mpw/bin/debugger.cpp
2014-12-30 14:09:07 -05:00

1328 lines
24 KiB
C++

/*
* Copyright (c) 2013, Kelvin W Sherlock
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <cstdint>
#include <cctype>
#include <cstring>
#include <cstdlib>
#include <signal.h>
#include <string>
#include <vector>
#include <array>
#include <unordered_set>
#include <unordered_map>
#include <map>
#include <deque>
#include <bitset>
#include <readline/readline.h>
#include "loader.h"
#include "address_map.h"
#include "debugger.h"
#include "debugger_internal.h"
#include <cpu/defs.h>
#include <cpu/CpuModule.h>
#include <macos/traps.h>
#include <macos/sysequ.h>
#include <macos/errors.h>
#include <mpw/mpw.h>
#include <toolbox/loader.h>
#include <toolbox/mm.h>
namespace {
using namespace Debug::Internal;
const uint32_t kGlobalSize = 0x10000;
const uint32_t kBackTraceSize = 20;
bool sigInt = false;
bool memBreak = false;
void sigIntHandler(int)
{
sigInt = true;
}
AddressMap brkMap; // address breaks
AddressMap rbrkMap; // read breaks.
AddressMap wbrkMap; // write breaks.
ToolMap tbrkMap; // tool breaks.
struct BackTraceInfo {
uint32_t a[8];
uint32_t d[8];
uint32_t pc;
uint16_t csr;
BackTraceInfo(bool populate = false) {
if (populate)
{
for (unsigned i = 0; i < 8; ++i) a[i] = cpuGetAReg(i);
for (unsigned i = 0; i < 8; ++i) d[i] = cpuGetDReg(i);
pc = cpuGetPC();
csr = cpuGetSR();
}
}
};
std::deque<BackTraceInfo> BackTrace;
void hexdump(const uint8_t *data, ssize_t size, uint32_t address = 0)
{
const char *HexMap = "0123456789abcdef";
char buffer1[16 * 3 + 1 + 1];
char buffer2[16 + 1];
ssize_t offset = 0;
unsigned i, j;
while(size > 0)
{
std::memset(buffer1, ' ', sizeof(buffer1));
std::memset(buffer2, ' ', sizeof(buffer2));
unsigned linelen = (unsigned)std::min(size, (ssize_t)16);
for (i = 0, j = 0; i < linelen; i++)
{
unsigned x = data[i];
buffer1[j++] = HexMap[x >> 4];
buffer1[j++] = HexMap[x & 0x0f];
j++;
if (i == 7) j++;
// isascii not part of std:: and may be a macro.
buffer2[i] = isascii(x) && std::isprint(x) ? x : '.';
}
buffer1[sizeof(buffer1)-1] = 0;
buffer2[sizeof(buffer2)-1] = 0;
std::printf("%06x: %s %s\n", address + (unsigned)offset, buffer1, buffer2);
offset += 16;
data += 16;
size -= 16;
}
std::printf("\n");
}
void printMacsbug(uint32_t pc, uint32_t opcode, uint32_t *newPC = nullptr)
{
// pc is actually pc after the opcode.
unsigned mboffset;
switch(opcode)
{
case 0x4E75: // rts
case 0x4ED0: // jmp (a0)
mboffset = 2;
break;
case 0x4E74: // rtd #
mboffset = 4;
break;
default:
return;
break;
}
pc += mboffset;
// check for MacsBug name after rts.
std::string s;
unsigned b = Debug::ReadByte(pc);
if (b >= 0x80 && b <= 0x9f)
{
b -= 0x80;
pc++;
if (!b) b = Debug::ReadByte(pc++);
s.reserve(b);
for (unsigned i = 0; i < b; ++i)
{
s.push_back(Debug::ReadByte(pc++));
}
printf(" %s\n\n", s.c_str());
// word-align
pc = pc + 1 & ~0x01;
// and possibly a zero-word after it.
