mirror of
https://github.com/elliotnunn/supermario.git
synced 2024-11-22 04:31:30 +00:00
569 lines
15 KiB
Plaintext
569 lines
15 KiB
Plaintext
;
|
|
; File: InvTrig.a
|
|
;
|
|
; Contains: Routines to emulate inverse trig functions
|
|
;
|
|
; Originally Written by: Motorola Inc.
|
|
; Adapted to Apple/MPW: Jon Okada
|
|
;
|
|
; Copyright: © 1990, 1991 by Apple Computer, Inc., all rights reserved.
|
|
;
|
|
; This file is used in these builds: Mac32
|
|
;
|
|
; Change History (most recent first):
|
|
;
|
|
; <2> 3/30/91 BG Rolling in Jon Okada's latest changes.
|
|
; <1> 12/14/90 BG First checked into TERROR/BBS.
|
|
|
|
|
|
; invtrig.a
|
|
|
|
; Based upon Motorola files 'sacos.sa', 'sasin.sa', and 'satan.sa'.
|
|
|
|
; sacos
|
|
|
|
; CHANGE LOG
|
|
; 04 Jan 91 JPO Moved constants PI and PIBY2 to file 'constants.a'.
|
|
;
|
|
|
|
*
|
|
* sacos.sa 3.1 12/10/90
|
|
*
|
|
* Description: The entry point sAcos computes the inverse cosine of
|
|
* an input argument; sAcosd does the same except for denormalized
|
|
* input.
|
|
*
|
|
* Input: Double-extended number X in location pointed to
|
|
* by address register a0.
|
|
*
|
|
* Output: The value arccos(X) returned in floating-point register Fp0.
|
|
*
|
|
* Accuracy and Monotonicity: The returned result is within 3 ulps in
|
|
* 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
|
|
* result is subsequently rounded to double precision. The
|
|
* result is provably monotonic in double precision.
|
|
*
|
|
* Speed: The program sCOS takes approximately 310 cycles.
|
|
*
|
|
* Algorithm:
|
|
*
|
|
* ACOS
|
|
* 1. If |X| >= 1, go to 3.
|
|
*
|
|
* 2. (|X| < 1) Calculate acos(X) by
|
|
* z := (1-X) / (1+X)
|
|
* acos(X) = 2 * atan( sqrt(z) ).
|
|
* Exit.
|
|
*
|
|
* 3. If |X| > 1, go to 5.
|
|
*
|
|
* 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit.
|
|
*
|
|
* 5. (|X| > 1) Generate an invalid operation by 0 * infinity.
|
|
* Exit.
|
|
*
|
|
|
|
* Copyright (C) Motorola, Inc. 1990
|
|
* All Rights Reserved
|
|
*
|
|
* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
|
|
* The copyright notice above does not evidence any
|
|
* actual or intended publication of such source code.
