mpw/toolbox/sane.cpp
2013-03-31 23:50:37 -04:00

653 lines
13 KiB
C++

#include "qd.h"
#include "toolbox.h"
#include <cpu/defs.h>
#include <cpu/CpuModule.h>
#include <cpu/fmem.h>
#include <stdlib.h>
#include <string>
#include "stackframe.h"
using ToolBox::Log;
namespace SANE
{
// long double is an 80-bit extended with an extra 48-bits of 0 padding.
typedef long double extended;
template <class T>
T readnum(uint32_t address);
template<>
int16_t readnum<int16_t>(uint32_t address)
{
return memoryReadWord(address);
}
template<>
int32_t readnum<int32_t>(uint32_t address)
{
return memoryReadLong(address);
}
template<>
float readnum<float>(uint32_t address)
{
static_assert(sizeof(float) == 4, "unexpected long double size");
uint32_t x = memoryReadLong(address);
return *((float *)&x);
}
template<>
double readnum<double>(uint32_t address)
{
static_assert(sizeof(double) == 8, "unexpected long double size");
uint64_t x = memoryReadLongLong(address);
return *((double *)&x);
}
template<>
long double readnum<long double>(uint32_t address)
{
char buffer[16];
static_assert(sizeof(long double) == 16, "unexpected long double size");
// read and swap 10 bytes
// this is very much little endian.
for (unsigned i = 0; i < 10; ++i)
{
buffer[9 - i] = memoryReadByte(address + i);
}
// remainder are 0-filled.
for (unsigned i = 10; i < 16; ++i)
buffer[i] = 0;
// now cast...
return *((long double *)buffer);
}
template<class T>
void writenum(T value, uint32_t address);
template<>
void writenum<int16_t>(int16_t value, uint32_t address)
{
memoryWriteWord(value, address);
}
template<>
void writenum<int32_t>(int32_t value, uint32_t address)
{
memoryWriteLong(value, address);
}
template<>
void writenum<float>(float value, uint32_t address)
{
static_assert(sizeof(value) == 4, "unexpected float size");
memoryWriteLong(*((uint32_t *)&value), address);
}
template<>
void writenum<double>(double value, uint32_t address)
{
static_assert(sizeof(value) == 8, "unexpected double size");
memoryWriteLongLong(*((uint64_t *)&value), address);
}
template<>
void writenum<long double>(long double value, uint32_t address)
{
static_assert(sizeof(value) == 16, "unexpected long double size");
char buffer[16];
std::memcpy(buffer, &value, sizeof(value));
// copy 10 bytes over
// little-endian specific.
for(unsigned i = 0; i < 10; ++i)
memoryWriteByte(buffer[9 - i], address + i);
}
uint16_t fl2x()
{
// long to extended (80-bit fp)
uint16_t op;
uint32_t dest;
uint32_t src;
StackFrame<10>(src, dest, op);
Log(" FL2X(%08x, %08x, %04x)\n", src, dest, op);
int32_t i = readnum<int32_t>(src);
if (ToolBox::Trace)
{
std::string tmp1 = std::to_string(i);
Log(" %s\n", tmp1.c_str());
}
writenum<extended>((extended)i, dest);
return 0;
}
#if 0
uint16_t fdivx()
{
// div extended (80-bit fp)
uint16_t op;
uint32_t dest;
uint32_t src;
StackFrame<10>(src, dest, op);
Log(" FDIVX(%08x, %08x, %04x)\n", src, dest, op);
extended s = readnum<extended>(src);
extended d = readnum<extended>(dest);
if (ToolBox::Trace)
{
std::string tmp1 = std::to_string(d);
std::string tmp2 = std::to_string(s);
Log(" %s / %s\n", tmp1.c_str(), tmp2.c_str());
}
// dest = dest / src
d = d / s;
writenum<extended>((extended)d, dest);
return 0;
}
uint16_t fmulx()
{
// multiply extended (80-bit fp)
uint16_t op;
uint32_t dest;
uint32_t src;
StackFrame<10>(src, dest, op);
Log(" FMULX(%08x, %08x, %04x)\n", src, dest, op);
extended s = readnum<extended>(src);
extended d = readnum<extended>(dest);
if (ToolBox::Trace)
{
std::string tmp1 = std::to_string(d);
std::string tmp2 = std::to_string(s);
Log(" %s * %s\n", tmp1.c_str(), tmp2.c_str());
}
d = d * s;
writenum<extended>((extended)d, dest);
return 0;
return 0;
}
#endif
uint16_t fx2dec()
{
// extended (80-bit fp) to decimal
// convert a to d based on decform f
uint16_t op;
uint32_t f_adr;
uint32_t a_adr;
uint32_t d_adr;
StackFrame<14>(f_adr, a_adr, d_adr, op);
Log(" FX2DEC(%08x, %08x, %08x, %04x)\n", f_adr, a_adr, d_adr, op);
fprintf(stderr, "warning: FX2DEC not yet implemented\n");
extended s = readnum<extended>(a_adr);
if (ToolBox::Trace)
{
std::string tmp1 = std::to_string(s);
Log(" %s\n", tmp1.c_str());
}
// ugh, really don't want to write this code right now.
memoryWriteWord(0, d_adr);
memoryWriteWord(0, d_adr + 2);
memoryWriteWord(0, d_adr + 4);
return 0;
}
template<class SrcType, class DestType = extended>
uint16_t fadd(const char *name)
{
// faddi, etc.