if (Debug::ReadWord(pc) == 0x0000) pc += 2;
if (newPC) *newPC = pc;
}
}
// TODO -- state indicator for code/data
uint32_t disasm(uint32_t pc, uint16_t *op = nullptr)
{
static char strings[4][256];
if (pc >= Flags.memorySize)
{
if (op) *op = 0;
return pc;
}
uint16_t opcode = Debug::ReadWord(pc);
if (op) *op = opcode;
if ((opcode & 0xf000) == 0xa000)
{
const char *name;
name = TrapName(opcode);
if (name)
{
printf("$%08X %-51s ; %04X\n", pc, name, opcode);
}
else
{
printf("$%08X Tool #$%04X ; %04X\n",
pc, opcode, opcode);
}
pc += 2;
return pc;
}
for (unsigned j = 0; j < 4; ++j) strings[j][0] = 0;
uint32_t newpc = cpuDisOpcode(pc, strings[0], strings[1], strings[2], strings[3]);
// replace jsr address w/ jsr macsbug name, if possible.
// jsr offset(pc)
uint32_t address = 0;
switch (opcode)
{
case 0x4EBA: // jsr offset(pc)
{
int16_t offset = Debug::ReadWord(pc + 2);
address = pc + 2 + offset;
break;
}
case 0x4EB9: // jsr address
{
address = Debug::ReadLong(pc + 2);
break;
}
case 0x4EF9: // jmp address
{
address = Debug::ReadLong(pc + 2);
break;
}
case 0x4EAD: // jsr offset(a5)
{
// check if address is a jmp address (see above)
// and follow it. a5 should never change.
int16_t offset = Debug::ReadWord(pc + 2);
address = cpuGetAReg(5) + offset;
if (Debug::ReadWord(address) == 0x4EF9)
address = Debug::ReadLong(address + 2);
else address = 0;
break;
}
// consider checking branches?
}
if (address) {
auto iter = SymbolTableInvert.find(address);
if (iter != SymbolTableInvert.end())
{
strncpy(strings[3], iter->second.c_str(), 40);
strings[3][40] = 0;
}
}
printf("%s %-10s %-40s ; %s\n", strings[0], strings[2], strings[3], strings[1]);
printMacsbug(pc, opcode, &newpc);
return newpc;
}
bool step(bool trace)
{
// return false to break (toolbreak, address break, etc.)
uint16_t op;
memBreak = false;
//uint32_t prevPC = cpuGetPC();
// backtracing. store contents before the instruction.
if (BackTrace.size() == kBackTraceSize)
{
BackTrace.pop_front();
}
BackTrace.emplace_back(true);
//BackTrace.back().pc = prevPC;
cpuExecuteInstruction();
uint32_t pc = cpuGetPC();
if (trace) disasm(pc, &op);
else op = Debug::ReadWord(pc);
if (Flags.traceMacsbug && !trace)
printMacsbug(pc, op);
// will this also be set by an interrupt?
if (cpuGetStop())
{
if (!trace) disasm(pc);
printf("CPU stopped\n");
return false;
}
if (sigInt)
{
if (!trace) disasm(pc);
printf("^C break\n");
sigInt = false;
return false;
}
if (memBreak)
{
if (!trace) disasm(pc);
printf("Memory break\n");
memBreak = false;
return false;
}
// check for pc breaks
if (brkMap.lookup(pc))
{
if (!trace) disasm(pc);
printf("Address break: $%08x\n", pc);
return false;
}
// todo -- instruction break for rts /rtn
// check for toolbreaks.