|
|
|
|
* SACOS IDNT 2,1 Motorola 040 Floating Point Software Package
|
|
|
|
|
|
sacosd:
|
|
*--ACOS(X) = PI/2 FOR DENORMALIZED X
|
|
fmove.l d1,fpcr ;...load user's rounding mode/precision
|
|
FMOVE.X PIBY2,FP0
|
|
bra t_frcinx
|
|
|
|
|
|
sacos:
|
|
FMOVE.X (a0),FP0 ;...LOAD INPUT
|
|
|
|
move.l (a0),d0 ;...pack exponent with upper 16 fraction
|
|
move.w 4(a0),d0
|
|
ANDI.L #$7FFFFFFF,D0
|
|
CMPI.L #$3FFF8000,D0
|
|
BGE.B ACOSBIG
|
|
|
|
*--THIS IS THE USUAL CASE, |X| < 1
|
|
*--ACOS(X) = 2 * ATAN( SQRT( (1-X)/(1+X) ) )
|
|
|
|
FMOVE.S #"$3F800000",FP1
|
|
FADD.X FP0,FP1 ;...1+X
|
|
FNEG.X FP0 ;... -X
|
|
FADD.S #"$3F800000",FP0 ;...1-X
|
|
FDIV.X FP1,FP0 ;...(1-X)/(1+X)
|
|
FSQRT.X FP0 ;...SQRT((1-X)/(1+X))
|
|
fmovem.x fp0,(a0) ;...overwrite input
|
|
move.l d1,-(sp) ;save original users fpcr
|
|
clr.l d1
|
|
bsr satan ...ATAN(SQRT([1-X]/[1+X]))
|
|
fMOVE.L (sp)+,fpcr ;restore users exceptions
|
|
FADD.X FP0,FP0 ...2 * ATAN( STUFF )
|
|
bra t_frcinx
|
|
|
|
ACOSBIG:
|
|
FABS.X FP0
|
|
FCMP.S #"$3F800000",FP0
|
|
fbgt t_operr ;cause an operr exception
|
|
|
|
*--|X| = 1, ACOS(X) = 0 OR PI
|
|
move.l (a0),d0 ;...pack exponent with upper 16 fraction
|
|
move.w 4(a0),d0
|
|
CMP.L #0,D0 ;D0 has original exponent+fraction
|
|
BGT.B ACOSP1
|
|
|
|
*--X = -1
|
|
*Returns PI and inexact exception
|
|
FMOVE.X PI,FP0
|
|
FMOVE.L d1,FPCR
|
|
FADD.S #"$00800000",FP0 ;cause an inexact exception to be put
|
|
* ;into the 040 - will not trap until next
|
|
* ;fp inst.
|
|
bra t_frcinx
|
|
|
|
ACOSP1:
|
|
FMOVE.L d1,FPCR
|
|
FMOVE.S #"$00000000",FP0
|
|
rts ;Facos of +1 is exact
|
|
|
|
|
|
|
|
; sasin
|
|
|
|
; CHANGE LOG:
|
|
; 04 Jan 91 JPO Deleted constant PIBY2 (already exists in file 'constants.a').
|
|
;
|
|
|
|
*
|
|
* sasin.sa 3.1 12/10/90
|
|
*
|
|
* Description: The entry point sAsin computes the inverse sine of
|
|
* an input argument; sAsind does the same except for denormalized
|
|
* input.
|
|
*
|
|
* Input: Double-extended number X in location pointed to
|
|
* by address register a0.
|
|
*
|
|
* Output: The value arcsin(X) returned in floating-point register Fp0.
|
|
*
|
|
* Accuracy and Monotonicity: The returned result is within 3 ulps in
|
|
* 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
|
|
* result is subsequently rounded to double precision. The
|
|
* result is provably monotonic in double precision.
|
|
*
|
|
* Speed: The program sASIN takes approximately 310 cycles.
|
|
*
|
|
* Algorithm:
|
|
*
|
|
* ASIN
|
|
* 1. If |X| >= 1, go to 3.
|
|
*
|
|
* 2. (|X| < 1) Calculate asin(X) by
|
|
* z := sqrt( [1-X][1+X] )
|
|
* asin(X) = atan( x / z ).
|
|
* Exit.
|
|
*
|
|
* 3. If |X| > 1, go to 5.
|
|
*
|
|
* 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.
|
|
*
|
|
* 5. (|X| > 1) Generate an invalid operation by 0 * infinity.
|
|
* Exit.
|
|
*
|
|
|
|
* Copyright (C) Motorola, Inc. 1990
|
|
* All Rights Reserved
|
|
*
|
|
* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
|
|
* The copyright notice above does not evidence any
|
|
* actual or intended publication of such source code.
