// clang++ -c -std=c++11 -stdlib=libc++ -Wno-deprecated-declarations loader.cpp /* * Copyright (c) 2013, Kelvin W Sherlock * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "loader.h" #include "debugger.h" #define LOADER_LOAD Settings Flags; const uint32_t kGlobalSize = 0x10000; // retained to make debugging easier. uint8_t *Memory = nullptr; uint32_t MemorySize = 0; #if 0 uint32_t EmulatedNewPtr(uint32_t size) { if (size & 0x01) size++; if (HighWater + size > MemorySize) { fprintf(stderr, "Insufficient Memory!\n"); exit(EX_CONFIG); } uint32_t address = HighWater; HighWater += size; std::memset(Memory + HighWater, 0, size); return address; } #endif uint8_t ReadByte(const void *data, uint32_t offset) { offset &= 0xffffff; return ((uint8_t *)data)[offset]; } uint16_t ReadWord(const void *data, uint32_t offset) { offset &= 0xffffff; return (ReadByte(data, offset) << 8) | ReadByte(data, offset+1); } uint32_t ReadLong(const void *data, uint32_t offset) { offset &= 0xffffff; return (ReadWord(data, offset) << 16) | ReadWord(data, offset+2); } void WriteByte(void *data, uint32_t offset, uint8_t value) { offset &= 0xffffff; ((uint8_t *)data)[offset] = value; } void WriteWord(void *data, uint32_t offset, uint16_t value) { offset &= 0xffffff; ((uint8_t *)data)[offset++] = value >> 8; ((uint8_t *)data)[offset++] = value; } void WriteLong(void *data, uint32_t offset, uint32_t value) { offset &= 0xffffff; ((uint8_t *)data)[offset++] = value >> 24; ((uint8_t *)data)[offset++] = value >> 16; ((uint8_t *)data)[offset++] = value >> 8; ((uint8_t *)data)[offset++] = value; } #ifndef LOADER_LOAD void reloc1(const uint8_t *r, uint32_t address, uint32_t offset) { // %00000000 00000000 -> break // %0xxxxxxx -> 7-bit value // %1xxxxxxx xxxxxxxx -> 15-bit value // %00000000 1xxxxxxx x{8} x{8} x{8} -> 31 bit value // ^ that's what the documentation says.. // that's how the 32-bit bootstrap works // DumpCode ignores the high 2 bytes. for(;;) { uint32_t x; uint32_t value; x = *r++; if (x == 0x00) { x = *r++; if (x == 0x00) break; x = (x << 8) | *r++; x = (x << 8) | *r++; x = (x << 8) | *r++; } else if (x & 0x80) { x &= 0x7f; x = (x << 8) | *r++; } x <<= 1; // * 2 address += x; value = memoryReadLong(address); memoryWriteLong(value + offset, address); } } // relocate a far model segment. void relocate(uint32_t address, uint32_t size, uint32_t a5) { // see MacOS RT Architecture, 10-23 .. 10-26 uint32_t offset; offset = memoryReadLong(address + 0x14); if (memoryReadLong(address + 0x18) != a5 && offset != 0) { memoryWriteLong(a5, address + 0x18); // current value of A5 reloc1(memoryPointer(address + offset), address, a5); } offset = memoryReadLong(address + 0x1c); if (memoryReadLong(address + 0x20) != address && offset != 0) { memoryWriteLong(address, address + 0x20); // segment load address. reloc1(memoryPointer(address + offset), address, address + 0x28); } } uint32_t load(const char *file) { ResFileRefNum refNum; FSRef ref; uint32_t returnAddress = 0; struct SegInfo { public: SegInfo() {} SegInfo(uint32_t a, uint32_t s, bool f) : address(a), size(s), farModel(f) {} uint32_t address = 0; uint32_t size = 0; bool farModel = 0; }; std::vector< SegInfo> segments; uint32_t a5 = 0; uint32_t jtStart = 0; uint32_t jtEnd = 0; // todo -- call RM::Native