if ((op & 0xf000) == 0xa000)
{
if (tbrkMap.lookup(op))
{
if (!trace) disasm(pc);
printf("Tool break: $%04x\n", op);
return false;
}
}
if (pc > Flags.memorySize)
{
printf("PC out of range\n");
return false;
}
uint32_t sp = cpuGetAReg(7);
if (sp < Flags.stackRange.first)
{
printf("Stack overflow error\n");
return false;
}
if (sp > Flags.stackRange.second)
{
printf("Stack underflow error\n");
return false;
}
return true;
}
static void LogWrite(int size, uint32_t value)
{
fprintf(stdout, " write %d bytes", size);
switch(size)
{
case 1:
fprintf(stdout, " [%02x]\n", value);
break;
case 2:
fprintf(stdout, " [%04x]\n", value);
break;
case 3:
fprintf(stdout, " [%06x]\n", value);
break;
case 4:
fprintf(stdout, " [%08x]\n", value);
break;
default:
fprintf(stdout, "\n");
break;
}
}
void MemoryLogger(uint32_t address, int size, int readWrite, uint32_t value)
{
if (address < kGlobalSize && Flags.traceGlobals)
{
const char *name = GlobalName(address);
if (!name) name = "unknown";
fprintf(stdout, "%-20s %08x - ", name, address);
if (readWrite)
{
LogWrite(size, value);
}
else
{
fprintf(stdout, " read %d bytes\n", size);
}
}
// check for memory breaks.
if (readWrite)
{
// todo -- what if writing 1 byte 4-bit address?
// todo -- if not single stepping at time of break, should
// disasm the prev pc before printing.
if (!wbrkMap.lookup(address)) return;
printf("Memory Break $%08x - ", address);
LogWrite(size, value);
// todo -- print previous value, old value.
memBreak = true;
}
else
{
if (!rbrkMap.lookup(address)) return;
printf("Memory Break $%08x - read %d bytes\n", address, size);
memBreak = true;
}
}
}
#pragma mark - Debugger
namespace Debug {
uint32_t ReadLong(uint32_t address)
{
uint32_t tmp = 0;
for (unsigned i = 0; i < 4; ++i)
{
if (address < Flags.memorySize)
tmp = (tmp << 8) + Flags.memory[address++];
}
return tmp;
}
uint16_t ReadWord(uint32_t address)
{
uint16_t tmp = 0;
for (unsigned i = 0; i < 2; ++i)
{
if (address < Flags.memorySize)
tmp = (tmp << 8) + Flags.memory[address++];
}
return tmp;
}
uint8_t ReadByte(uint32_t address)
{
if (address < Flags.memorySize)
return Flags.memory[address];
return 0;
}
void Help()
{
printf("help\n");
printf("break expression\n");
printf("step\n");
printf("continue\n");
printf("\n");
printf("print expression\n");
printf("list expression\n");
printf("dump expression\n");
printf("register=expression\n");
printf("bt | backtrace -- print cpu backtrace\n");
printf("expression;h -- print hexdump\n");
printf("expression;i -- print information\n");
printf("expression;l -- print assembly listing\n");
printf("\n");
printf("registers: a0-7, d0-7, pc, sp, fp, csr\n");
printf("\n");
}
void Print(uint32_t data)
{
// 32-bit unsigned int
printf("$%08x", data);
// 32-but unsigned
printf(" %12u", data);
// 32-bit signed int
int32_t negValue = 0;
if (data & 0x80000000)
negValue = (int32_t)data;
if ((data & 0xffff8000) == 0x8000)
negValue = (int16_t)data;
if (negValue != 0)
printf(" %12d", negValue);
else printf(" ");
// print binary value
{
std::string bins;
bins.reserve(32);
bins.push_back('%');
if (data > 0xffff)
{
for (unsigned i = 0, mask = 0x80000000; i < 16; ++i, mask >>= 1)
bins.push_back( data & mask ? '1' : '0');
}
if (data > 0xff)
{
for (unsigned i = 0, mask = 0x8000; i < 8; ++i, mask >>= 1)
bins.push_back( data & mask ? '1' : '0');
}
for (unsigned i = 0, mask = 0x80; i < 8; ++i, mask >>= 1)
bins.push_back( data & mask ? '1' : '0');
printf(" %33s", bins.c_str());
}
// 4-cc code? 2-cc code? 1-cc code?