|
|
|
|
* SASIN IDNT 2,1 Motorola 040 Floating Point Software Package
|
|
|
|
|
|
sasind:
|
|
*--ASIN(X) = X FOR DENORMALIZED X
|
|
|
|
bra t_extdnrm
|
|
|
|
|
|
sasin:
|
|
FMOVE.X (a0),FP0 ;...LOAD INPUT
|
|
|
|
move.l (a0),d0
|
|
move.w 4(a0),d0
|
|
ANDI.L #$7FFFFFFF,D0
|
|
CMPI.L #$3FFF8000,D0
|
|
BGE.B asinbig
|
|
|
|
*--THIS IS THE USUAL CASE, |X| < 1
|
|
*--ASIN(X) = ATAN( X / SQRT( (1-X)(1+X) ) )
|
|
|
|
FMOVE.S #"$3F800000",FP1
|
|
FSUB.X FP0,FP1 ;...1-X
|
|
fmovem.x fp2,-(a7)
|
|
FMOVE.S #"$3F800000",FP2
|
|
FADD.X FP0,FP2 ;...1+X
|
|
FMUL.X FP2,FP1 ;...(1+X)(1-X)
|
|
fmovem.x (a7)+,fp2
|
|
FSQRT.X FP1 ;...SQRT([1-X][1+X])
|
|
FDIV.X FP1,FP0 ;...X/SQRT([1-X][1+X])
|
|
fmovem.x fp0,(a0)
|
|
bsr.b satan
|
|
bra t_frcinx
|
|
|
|
asinbig:
|
|
FABS.X FP0 ...|X|
|
|
FCMP.S #"$3F800000",FP0
|
|
fbgt t_operr ;cause an operr exception
|
|
|
|
*--|X| = 1, ASIN(X) = +- PI/2.
|
|
|
|
FMOVE.X PIBY2,FP0
|
|
move.l (a0),d0
|
|
ANDI.L #$80000000,D0 ;...SIGN BIT OF X
|
|
ORI.L #$3F800000,D0 ;...+-1 IN SGL FORMAT
|
|
MOVE.L D0,-(sp) ;...push SIGN(X) IN SGL-FMT
|
|
FMOVE.L d1,FPCR
|
|
FMUL.S (sp)+,FP0
|
|
bra t_frcinx
|
|
|
|
|
|
|
|
; satan
|
|
|
|
; CHANGE LOG:
|
|
; 04 Jan 91 JPO Deleted constants BOUNDS1 and ONE because they are not used.
|
|
; Deleted constants PPIBY2, NPIBY2, and NTINY, changing code
|
|
; to refer to constants PIBY2, MPIBY2 (in file 'dofunc.a'),
|
|
; and PTINY, respectively. Moved constants ATANA1-ATANA3,
|
|
; ATANB1-ATANB6, ATANC1-ATANC5, PTINY, and table ATANTBL to
|
|
; file 'constants.a'. Changed names of local variables X,
|
|
; XDCARE, XFRAC, and XFRACLO to XATAN, XATANDC, XATANF, and
|
|
; XATANFL, respectively.
|
|
;
|
|
|
|
*
|
|
* satan.sa 3.1 12/10/90
|
|
*
|
|
* The entry point satan computes the arctagent of an
|
|
* input value. satand does the same except the input value is a
|
|
* denormalized number.
|
|
*
|
|
* Input: Double-extended value in memory location pointed to by address
|
|
* register a0.
|
|
*
|
|
* Output: Arctan(X) returned in floating-point register Fp0.
|
|
*
|
|
* Accuracy and Monotonicity: The returned result is within 2 ulps in
|
|
* 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
|
|
* result is subsequently rounded to double precision. The
|
|
* result is provably monotonic in double precision.
|
|
*
|
|
* Speed: The program satan takes approximately 160 cycles for input
|
|
* argument X such that 1/16 < |X| < 16. For the other arguments,
|
|
* the program will run no worse than 10% slower.
|
|
*
|
|
* Algorithm:
|
|
* Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5.
|
|
*
|
|
* Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. Note that k = -4, -3,..., or 3.