// destination is always extended.
uint16_t op;
uint32_t dest;
uint32_t src;
StackFrame<10>(src, dest, op);
Log(" %s(%08x, %08x, %04x)\n", name, src, dest, op);
SrcType s = readnum<SrcType>(src);
DestType d = readnum<DestType>(dest);
if (ToolBox::Trace)
{
std::string tmp1 = std::to_string(d);
std::string tmp2 = std::to_string(s);
Log(" %s + %s\n", tmp1.c_str(), tmp2.c_str());
}
d = d + s;
writenum<DestType>(d, dest);
return 0;
}
template<class SrcType, class DestType = extended>
uint16_t fsub(const char *name)
{
// fsub, etc.
// destination is always extended.
uint16_t op;
uint32_t dest;
uint32_t src;
StackFrame<10>(src, dest, op);
Log(" %s(%08x, %08x, %04x)\n", name, src, dest, op);
SrcType s = readnum<SrcType>(src);
DestType d = readnum<DestType>(dest);
if (ToolBox::Trace)
{
std::string tmp1 = std::to_string(d);
std::string tmp2 = std::to_string(s);
Log(" %s - %s\n", tmp1.c_str(), tmp2.c_str());
}
d = d - s;
writenum<DestType>(d, dest);
return 0;
}
template<class SrcType, class DestType = extended>
uint16_t fmul(const char *name)
{
// multiply extended (80-bit fp)
uint16_t op;
uint32_t dest;
uint32_t src;
StackFrame<10>(src, dest, op);
Log(" %s(%08x, %08x, %04x)\n", name, src, dest, op);
SrcType s = readnum<SrcType>(src);
DestType d = readnum<DestType>(dest);
if (ToolBox::Trace)
{
std::string tmp1 = std::to_string(d);
std::string tmp2 = std::to_string(s);
Log(" %s * %s\n", tmp1.c_str(), tmp2.c_str());
}
d = d * s;
writenum<DestType>((extended)d, dest);
return 0;
}
template<class SrcType, class DestType = extended>
uint16_t fdiv(const char *name)
{
// div extended (80-bit fp)
uint16_t op;
uint32_t dest;
uint32_t src;
StackFrame<10>(src, dest, op);
Log(" %s(%08x, %08x, %04x)\n", name, src, dest, op);
SrcType s = readnum<SrcType>(src);
DestType d = readnum<DestType>(dest);
if (ToolBox::Trace)
{
std::string tmp1 = std::to_string(d);
std::string tmp2 = std::to_string(s);
Log(" %s / %s\n", tmp1.c_str(), tmp2.c_str());
}
// dest = dest / src
d = d / s;
writenum<DestType>(d, dest);
return 0;
}
template<class SrcType, class DestType>
uint16_t fconvert(const char *name)
{
// type conversion.
uint16_t op;
uint32_t dest;
uint32_t src;
StackFrame<10>(src, dest, op);
Log(" %s(%08x, %08x, %04x)\n", name, src, dest, op);
SrcType s = readnum<SrcType>(src);
if (ToolBox::Trace)
{
std::string tmp1 = std::to_string(s);
Log(" %s\n", tmp1.c_str());
}
writenum<DestType>((DestType)s, dest);
return 0;
}
extern "C" void cpuSetFlagsShift(BOOLE z, BOOLE n, BOOLE c, BOOLE v);
template<class SrcType, class DestType = extended>
uint16_t fcmp(const char *name)
{
uint16_t op;
uint32_t dest;
uint32_t src;
// TODO op & 0x0f == 0x08 vs 0x0a
// for signaling unordered & NaN
StackFrame<10>(src, dest, op);
Log(" %s(%08x, %08x, %04x)\n", name, src, dest, op);
SrcType s = readnum<SrcType>(src);
DestType d = readnum<DestType>(dest);
if (ToolBox::Trace)
{
std::string tmp1 = std::to_string(d);
std::string tmp2 = std::to_string(s);
Log(" %s <> %s\n", tmp1.c_str(), tmp2.c_str());
}
//
// check if ordered...
if (d > s)
{
cpuSetFlagsShift(false, false, false, false);
return 0;
}
if (d < s)
{
cpuSetFlagsShift(false, true, true, false);
return 0;
}
if (d == s)
{
cpuSetFlagsShift(true, false, false, false);
return 0;
}
// unorderable?