char tmp[5];
int bits = 0;
tmp[0] = (data >> 24) & 0xff;
tmp[1] = (data >> 16) & 0xff;
tmp[2] = (data >> 8) & 0xff;
tmp[3] = (data >> 0) & 0xff;
tmp[4] = 0;
if (isprint(tmp[0])) bits |= (1 << 0);
if (isprint(tmp[1])) bits |= (1 << 1);
if (isprint(tmp[2])) bits |= (1 << 2);
if (isprint(tmp[3])) bits |= (1 << 3);
switch(bits)
{
case 0x0f:
printf(" '%s'", tmp);
break;
case 0x0e:
if (data <= 0xffffff)
printf(" '%s'", tmp + 1);
break;
case 0x0c:
if (data <= 0xffff)
printf(" '%s'", tmp + 2);
break;
case 0x08:
if (data <= 0xff)
printf(" '%s'", tmp + 3);
break;
}
printf("\n");
}
void Dump(uint32_t start, int size)
{
// TODO -- if no address, use previous address.
// TODO -- support range?
if (size <= 0) return;
uint32_t end = start + size;
if (start >= Flags.memorySize) return;
end = std::min(end, Flags.memorySize);
size = end - start;
hexdump(Flags.memory + start, size, start);
}
// grr... need separate count/range options.
void List(uint32_t pc, int count)
{
// TODO -- if no address, use previous address.
if (pc & 0x01)
{
printf("address is not aligned: $%08x\n", pc);
return;
}
for (int i = 0; i < count; ++i)
{
if (pc >= Flags.memorySize) break;
pc = disasm(pc);
}
}
void List(uint32_t pc, uint32_t endpc)
{
if (endpc < pc) return;
if (pc & 0x01)
{
printf("address is not aligned: $%08x\n", pc);
return;
}
while (pc <= endpc)
{
if (pc >= Flags.memorySize) break;
pc = disasm(pc);
}
}
const char *srBits(uint16_t sr)
{
static char srbits[20];
srbits[0] = sr & (1 << 15) ? 'T' : ' ';
srbits[1] = sr & (1 << 14) ? 'T' : ' ';
srbits[2] = sr & (1 << 13) ? 'S' : ' ';
srbits[3] = sr & (1 << 12) ? 'M' : ' ';
srbits[4] = ' ';
srbits[5] = sr & (1 << 10) ? 'I' : ' ';
srbits[6] = sr & (1 << 9) ? 'I' : ' ';
srbits[7] = sr & (1 << 8) ? 'I' : ' ';
srbits[8] = ' ';
srbits[9] = ' ';
srbits[10] = ' ';
srbits[11] = sr & (1 << 4) ? 'X' : ' ';
srbits[12] = sr & (1 << 3) ? 'N' : ' ';
srbits[13] = sr & (1 << 2) ? 'Z' : ' ';
srbits[14] = sr & (1 << 1) ? 'V' : ' ';
srbits[15] = sr & (1 << 0) ? 'C' : ' ';
srbits[16] = 0;
return srbits;
}
void PrintRegisters(const BackTraceInfo &i)
{
const char *srbits = srBits(i.csr);
printf(" 0 1 2 3 4 5 6 7\n");
printf("D: %08x %08x %08x %08x %08x %08x %08x %08x\n",
i.d[0], i.d[1], i.d[2], i.d[3],
i.d[4], i.d[5], i.d[6], i.d[7]
);
printf("A: %08x %08x %08x %08x %08x %08x %08x %08x\n",
i.a[0], i.a[1], i.a[2], i.a[3],
i.a[4], i.a[5], i.a[6], i.a[7]
);
printf("PC: %08X CSR: %04x %s\n", i.pc, i.csr, srbits);
}
void PrintRegisters()
{
uint16_t sr = cpuGetSR();
const char *srbits = srBits(sr);
printf(" 0 1 2 3 4 5 6 7\n");
printf("D: %08x %08x %08x %08x %08x %08x %08x %08x\n",
cpuGetDReg(0), cpuGetDReg(1), cpuGetDReg(2), cpuGetDReg(3),
cpuGetDReg(4), cpuGetDReg(5), cpuGetDReg(6), cpuGetDReg(7)
);
printf("A: %08x %08x %08x %08x %08x %08x %08x %08x\n",
cpuGetAReg(0), cpuGetAReg(1), cpuGetAReg(2), cpuGetAReg(3),
cpuGetAReg(4), cpuGetAReg(5), cpuGetAReg(6), cpuGetAReg(7)
);
printf("PC: %08X CSR: %04x %s\n", cpuGetPC(), sr, srbits);
}
void btdiff(const BackTraceInfo &prev, const BackTraceInfo &current)
{
bool nl = false;
for (unsigned i = 0; i < 8; ++i)
if (current.d[i] != prev.d[i]) {
printf(" D%u: %08x\n", i, current.d[i]);
nl = true;
}
for (unsigned i = 0; i < 8; ++i)
if (current.a[i] != prev.a[i]) {
printf(" A%u: %08x\n", i, current.a[i]);
nl = true;
}
// pc always changes, but it's included in the listing.