|
|
* Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 significant bits
|
|
* of X with a bit-1 attached at the 6-th bit position. Define u
|
|
* to be u = (X-F) / (1 + X*F).
|
|
*
|
|
* Step 3. Approximate arctan(u) by a polynomial poly.
|
|
*
|
|
* Step 4. Return arctan(F) + poly, arctan(F) is fetched from a table of values
|
|
* calculated beforehand. Exit.
|
|
*
|
|
* Step 5. If |X| >= 16, go to Step 7.
|
|
*
|
|
* Step 6. Approximate arctan(X) by an odd polynomial in X. Exit.
|
|
*
|
|
* Step 7. Define X' = -1/X. Approximate arctan(X') by an odd polynomial in X'.
|
|
* Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit.
|
|
*
|
|
|
|
* Copyright (C) Motorola, Inc. 1990
|
|
* All Rights Reserved
|
|
*
|
|
* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
|
|
* The copyright notice above does not evidence any
|
|
* actual or intended publication of such source code.
|
|
|
|
* satan IDNT 2,1 Motorola 040 Floating Point Software Package
|
|
|
|
|
|
;X equ FP_SCR1 ; deleted <1/4/91, JPO>
|
|
;XDCARE equ X+2
|
|
;XFRAC equ X+4
|
|
;XFRACLO equ X+8
|
|
|
|
XATAN equ FP_SCR1 ; <1/4/91, JPO>
|
|
XATANDC equ XATAN+2
|
|
XATANF equ XATAN+4
|
|
XATANFL equ XATAN+8
|
|
|
|
ATANF equ FP_SCR2
|
|
ATANFHI equ ATANF+4
|
|
ATANFLO equ ATANF+8
|
|
|
|
|
|
satand:
|
|
*--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT
|
|
|
|
bra t_extdnrm
|
|
|
|
|
|
satan:
|
|
*--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
|
|
|
|
FMOVE.X (A0),FP0 ;...LOAD INPUT
|
|
|
|
MOVE.L (A0),D0
|
|
MOVE.W 4(A0),D0
|
|
FMOVE.X FP0,XATAN(a6) ; <1/4/91, JPO>
|
|
ANDI.L #$7FFFFFFF,D0
|
|
|
|
CMPI.L #$3FFB8000,D0 ;...|X| >= 1/16?
|
|
BGE.B ATANOK1
|
|
BRA.W ATANSM
|
|
|
|
ATANOK1:
|
|
CMPI.L #$4002FFFF,D0 ;...|X| < 16 ?
|
|
BLE.B ATANMAIN
|
|
BRA.W ATANBIG
|
|
|
|
|
|
*--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE
|
|
*--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ).
|
|
*--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN
|
|
*--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE
|
|
*--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS
|
|
*--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR
|
|
*--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO
|
|
*--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE
|
|
*--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL
|
|
*--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE
|
|
*--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION
|
|
*--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION
|
|
*--WILL INVOLVE A VERY LONG POLYNOMIAL.
|
|
|
|
*--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS
|
|
*--WE CHOSE F TO BE +-2^K * 1.BBBB1
|
|
*--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE
|
|
*--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE
|
|
*--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS
|
|
*-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|).
|
|
|
|
ATANMAIN:
|
|
|
|
MOVE.W #$0000,XATANDC(a6) ;...CLEAN UP X JUST IN CASE <1/4/91, JPO>
|
|
ANDI.L #$F8000000,XATANF(a6) ;...FIRST 5 BITS <1/4/91, JPO>
|
|
ORI.L #$04000000,XATANF(a6) ;...SET 6-TH BIT TO 1 <1/4/91, JPO>
|
|
MOVE.L #$00000000,XATANFL(a6) ;...LOCATION OF X IS NOW F <1/4/91, JPO>
|
|
|
|
FMOVE.X FP0,FP1 ;...FP1 IS X
|
|
FMUL.X XATAN(a6),FP1 ;...FP1 IS X*F, NOTE THAT X*F > 0 <1/4/91, JPO>
|
|
FSUB.X XATAN(a6),FP0 ;...FP0 IS X-F <1/4/91, JPO>
|
|
FADD.S #"$3F800000",FP1 ...FP1 IS 1 + X*F
|
|
FDIV.X FP1,FP0 ;...FP0 IS U = (X-F)/(1+X*F)
|
|
|
|
*--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|)
|
|
*--CREATE ATAN(F) AND STORE IT IN ATANF, AND
|
|
*--SAVE REGISTERS FP2.
