 ) yy_pop_parser_stack();
/* Here code is inserted which will be executed whenever the
** parser fails */
/************ Begin %parse_failure code ***************************************/
%%
/************ End %parse_failure code *****************************************/
LEMON_SUPER::parse_failure();
}
#endif /* YYNOERRORRECOVERY */
/*
** The following code executes when a syntax error first occurs.
*/
void yypParser::yy_syntax_error(
int yymajor, /* The major type of the error token */
YYMINORTYPE &yyminor /* The minor type of the error token */
){
//#define TOKEN (yyminor.yy0)
auto &TOKEN = yy_cast<ParseTOKENTYPE>(std::addressof(yyminor.yy0));
/************ Begin %syntax_error code ****************************************/
%%
/************ End %syntax_error code ******************************************/
LEMON_SUPER::syntax_error(yymajor, TOKEN);
}
/*
** The following is executed when the parser accepts
*/
void yypParser::yy_accept(){
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
}
#endif
while( yyidx>=0 ) yy_pop_parser_stack();
/* Here code is inserted which will be executed whenever the
** parser accepts */
/*********** Begin %parse_accept code *****************************************/
%%
/*********** End %parse_accept code *******************************************/
LEMON_SUPER::parse_accept();
}
/* The main parser program.
** The first argument is a pointer to a structure obtained from
** "ParseAlloc" which describes the current state of the parser.
** The second argument is the major token number. The third is
** the minor token. The fourth optional argument is whatever the
** user wants (and specified in the grammar) and is available for
** use by the action routines.
**
** Inputs:
** <ul>
** <li> A pointer to the parser (an opaque structure.)
** <li> The major token number.
** <li> The minor token number.
** <li> An option argument of a grammar-specified type.
** </ul>
**
** Outputs:
** None.
*/
void yypParser::parse(
int yymajor, /* The major token code number */
ParseTOKENTYPE &&yyminor /* The value for the token */
){
YYMINORTYPE yyminorunion;
int yyact; /* The parser action. */
#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY)
int yyendofinput; /* True if we are at the end of input */
#endif
#ifdef YYERRORSYMBOL
int yyerrorhit = 0; /* True if yymajor has invoked an error */
#endif
if (!init) initialize();
/* (re)initialize the parser, if necessary */
if( yyidx<0 ){
#if YYSTACKDEPTH<=0
if( yystksz <=0 ){
/*memset(&yyminorunion, 0, sizeof(yyminorunion));*/
yyminorunion = yyzerominor;
yyStackOverflow(&yyminorunion);
return;
}
#endif
yyidx = 0;
yyerrcnt = -1;
yystack[0].stateno = 0;
yystack[0].major = 0;
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE,"%sInitialize. Empty stack. State 0\n",
yyTracePrompt);
}
#endif
}
//yyminorunion.yy0 = yyminor;
yy_constructor<ParseTOKENTYPE>(std::addressof(yyminorunion.yy0), std::move(yyminor));
#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY)
yyendofinput = (yymajor==0);
#endif
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE,"%sInput '%s'\n",yyTracePrompt,yyTokenName[yymajor]);
}
#endif
do{
yyact = yy_find_shift_action((YYCODETYPE)yymajor);
if( yyact <= YY_MAX_SHIFTREDUCE ){
if( yyact > YY_MAX_SHIFT ) yyact += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
yy_shift(yyact,yymajor,&yyminorunion);
yyerrcnt--;
yymajor = YYNOCODE;
}else if( yyact <= YY_MAX_REDUCE ){
yy_reduce(yyact-YY_MIN_REDUCE);
}else{
assert( yyact == YY_ERROR_ACTION );
#ifdef YYERRORSYMBOL
int yymx;
#endif
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt);
}
#endif
#ifdef YYERRORSYMBOL
/* A syntax error has occurred.
** The response to an error depends upon whether or not the
** grammar defines an error token "ERROR".
**
** This is what we do if the grammar does define ERROR:
**
** * Call the %syntax_error function.
**
** * Begin popping the stack until we enter a state where
** it is legal to shift the error symbol, then shift
** the error symbol.
**
** * Set the error count to three.
**
** * Begin accepting and shifting new tokens. No new error
** processing will occur until three tokens have been
** shifted successfully.
**
*/
if( yyerrcnt<0 ){
yy_syntax_error(yymajor,yyminorunion);
}
yymx = yystack[yyidx].major;
if( yymx==YYERRORSYMBOL || yyerrorhit ){
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE,"%sDiscard input token %s\n",
yyTracePrompt,yyTokenName[yymajor]);
}
#endif
yy_destructor((YYCODETYPE)yymajor,&yyminorunion);
yymajor = YYNOCODE;
}else{
while(
yyidx >= 0 &&
yymx != YYERRORSYMBOL &&
(yyact = yy_find_reduce_action(
yystack[yyidx].stateno,
YYERRORSYMBOL)) >= YY_MIN_REDUCE
){
yy_pop_parser_stack();
}
if( yyidx < 0 || yymajor==0 ){
yy_destructor((YYCODETYPE)yymajor,&yyminorunion);
yy_parse_failed();
yymajor = YYNOCODE;
}else if( yymx!=YYERRORSYMBOL ){
YYMINORTYPE u2;
u2.YYERRSYMDT = 0;
yy_shift(yyact,YYERRORSYMBOL,&u2);
}
}
yyerrcnt = 3;
yyerrorhit = 1;
#elif defined(YYNOERRORRECOVERY)
/* If the YYNOERRORRECOVERY macro is defined, then do not attempt to
** do any kind of error recovery. Instead, simply invoke the syntax
** error routine and continue going as if nothing had happened.
**
** Applications can set this macro (for example inside %include) if
** they intend to abandon the parse upon the first syntax error seen.
*/
yy_syntax_error(yymajor,yyminorunion);
yy_destructor((YYCODETYPE)yymajor,&yyminorunion);
yymajor = YYNOCODE;
#else /* YYERRORSYMBOL is not defined */
/* This is what we do if the grammar does not define ERROR:
**
** * Report an error message, and throw away the input token.
**
** * If the input token is $, then fail the parse.
**
** As before, subsequent error messages are suppressed until
** three input tokens have been successfully shifted.
*/
if( yyerrcnt<=0 ){
yy_syntax_error(yymajor,yyminorunion);
}
yyerrcnt = 3;
yy_destructor((YYCODETYPE)yymajor,&yyminorunion);
if( yyendofinput ){
yy_parse_failed();
}
yymajor = YYNOCODE;
#endif
}
}while( yymajor!=YYNOCODE && yyidx>=0 );
#ifndef NDEBUG
if( yyTraceFILE ){
int i;
fprintf(yyTraceFILE,"%sReturn. Stack=",yyTracePrompt);
for(i=1; i<=yyidx; i++)
fprintf(yyTraceFILE,"%c%s", i==1 ? '[' : ' ',
yyTokenName[yystack[i].major]);
fprintf(yyTraceFILE,"]\n");
}
#endif
return;
}
} // namespace