//printf("PC: %08x\n", current.pc);
if (current.csr != prev.csr) {
printf(" CSR: %04x %s\n", current.csr, srBits(current.csr));
nl = true;
}
if (nl) printf("\n");
}
void PrintBackTrace()
{
// backtrace.
auto iter = BackTrace.cbegin();
auto end = BackTrace.cend();
if (iter == end) return;
const BackTraceInfo *prev;
{
const BackTraceInfo &info = *iter;
// print all registers for the first entry.
// for subsequent entries, print changed registers.
//disasm(info.pc);
PrintRegisters(info);
printf("\n");
prev = &info;
++iter;
}
for ( ; iter != end; ++iter)
{
const BackTraceInfo &current = *iter;
disasm(prev->pc);
btdiff(*prev, current);
//
prev = &current;
}
// print current registers.
{
BackTraceInfo current(true);
disasm(prev->pc);
btdiff(*prev, current);
}
// finally, print the current instruction.
printf("---------\n");
disasm(cpuGetPC());
}
void ToolBreak(int32_t tool)
{
bool remove = false;
if (tool < 0)
{
tool = -tool;
remove = true;
}
if (tool >= 0xa000 && tool <= 0xafff)
{
if (remove) tbrkMap.remove(tool);
else tbrkMap.add(tool);
}
else
{
fprintf(stderr, "Invalid tool: $%04x\n", tool);
}
}
void ToolBreak()
{
// list all tool breaks.
if (!tbrkMap.size())
{
printf("No tool breaks\n");
return;
}
std::vector<unsigned> v;
v.reserve(tbrkMap.size());
for (auto kv : tbrkMap)
{
v.push_back(kv.first);
}
std::sort(v.begin(), v.end());
for (auto trap : v)
{
const char *name = TrapName(trap);
if (!name) name = "";
printf("$%04x %s\n", trap, name);
}
}
void Break(int32_t address)
{
// 24-bit only, - address to remove.
bool remove = false;
if (address < 0)
{
address = -address;
remove = true;
}
// what was I thinking? only allow 24-bit addresses?
if ((address & 0xff000000) == 0)
{
if (remove) brkMap.remove(address);
else brkMap.add(address);
}
else
{
fprintf(stderr, "Invalid address: $%08x\n", address);
}
}
void Break()
{
// list all tool breaks.
if (!brkMap.size())
{
printf("No breaks\n");
return;
}
std::vector<unsigned> v;
v.reserve(brkMap.size());
for (auto kv : brkMap)
{
v.push_back(kv.first);
}
std::sort(v.begin(), v.end());
for (auto address : v)
{
printf("$%08x\n", address);
}
}
void ReadBreak()
{}
void WriteBreak()
{}
void ReadWriteBreak()
{
}
void ReadBreak(int32_t address)
{
// sanity check address?
if (address < 0) rbrkMap.remove(-address);
else rbrkMap.add(address);
}
void WriteBreak(int32_t address)
{
// sanity check address?
if (address < 0) wbrkMap.remove(-address);
else wbrkMap.add(address);
}
void ReadWriteBreak(int32_t address)
{
ReadBreak(address);
WriteBreak(address);
}
void Step(const Command &cmd)
{
// TODO - step n to step specified # of instructions.