to open and load the Resource File. assert(FSPathMakeRef( (const UInt8 *)file, &ref, NULL) == noErr); // todo -- if it wasn't a resource file, this will fail // should provide a nicer error message. refNum = FSOpenResFile(&ref, fsRdPerm); assert(refNum != -1 ); int l = Count1Resources('CODE'); segments.reserve(l); assert(l > 0); for (int i = 0; i < l; ++i) { ResAttributes attr; ResID resID; ResType resType; Str255 name; uint32_t size; uint32_t address; Handle h; const uint8_t *data; uint16_t error; h = Get1IndResource('CODE', i + 1); if (!h) continue; HLock(h); data = *(const uint8_t **)h; attr = GetResAttrs(h); GetResInfo(h, &resID, &resType, name); size = GetHandleSize(h); if (segments.size() <= resID) segments.resize(resID + 1); // can't have duplicate resIDs, so no need to check that... if (resID == 0) { // jump table/a5 uint32_t above = ReadLong(data, 0); uint32_t below = ReadLong(data, 4); uint32_t jtSize = ReadLong(data, 8); uint32_t jtOffset = ReadLong(data, 12); uint32_t a5size = above + below; // TODO -- verify numbers are on word boundary? error = MM::Native::NewPtr(a5size, true, address); if (error) { fprintf(stderr, "Memory allocation error.\n"); return 0; } a5 = address + below; std::memcpy(memoryPointer(a5 + jtOffset), data + 16 , jtSize); segments[resID] = SegInfo(address, a5size, false); jtStart = a5 + jtOffset; jtEnd = jtStart + jtSize; // 0x0934 - CurJTOffset (16-bit) memoryWriteWord(jtOffset, MacOS::CurJTOffset); // 0x0904 -- CurrentA5 (32-bit) memoryWriteLong(a5, MacOS::CurrentA5); cpuSetAReg(5, a5); } else { bool farModel = false; if (data[0] == 0xff && data[1] == 0xff) farModel = true; error = MM::Native::NewPtr(size, false, address); if (error) { fprintf(stderr, "Memory allocation error.\n"); return 0; } std::memcpy(memoryPointer(address), data, size); segments[resID] = SegInfo(address, size, farModel); } ReleaseResource(h); } // now link the segment 0 jump table... assert(a5); bool first = true; bool farModel = false; for (; jtStart < jtEnd; jtStart += 8) { uint16_t seg; uint32_t offset; if (farModel) { seg = memoryReadWord(jtStart + 0); offset = memoryReadLong(jtStart + 4); assert(memoryReadWord(jtStart + 2) == 0xA9F0); } else { uint16_t farModelCheck; offset = memoryReadWord(jtStart); farModelCheck = memoryReadWord(jtStart + 2); seg = memoryReadWord(jtStart + 4); if (farModelCheck == 0xffff) { farModel = true; continue; } assert(memoryReadWord(jtStart + 2) == 0x3F3C); assert(memoryReadWord(jtStart + 6) == 0xA9F0); } assert(seg < segments.size()); auto p = segments[seg]; //assert(p.first); // missing segment?! //assert(offset < p.second); assert(p.address); // missing segment?! assert(offset < p.size); // +$4/$28 for the jump table info header. uint32_t address = p.address + offset + (p.farModel ? 0x00 : 0x04); // was 0x28 // JMP absolute long memoryWriteWord(0x4EF9, jtStart + 2); memoryWriteLong(address, jtStart + 4); if (first) { //cpuSetPC(address); returnAddress = address; first = false; } } // far-model relocation. This happens here, after a5 is loaded. for (const auto &seg : segments) { if (seg.farModel) { relocate(seg.address, seg.size, a5); } } // set pc to jump table entry 0. return returnAddress; } #endif void GlobalInit() { // todo -- move this somewhere better. // 0x031a - Lo3Bytes memoryWriteLong(0x00ffffff, MacOS::Lo3Bytes); // 0x0a02 - OneOne memoryWriteLong(0x00010001, MacOS::OneOne); // 0x0a06 - MinusOne memoryWriteLong(0xffffffff, MacOS::MinusOne); // todo -- expects high stack, low heap. // the allocator currently works from the top down, // so put stack at top of memory? // 0x0130 -- ApplLimit memoryWriteLong(Flags.memorySize - 1, MacOS::ApplLimit); } void CreateStack() { // allocate stack, set A7... uint32_t address; uint16_t error; Flags.stackSize = (Flags.stackSize + 3) & ~0x03; error = MM::Native::NewPtr(Flags.stackSize, true, address); if (error) { fprintf(stderr, "Unable to allocate stack (%08x bytes)\n", Flags.stackSize); exit(EX_CONFIG); } Flags.stackRange.first = address; Flags.stackRange.second = address + Flags.stackSize; // TODO -- is there a global for the max (min) stack pointer? // address grows down // -4 is for the return address. cpuSetAReg(7, Flags.stackRange.second - 4); // return address. memoryWriteLong(MacOS::MinusOne, Flags.stackRange.second - 4); // MinusOne Global -- 0xffff ffff } void LogToolBox(uint32_t pc, uint16_t trap) { const char *name; name = TrapName(trap); if (name) { fprintf(stderr, "$%08X %-51s ; %04X\n", pc, name, trap); } else { fprintf(stderr, "$%08X Tool #$%04X ; %04X\n", pc, trap, trap); } } void InstructionLogger() { static char strings[4][256]; for (unsigned j = 0; j < 4; ++j) strings[j][0] = 0; uint32_t pc = cpuGetPC(); uint16_t opcode = ReadWord(Memory, pc); if ((opcode & 0xf000) == 0xa000) { LogToolBox(pc, opcode); return; } if (Flags.traceCPU) { cpuDisOpcode(pc, strings[0], strings[1], strings[2], strings[3]); // address, data, instruction, operand fprintf(stderr, "%s %-10s %-40s ; %s\n", strings[0], strings[2], strings[3], strings[1]); // todo -- trace registers (only print changed registers?) #if 0 if (pc >= 0x00010E94 && pc <= 0x00010FC0) { fprintf(stderr, "d7 = %08x\n", cpuGetDReg(7)); } #endif } int mboffset = 0; switch (opcode) { case 0x4E75: // rts case 0x4ED0: // jmp (a0) mboffset = 2; break; case 0x4E74: // rtd # mboffset = 4; break; } if (mboffset) // RTS or JMP (A0) { pc += mboffset; // check for MacsBug name after rts. std::string s; unsigned b = memoryReadByte(pc); if (b > 0x80 && b < 0xa0) { b -= 0x80; pc++; s.reserve(b); for (unsigned i = 0; i < b; ++i) { s.push_back(memoryReadByte(pc++)); } fprintf(stderr, "%s\n\n", s.c_str()); } } } void MemoryLogger(uint32_t address, int size, int readWrite, uint32_t value) { if (address < kGlobalSize) { const char *name = GlobalName(address); if (!name) name = "unknown"; fprintf(stderr, "%-20s %08x - ", name, address); if (!readWrite) { switch(size) { case 1: value = ReadByte(Memory, address); break; case 2: value = ReadWord(Memory, address); break; case 4: value = ReadLong(Memory, address); break; } } // todo -- for write, display previous value? fprintf(stderr, " %s %d bytes", readWrite ? "write" : "read ", size); switch(size) { case 1: fprintf(stderr, " [%02x]\n", value); break; case 2: fprintf(stderr, " [%04x]\n", value); break; case 3: fprintf(stderr, " [%06x]\n", value); break; case 4: fprintf(stderr, " [%08x]\n", value); break; default: fprintf(stderr, "\n"); break; } } } #define MPW_VERSION "0.7.1 [kf]" void help() { printf("MPW " MPW_VERSION "\n"); printf("Usage: mpw [options] utility ...