|
|
|
|
MOVE.L d2,-(a7) ;...SAVE d2 TEMPORARILY
|
|
MOVE.L d0,d2 ;...THE EXPO AND 16 BITS OF X
|
|
ANDI.L #$00007800,d0 ;...4 VARYING BITS OF F'S FRACTION
|
|
ANDI.L #$7FFF0000,d2 ;...EXPONENT OF F
|
|
SUBI.L #$3FFB0000,d2 ;...K+4
|
|
ASR.L #1,d2
|
|
ADD.L d2,d0 ;...THE 7 BITS IDENTIFYING F
|
|
ASR.L #7,d0 ;...INDEX INTO TBL OF ATAN(|F|)
|
|
LEA ATANTBL,a1
|
|
ADDA.L d0,a1 ;...ADDRESS OF ATAN(|F|)
|
|
MOVE.L (a1)+,ATANF(a6)
|
|
MOVE.L (a1)+,ATANFHI(a6)
|
|
MOVE.L (a1)+,ATANFLO(a6) ;...ATANF IS NOW ATAN(|F|)
|
|
MOVE.L XATAN(a6),d0 ;...LOAD SIGN AND EXPO. AGAIN <1/4/91, JPO>
|
|
ANDI.L #$80000000,d0 ;...SIGN(F)
|
|
OR.L d0,ATANF(a6) ;...ATANF IS NOW SIGN(F)*ATAN(|F|)
|
|
MOVE.L (a7)+,d2 ;...RESTORE d2
|
|
|
|
*--THAT'S ALL I HAVE TO DO FOR NOW,
|
|
*--BUT ALAS, THE DIVIDE IS STILL CRANKING!
|
|
|
|
*--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS
|
|
*--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U
|
|
*--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT.
|
|
*--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3))
|
|
*--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3.
|
|
*--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT
|
|
*--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED
|
|
|
|
|
|
FMOVE.X FP0,FP1
|
|
FMUL.X FP1,FP1
|
|
FMOVE.D ATANA3,FP2
|
|
FADD.X FP1,FP2 ;...A3+V
|
|
FMUL.X FP1,FP2 ;...V*(A3+V)
|
|
FMUL.X FP0,FP1 ;...U*V
|
|
FADD.D ATANA2,FP2 ;...A2+V*(A3+V)
|
|
FMUL.D ATANA1,FP1 ;...A1*U*V
|
|
FMUL.X FP2,FP1 ;...A1*U*V*(A2+V*(A3+V))
|
|
|
|
FADD.X FP1,FP0 ;...ATAN(U), FP1 RELEASED
|
|
FMOVE.L d1,FPCR ;restore users exceptions
|
|
FADD.X ATANF(a6),FP0 ;...ATAN(X)
|
|
bra t_frcinx
|
|
|
|
ATANBORS:
|
|
*--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED.
|
|
*--FP0 IS X AND |X| <= 1/16 OR |X| >= 16.
|
|
CMPI.L #$3FFF8000,d0
|
|
BGT.W ATANBIG ...I.E. |X| >= 16
|
|
|
|
ATANSM:
|
|
*--|X| <= 1/16
|
|
*--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE
|
|
*--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6)))))
|
|
*--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] )
|
|
*--WHERE Y = X*X, AND Z = Y*Y.
