supermario/base/SuperMarioProj.1994-02-09/OS/SCSIMgr4pt3/HALc96GC.a

320 lines
9.9 KiB
Plaintext
Raw Permalink Normal View History

2019-06-29 15:17:50 +00:00
;
; File: HALc96GC.a
;
; Contains: Grand Central SCSI HBA
;
; Written by: Craig Prouse
;
; Copyright: © 1993 by Apple Computer, Inc., all rights reserved.
;
; Change History (most recent first):
;
; <SM2> 11/19/93 chp Add primitives for clearing, enabling, and disabling SCSI IRQ.
; Add a primitive for testing SCSI IE.
; <SMG2> 10/26/93 chp Adjust for changes in DBDMA and Grand Central header files.
;
;
case on
print push,off
include 'DBDMA.a'
include 'ACAM.a'
include 'HALc96equ.a'
print pop
machine mc68020
; ……………………………………………………………………………………………………………………………………………………………………………………………………………………
; StartGC:
;
; In: A5 pointer to HALc96GlobalRecord
; (SP) stack-based arguments
;
; Initiate DMA.
; ……………………………………………………………………………………………………………………………………………………………………………………………………………………
StartGC proc export
saveRegs reg d1-d3
maxAtomicCount equ $FFF0 ; maximum atomic DMA transfer count
StackFrame record {a6Link},decrement
dirRead ds.w 1 ; direction is read (16-bit Boolean)
byteCount ds.l 1 ; number of bytes to transfer
bufferAddr ds.l 1 ; source/destination buffer for transfer
rtsAddr ds.l 1
a6Link ds.l 1
localSize equ *
endr
with HALc96GlobalRecord, StackFrame
link a6,#localSize
movem.l saveRegs,-(sp)
; A0 is set initially to the address of the first channel command descriptor.
movea.l cclLogicalAddr(a5),a0 ; pointer to DBDMA command list buffer
; D3 will contain the command word for a list of input or output channel commands.
tst.w dirRead(a6)
bne.b @input
@output move.w #OUTPUT_MORE,d3
bra.b @ioCommon
@input move.w #INPUT_MORE,d3
; A single DB-DMA channel command can transfer at most $FFFF bytes since the count
; field is 16 bits. The 53C9x can only DMA an even number of bytes, producing an
; effective limit of $FFFE bytes. For the sake of roundness, this CCL shall not
; contain any commands for more than $FFF0 bytes. The channel command list is
; generated using as many descriptors as necessary to satisfy the request. The CCL
; buffer is one physical page (8K) in length, allowing for up to 511 data transfer
; descriptors, or nearly 32 MB in a single request. There is no range checking.
@ioCommon
move.l #maxAtomicCount,d0
movea.l bufferAddr(a6),a1 ; DMA address in A1
move.l byteCount(a6),d2 ; remaining DMA count in D2
bra.b @loopTest
@partialIOCmd swap d0
move.w d3,d0 ; command in high word of D0
swap d0 ; count in low word of D0
_MakeCCDescriptor
adda.w #DBDMADescriptor.size,a0
move.l #maxAtomicCount,d0
adda.l d0,a1 ; increment transfer address
sub.l d0,d2 ; decrement remaining transfer count
@loopTest beq.b @stopCmd ; generate STOP immediately when count = 0
cmp.l d0,d2
bhi.b @partialIOCmd
@lastIOCmd move.w d3,d0
swap d0 ; command in high word of D0
move.w d2,d0 ; remaining count in low word of D0
_MakeCCDescriptor
adda.w #DBDMADescriptor.size,a0
@stopCmd move.l #(STOP<<16) | $0000,d0 ; stop command / count field is reserved
lea 0,a1 ; address field is reserved
_MakeCCDescriptor
; Point the DMA hardware at the new CCL.
movea.l dmaCntrlAddr(a5),a0 ; pointer to SCSIx DBDMAChannelRegisters in A0
move.l cclPhysicalAddr(a5),d0 ; pointer to channel command list in D0
_SetCommandPtr
; Reset anything wrong with the channel status and start it running.
move.l # kdbdmaSetRun |\
kdbdmaClrPause |\
kdbdmaClrHalted |\
kdbdmaClrDead |\
kdbdmaSetActive, d0
_SetChannelControl ; A0 still points to DBDMAChannelRegisters
movem.l (sp)+,saveRegs
unlk a6
rts
endwith
endproc
; ……………………………………………………………………………………………………………………………………………………………………………………………………………………
; StopGCRead:
; StopGCWrite:
; Wt4GCComplete:
;
; In: A5 pointer to HALc96GlobalRecord
; Out: D0.L residual count
; ……………………………………………………………………………………………………………………………………………………………………………………………………………………
StopGCDMA func entry
export StopGCRead, StopGCWrite, Wt4GCComplete
saveRegs reg d1/d2
with HALc96GlobalRecord
StopGCRead
StopGCWrite
movea.l dmaCntrlAddr(a5),a0 ; pointer to SCSIx DBDMAChannelRegisters in A0
move.l #kdbdmaClrRun,d0
_SetChannelControl ; abort the CCL
Wt4GCComplete
movea.l dmaCntrlAddr(a5),a0 ; pointer to SCSIx DBDMAChannelRegisters in A0
@waitInactive _GetChannelStatus ; wait for last status writeback
andi.l #kdbdmaActive,d0
bne.b @waitInactive
; For better or for worse, channel command execution has stopped. It is now time to
; calculate the residual count. This is just a little bit complicated because it is
; not known exactly how many command descriptors in the list completed execution.