// TODO -- step @address to step until address?
// disasm 1 line, execute it.
int count = 0;
if (cmd.argc == 1) count = (int)cmd.argv[0];
if (count < 1) count = 1;
// TODO -- move to common function...
for (int i = 0; i < count; ++i)
{
if (!step(true)) break;
}
}
void Continue(const Command &cmd)
{
while (step(false)) ;
}
void SetARegister(unsigned reg, uint32_t value)
{
if (reg > 7) return;
if (reg == 7)
{
// sp/7 must be aligned.
if (value & 0x01)
{
fprintf(stderr, "Address is not aligned: $%08x\n", value);
return;
}
}
if (value > Flags.memorySize)
{
fprintf(stderr, "Warning: address exceeeds memory size: $%08x\n", value);
}
cpuSetAReg(reg, value);
}
void SetDRegister(unsigned reg, uint32_t value)
{
if (reg > 7) return;
cpuSetDReg(reg, value);
}
void SetXRegister(unsigned reg, uint32_t value)
{
if (reg == 0)
{
if (value & 0x01)
{
fprintf(stderr, "Address is not aligned: $%08x\n", value);
return;
}
if (value > Flags.memorySize)
{
fprintf(stderr, "Warning: address exceeeds memory size: $%08x\n", value);
}
//cpuSetPC(value);
cpuInitializeFromNewPC(value);
return;
}
if (reg == 1)
{
cpuSetSR(value & 0xffff);
}
}
// todo -- return a range
uint32_t VariableGet(const std::string &s)
{
auto iter = SymbolTable.find(s);
if (iter == SymbolTable.end()) return 0;
return iter->second.first;
}
// TODO -- take a Token and construct a pair, if it's a range.
// var = expr : expr or var = expr@count
void VariableSet(const std::string &key, uint32_t value)
{
SymbolTable.emplace(key, std::make_pair(value, 0));
}
void Info(uint32_t address)
{
// print info on the value.
Print(address);
// 1. as a pointer.
MM::Native::MemoryInfo(address);
// 2. (todo) - check SymbolTable for procedure address.
for (const auto &kv : SymbolTable)
{
const auto &name = kv.first;
auto range = kv.second;
//printf("%s: %x %x\n", name.c_str(), range.first, range.second);
// range end may be 0
if ((address == range.first) || (address >= range.first && address < range.second))
{
uint32_t offset = address - range.first;
if (offset)
printf("Routine: %s+$%x\n", name.c_str(), offset);
else
printf("Routine: %s\n", name.c_str());
break;
}
}
// 2. as a tool trap.
if (address >= 0xa000 && address <= 0xafff)
{
const char *cp = TrapName(address);
if (cp)
printf("Tool: %s\n", cp);
}
// 3. as a global
if (address <= 0xffff)
{
const char *cp = GlobalName(address);
if (cp)
printf("Global: %s\n", cp);
}
// 4 as an error
// almost all are negative 16-bit values,
// but may also be a positive 16-bit value.
uint16_t error = 0;
if (address <= 0xffff) error = address;
if ((address & 0xffff8000) == 0xffff8000) error = address;
if (error)
{
const char *cp = ErrorName(error);
// find returns an iterator to the hash bucket, which may contain
// other errors.
auto range = ErrorTableInvert.equal_range(error);
for(auto iter = range.first; iter != range.second; ++iter) {
printf("Error: %s", iter->second.c_str());
if (cp) printf(" %s", cp);
printf("\n");
cp = nullptr;
}
}
}
namespace {
/*
* returns a list of possible matches.