\n"); printf("\n"); printf(" --help display usage information\n"); printf(" --trace-cpu print cpu information\n"); printf(" --trace-macsbug print macsbug names\n"); printf(" --trace-toolbox print toolbox calls\n"); printf(" --trace-mpw print mpw calls\n"); printf(" --memory-stats print memory usage information\n"); printf(" --ram= set the ram size. Default=16M\n"); printf(" --stack= set the stack size. Default=8K\n"); printf("\n"); } bool parse_number(const char *input, uint32_t *dest) { char *end; long value; int base = 0; // octal is dumb so don't allow it. while (isspace(*input)) ++input; if (*input == '0' && isdigit(input[1])) base = 10; errno = 0; value = strtol(input, &end, base); if (errno || value < 0 || input == end) { fprintf(stderr, "%s - invalid input\n", input); return false; } // M/K if (*end) { int old = value; if (strcasecmp(end, "M") == 0) value *= 1024 * 1024; else if (strcasecmp(end, "K") == 0) value *= 1024; else { fprintf(stderr, "%s - invalid input\n", input); return false; } if (value < old) { // overflow fprintf(stderr, "%s - invalid input\n", input); return false; } } if (dest) *dest = value; return true; } bool file_exists(const std::string & name) { struct stat st; return ::stat(name.c_str(), &st) == 0 && S_ISREG(st.st_mode); } std::string find_exe(const std::string &name) { // TODO -- use the environment variable for directories. if (file_exists(name)) return name; // if name is a path, then it doesn't exist. if (name.find('/') != name.npos) return std::string(); std::string path = MPW::RootDir(); if (path.empty()) return path; if (path.back() != '/') path.push_back('/'); path.append("Tools/"); path.append(name); if (file_exists(path)) return path; return std::string(); } void MainLoop() { #if 0 auto begin_emu_time = std::chrono::high_resolution_clock::now(); fprintf(stderr, "Begin Emulation Time: %20lld\n", (begin_emu_time - start_time).count()); #endif uint64_t cycles = 0; for (;;) { uint32_t pc = cpuGetPC(); uint32_t sp = cpuGetAReg(7); if (pc == 0x00000000) { fprintf(stderr, "Exiting - PC = 0\n"); exit(EX_SOFTWARE); } if (sp < Flags.stackRange.first) { fprintf(stderr, "Stack overflow error - please increase the stack size (--stack=size)\n"); fprintf(stderr, "Current stack size is 0x%06x\n", Flags.stackSize); exit(EX_SOFTWARE); } if (sp > Flags.stackRange.second) { fprintf(stderr, "Stack underflow error\n"); exit(EX_SOFTWARE); } if (cpuGetStop()) break; // will this also be set by an interrupt? #ifndef CPU_INSTRUCTION_LOGGING if (Flags.traceCPU || Flags.traceMacsbug) { InstructionLogger(); } #endif cycles += cpuExecuteInstruction(); } #if 0 auto end_emu_time = std::chrono::high_resolution_clock::now(); fprintf(stderr, " End Emulation Time: %20lld\n", (end_emu_time - start_time).count()); fprintf(stderr, " Cycles: %20lld\n", cycles); #endif } int main(int argc, char **argv) { // getopt... enum { kTraceCPU = 1, kTraceMacsBug, kTraceGlobals, kTraceToolBox, kTraceMPW, kDebugger, kMemoryStats, }; static struct option LongOpts[] = { { "ram",required_argument, NULL, 'r' }, { "stack", required_argument, NULL, 's' }, { "machine", required_argument, NULL, 'm' }, { "trace-cpu", no_argument, NULL, kTraceCPU }, { "trace-macsbug", no_argument, NULL, kTraceMacsBug }, { "trace-globals", no_argument, NULL, kTraceGlobals }, { "trace-toolbox", no_argument, NULL, kTraceToolBox }, { "trace-tools", no_argument, NULL, kTraceToolBox }, { "trace-mpw", no_argument, NULL, kTraceMPW }, { "debug", no_argument, NULL, kDebugger }, { "debugger", no_argument, NULL, kDebugger }, { "memory-stats", no_argument, NULL, kMemoryStats }, { "help", no_argument, NULL, 'h' }, { "version", no_argument, NULL, 'V' }, { NULL, 0, NULL, 0 } }; //auto start_time = std::chrono::high_resolution_clock::now(); std::vector defines; int c; while ((c = getopt_long(argc, argv, "+hVm:r:s:D:", LongOpts, NULL)) != -1) { switch(c) { case kTraceCPU: Flags.traceCPU = true; break; case kTraceMacsBug: Flags.traceMacsbug = true; break; case kTraceGlobals: Flags.traceGlobals = true; break; case kTraceToolBox: Flags.traceToolBox = true; break; case kTraceMPW: Flags.traceMPW = true; break; case kMemoryStats: Flags.memoryStats = true; break; case kDebugger: Flags.debugger = true; break; case 'm': if (!parse_number(optarg, &Flags.machine)) exit(EX_CONFIG); break; case 'r': if (!parse_number(optarg, &Flags.memorySize)) exit(EX_CONFIG); break; case 's': if (!parse_number(optarg, &Flags.stackSize)) exit(EX_CONFIG); break; case 'D': defines.push_back(optarg); break; case ':': case '?': help(); exit(EX_USAGE); break; case 'h': help(); exit(EX_OK); break; case 'V': printf("mpw version " MPW_VERSION "\n"); exit(EX_OK); break; } } argc -= optind; argv += optind; if (!argc) { help(); exit(EX_USAGE); } if (Flags.stackSize < 0x100) { fprintf(stderr, "Invalid stack size\n"); exit(EX_CONFIG); } if (Flags.memorySize < 0x200) { fprintf(stderr, "Invalid ram size\n"); exit(EX_CONFIG); } std::string command(argv[0]); // InitMPW updates argv... command = find_exe(command); if (command.empty()) { std::string mpw = MPW::RootDir(); fprintf(stderr, "Unable to find command %s\n", argv[0]); fprintf(stderr, "$MPW = %s\n", mpw.c_str()); exit(EX_USAGE); } argv[0] = ::strdup(command.c_str()); // hmm.. could setenv(mpw_command) instead. // move to CreateRam() Memory = Flags.memory = new uint8_t[Flags.memorySize]; MemorySize = Flags.memorySize; /// ahhh... need to set PC after memory. // for pre-fetch. memorySetMemory(Memory, MemorySize); // should we subtract memory from the top // for the stack vs allocating it? MM::Init(Memory, MemorySize, kGlobalSize); OS::Init(); MPW::Init(argc, argv, defines); cpuStartup(); cpuSetModel(3,0); CreateStack(); #ifdef LOADER_LOAD uint16_t err = Loader::Native::LoadFile(command); if (err) exit(EX_CONFIG); #else uint32_t address = load(command.c_str()); if (!address) exit(EX_CONFIG); #endif GlobalInit(); cpuSetALineExceptionFunc(ToolBox::dispatch); cpuSetFLineExceptionFunc(MPW::dispatch); if (Flags.traceGlobals) //memorySetGlobalLog(kGlobalSize); memorySetLoggingFunc(MemoryLogger); MPW::Trace = Flags.traceMPW; ToolBox::Trace = Flags.traceToolBox; if (Flags.traceCPU || Flags.traceMacsbug) { #ifdef CPU_INSTRUCTION_LOGGING cpuSetInstructionLoggingFunc(InstructionLogger); #endif // else do it manually below. } #ifndef LOADER_LOAD cpuInitializeFromNewPC(address); #endif if (Flags.debugger) Debug::Shell(); else MainLoop(); if (Flags.memoryStats) { MM::Native::PrintMemoryStats(); } uint32_t rv = MPW::ExitStatus(); if (rv > 0xff) rv = 0xff; exit(rv); }