// signal?
cpuSetFlagsShift(false, false, false, true);
return 0;
}
extern "C" void cpuSetFlagsAbs(UWO f);
uint16_t fp68k(uint16_t trap)
{
uint16_t op;
uint32_t sp;
sp = cpuGetAReg(7);
op = memoryReadWord(sp);
Log("%04x FP68K(%04x)\n", op);
cpuSetFlagsAbs(0x4);
if (op == 0x000b) return fx2dec();
switch(op)
{
// addition
case 0x0000: return fadd<extended>("FADDX");
case 0x0800: return fadd<double>("FADDD");
case 0x1000: return fadd<float>("FADDS");
//case 0x3000: return fadd<complex>("FADDC");
case 0x2000: return fadd<int16_t>("FADDI");
case 0x2800: return fadd<int32_t>("FADDL");
// subtraction
case 0x0002: return fsub<extended>("FSUBX");
case 0x0802: return fsub<double>("FSUBD");
case 0x1002: return fsub<float>("FSUBS");
//case 0x3002: return fsub<complex>("FSUBC");
case 0x2002: return fsub<int16_t>("FSUBI");
case 0x2802: return fsub<int32_t>("FSUBL");
// multiplication
case 0x0004: return fmul<extended>("FMULX");
case 0x0804: return fmul<double>("FMULD");
case 0x1004: return fmul<float>("FMULS");
//case 0x3004: return fmul<complex>("FMUlC");
case 0x2004: return fmul<int16_t>("FMULI");
case 0x2804: return fmul<int32_t>("FMULL");
// division
case 0x0006: return fdiv<extended>("FDIVX");
case 0x0806: return fdiv<double>("FDIVD");
case 0x1006: return fdiv<float>("FDIVS");
//case 0x3006: return fdiv<complex>("FDIVC");
case 0x2006: return fdiv<int16_t>("FDIVI");
case 0x2806: return fdiv<int32_t>("FDIVL");
// comparison
case 0x0008: return fcmp<extended>("FCMPX");
case 0x0808: return fcmp<double>("FCMPD");
case 0x1008: return fcmp<float>("FCMPS");
//case 0x3008: return fcmp<complex>("FCMPC");
case 0x2008: return fcmp<int16_t>("FCMPI");
case 0x2808: return fcmp<int32_t>("FCMPL");
case 0x000a: return fcmp<extended>("FCPXX");
case 0x080a: return fcmp<double>("FCPXD");
case 0x100a: return fcmp<float>("FCPXS");
//case 0x300a: return fcmp<complex>("FCPXC");
case 0x200a: return fcmp<int16_t>("FCPXI");
case 0x280a: return fcmp<int32_t>("FCPXL");
// conversion
case 0x000e: // 2 versions for completeness.
case 0x0010:
return fconvert<extended, extended>("FX2X");
break;
case 0x0810:
return fconvert<extended, double>("FX2D");
break;
case 0x1010:
return fconvert<extended, float>("FX2S");
break;
// 0x3010 - x to comp
case 0x2010:
return fconvert<extended, int16_t>("FX2I");
break;
case 0x2810:
return fconvert<extended, int32_t>("FX2L");
break;
case 0x080e:
return fconvert<double, extended>("FD2X");
break;
case 0x100e:
return fconvert<float, extended>("FS2X");
break;
// 0x300e - comp to x
case 0x200e:
return fconvert<int16_t, extended>("FI2X");
break;
case 0x280e:
return fconvert<int32_t, extended>("FL2X");
break;
}
fprintf(stderr, "fp68k -- op %04x is not yet supported\n", op);
exit(1);
return 0;
}
uint16_t NumToString(void)
{
/*
* on entry:
* A0 Pointer to pascal string
* D0 The number
*
* on exit:
* A0 Pointer to pascal string
* D0 Result code
*
*/
int32_t theNum = cpuGetDReg(0);
uint32_t theString = cpuGetAReg(0);
//std::string s = ToolBox::ReadPString(theString, false);
Log(" NumToString(%08x, %08x)\n", theNum, theString);
std::string s = std::to_string(theNum);
ToolBox::WritePString(theString, s);
return 0;
}
uint32_t StringToNum(void)
{
/*
* on entry:
* A0 Pointer to pascal string
*
* on exit:
* D0 the number
*
*/
uint32_t theString = cpuGetAReg(0);
std::string s = ToolBox::ReadPString(theString, false);
Log(" StringToNum(%s)\n", s.c_str());
bool negative = false;
uint32_t tmp = 0;
if (!s.length()) return 0;
auto iter = s.begin();
// check for leading +-
if (*iter == '-')
{
negative = true;
++iter;
}
else if (*iter == '+')
{
negative = false;
++iter;
}
for ( ; iter != s.end(); ++iter)
{
// doesn't actually check if it's a number.
int value = *iter & 0x0f;
tmp = tmp * 10 + value;
}
if (negative) tmp = -tmp;
return tmp;
}
uint32_t decstr68k(uint16_t trap)
{
// this is a strange one since it may be sane or it may be the binary/decimal package.
uint16_t op;
StackFrame<2>(op);
Log("%04x DECSTR68K(%04x)\n", trap, op);
switch (op)
{
case 0x00:
return NumToString();
break;
case 0x01:
return StringToNum();
break;
default:
fprintf(stderr, "decstr68k -- op %04x is not yet supported\n", op);
exit(1);
}
return 0;
}
}