* Item[0] is the longest match.
*/
char **mpw_attempted_completion_function(const char* text, int _start, int _end)
{
std::string s(text);
// returns iter to first element _not less_ than key
// ie, >= key.
auto iter = SymbolTable.lower_bound(s);
unsigned count = 0;
unsigned length = s.length();
auto begin = iter;
for (;;)
{
if (iter == SymbolTable.end()) break;
if (iter->first.compare(0, length, s) != 0) break;
++count;
++iter;
}
auto end = iter;
if (!count) return NULL;
if (count > 100) return NULL;
if (count == 1)
{
char **buffer = (char **)malloc(2 * sizeof(char *));
buffer[0] = strdup(begin->first.c_str());
buffer[1] = NULL;
return buffer;
}
char **buffer = (char **)malloc((count + 2) * sizeof(char *));
unsigned i = 0;
auto min_length = begin->first.length();
// item 0 is the longest match. (fill in later.)
buffer[i++] = NULL;
for (iter = begin; iter != end; ++iter)
{
buffer[i++] = strdup(iter->first.c_str());
min_length = std::min(min_length, iter->first.length());
}
buffer[i] = NULL;
// assume the first is the longest, then search until not true.
buffer[0] = strdup(begin->first.c_str());
for (unsigned i = length; ; ++i)
{
if (i >= min_length)
{
buffer[0][i] = 0;
break;
}
char c = buffer[0][i];
if (!c) break;
bool nomatch = false;
for (int j = 1; ; ++j)
{
char *cp = buffer[j];
if (!cp) break;
if (cp[i] != c) nomatch = true;
}
if (nomatch)
{
buffer[0][i] = 0;
break;
}
}
return buffer;
}
// this is here to prevent filename tab completion, for now.
char *mpw_completion_entry_function(const char *text, int state)
{
return NULL;
}
void readline_init()
{
rl_readline_name = (char *)"mpw";
rl_attempted_completion_function = mpw_attempted_completion_function;
rl_completion_entry_function = (Function *)mpw_completion_entry_function;
}
}
// TODO -- RUN command - reload, re-initialize, re-execute
// TODO -- parser calls commands directly (except trace/step/run/etc)
void Shell()
{
char *cp;
readline_init();
add_history("!Andy, it still has history!");
Loader::Native::LoadDebugNames(SymbolTable);
LoadTrapFile(MPW::RootDirPathForFile("Errors.text"), ErrorTable);
LoadTrapFile(MPW::RootDirPathForFile("Globals.text"), GlobalTable);
LoadTrapFile(MPW::RootDirPathForFile("Traps.text"), TrapTable);
// load the error code to error mnemonic
ErrorTableInvert.reserve(ErrorTable.size());
for (const auto kv : ErrorTable) {
ErrorTableInvert.emplace(std::make_pair(kv.second, kv.first));
}
// address to function name.
SymbolTableInvert.reserve(SymbolTable.size());
for (const auto kv : SymbolTable) {
SymbolTableInvert.emplace(std::make_pair(kv.second.first, kv.first));
}
// start it up
printf("MPW Debugger shell\n\n");
disasm(cpuGetPC());
signal(SIGINT, sigIntHandler);
memorySetLoggingFunc(MemoryLogger);
for(;;)
{
cp = readline("] ");
if (!cp)
{
printf("\n");
break; // prompt for exit?
}
// parse the command...
const char *iter = cp;
while (*iter && isspace(*iter)) ++iter;
if (*iter)
{
Command cmd;
std::memset(&cmd, 0, sizeof(cmd));
if (ParseLine(iter, &cmd))
{
switch(cmd.action)
{
case cmdNull:
break;
case cmdStep:
Step(cmd);
break;
case cmdContinue:
Continue(cmd);
break;
default:
Help();
break;
}
}
// todo -- don't add if same as previous command.
add_history(cp);
}
free(cp);
}
}
} // namespace Debugger