movem.l saveRegs,-(sp)
moveq #0,d2 ; accumulate residual count in D2
movea.l cclLogicalAddr(a5),a0 ; this is where CCL execution started
@nextDescriptor
_GetCCOperation
cmpi.l #(STOP<<16) | $0000,d0 ; is this the end-of-list?
beq.b @done
move.l d0,d1 ; save the request count
_GetCCResult
tst.l d0 ; did a status writeback occur?
bne.b @addResidual ; yes, use residual count field
move.l d1,d0 ; no, use request count field
@addResidual and.l #$0000FFFF,d0 ; mask off xferStatus
add.l d0,d2 ; accumulate residual count
adda.w #DBDMADescriptor.size,a0 ; increment to next descriptor
bra.b @nextDescriptor
@done
move.l d2,d0 ; move total residual count to D0 result
movem.l (sp)+,saveRegs
rts
endwith
endfunc
; ……………………………………………………………………………………………………………………………………………………………………………………………………………………
; ClearGCSCSIIRQ:
;
; In: A5 pointer to HALc96GlobalRecord
;
; This routine may not change any registers.
; ……………………………………………………………………………………………………………………………………………………………………………………………………………………
ClearGCSCSIIRQ proc entry
intClearOffset equ gcInterruptClear - gcInterruptMask
with HALc96GlobalRecord
align 8
export ClearGCSCSI0IRQ
ClearGCSCSI0IRQ:
ori.l #1 << gcifDevSCSI0,([intEnableSCSIAddr,a5],intClearOffset)
rts
align 8
export ClearGCSCSI1IRQ
ClearGCSCSI1IRQ:
ori.l #1 << gcifDevSCSI1,([intEnableSCSIAddr,a5],intClearOffset)
rts
endwith
endproc
; ……………………………………………………………………………………………………………………………………………………………………………………………………………………
; EnableGCSCSIIRQ:
;
; In: A5 pointer to HALc96GlobalRecord
;
; This routine may not change any registers.
; ……………………………………………………………………………………………………………………………………………………………………………………………………………………
EnableGCSCSIIRQ proc entry
with HALc96GlobalRecord
align 8
export EnableGCSCSI0IRQ
EnableGCSCSI0IRQ:
ori.l #1 << gcifDevSCSI0,([intEnableSCSIAddr,a5])
rts
align 8
export EnableGCSCSI1IRQ
EnableGCSCSI1IRQ:
ori.l #1 << gcifDevSCSI1,([intEnableSCSIAddr,a5])
rts
endwith
endproc
; ……………………………………………………………………………………………………………………………………………………………………………………………………………………
; DisableGCSCSIIRQ:
;
; In: A5 pointer to HALc96GlobalRecord
;
; This routine may not change any registers.
; ……………………………………………………………………………………………………………………………………………………………………………………………………………………
DisableGCSCSIIRQ proc entry
with HALc96GlobalRecord
align 8
export DisableGCSCSI0IRQ
DisableGCSCSI0IRQ:
andi.l #~(1 << gcifDevSCSI0),([intEnableSCSIAddr,a5])
rts
align 8
export DisableGCSCSI1IRQ
DisableGCSCSI1IRQ:
andi.l #~(1 << gcifDevSCSI1),([intEnableSCSIAddr,a5])
rts
endwith
endproc
; ……………………………………………………………………………………………………………………………………………………………………………………………………………………
; TestGCSCSIIE:
;
; In: A5 pointer to HALc96GlobalRecord
; Out: CCR Z flag indicates state of the SCSI interrupt enable
;
; This routine may use D0.
; ……………………………………………………………………………………………………………………………………………………………………………………………………………………
TestGCSCSIIE proc entry
with HALc96GlobalRecord
align 8
export TestGCSCSI0IE
TestGCSCSI0IE:
move.l #1 << gcifDevSCSI0,d0
and.l ([intEnableSCSIAddr,a5]),d0
rts
align 8
export TestGCSCSI1IE
TestGCSCSI1IE:
move.l #1 << gcifDevSCSI1,d0
and.l ([intEnableSCSIAddr,a5]),d0
rts
endwith
endproc
end