|
|
|
|
CMPI.L #$3FD78000,d0
|
|
BLT.B ATANTINY
|
|
*--COMPUTE POLYNOMIAL
|
|
FMUL.X FP0,FP0 ...FP0 IS Y = X*X
|
|
|
|
|
|
MOVE.W #$0000,XATANDC(a6) ; <1/4/91, JPO>
|
|
|
|
FMOVE.X FP0,FP1
|
|
FMUL.X FP1,FP1 ;...FP1 IS Z = Y*Y
|
|
|
|
FMOVE.D ATANB6,FP2
|
|
FMOVE.D ATANB5,FP3
|
|
|
|
FMUL.X FP1,FP2 ;...Z*B6
|
|
FMUL.X FP1,FP3 ;...Z*B5
|
|
|
|
FADD.D ATANB4,FP2 ;...B4+Z*B6
|
|
FADD.D ATANB3,FP3 ;...B3+Z*B5
|
|
|
|
FMUL.X FP1,FP2 ;...Z*(B4+Z*B6)
|
|
FMUL.X FP3,FP1 ;...Z*(B3+Z*B5)
|
|
|
|
FADD.D ATANB2,FP2 ;...B2+Z*(B4+Z*B6)
|
|
FADD.D ATANB1,FP1 ;...B1+Z*(B3+Z*B5)
|
|
FMUL.X FP0,FP2 ;...Y*(B2+Z*(B4+Z*B6))
|
|
FMUL.X XATAN(a6),FP0 ;...X*Y <1/4/91, JPO>
|
|
|
|
FADD.X FP2,FP1 ;...[B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]
|
|
|
|
|
|
FMUL.X FP1,FP0 ;...X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))])
|
|
|
|
FMOVE.L d1,FPCR ;restore users exceptions
|
|
FADD.X XATAN(a6),FP0 ; <1/4/91, JPO>
|
|
|
|
bra t_frcinx
|
|
|
|
ATANTINY:
|
|
*--|X| < 2^(-40), ATAN(X) = X
|
|
MOVE.W #$0000,XATANDC(a6) ; <1/4/91, JPO>
|
|
|
|
FMOVE.L d1,FPCR ;restore users exceptions
|
|
FMOVE.X XATAN(a6),FP0 ;last inst - possible exception set <1/4/91, JPO>
|
|
|
|
bra t_frcinx
|
|
|
|
ATANBIG:
|
|
*--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE,
|
|
*--RETURN SIGN(X)*PI/2 + ATAN(-1/X).
|
|
CMPI.L #$40638000,d0
|
|
BGT.W ATANHUGE
|
|
|
|
*--APPROXIMATE ATAN(-1/X) BY
|
|
*--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X'
|
|
*--THIS CAN BE RE-WRITTEN AS
|
|
*--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y.
|
|
|
|
FMOVE.S #"$BF800000",FP1 ;...LOAD -1
|
|
FDIV.X FP0,FP1 ;...FP1 IS -1/X
|
|
|
|
|
|
*--DIVIDE IS STILL CRANKING
|
|
|
|
FMOVE.X FP1,FP0 ;...FP0 IS X'
|
|
FMUL.X FP0,FP0 ;...FP0 IS Y = X'*X'
|
|
FMOVE.X FP1,XATAN(a6) ;...X IS REALLY X' <1/4/91, JPO>
|
|
|
|
FMOVE.X FP0,FP1
|
|
FMUL.X FP1,FP1 ;...FP1 IS Z = Y*Y
|
|
|
|
FMOVE.D ATANC5,FP3
|
|
FMOVE.D ATANC4,FP2
|
|
|
|
FMUL.X FP1,FP3 ;...Z*C5
|
|
FMUL.X FP1,FP2 ;...Z*B4
|
|
|
|
FADD.D ATANC3,FP3 ;...C3+Z*C5
|
|
FADD.D ATANC2,FP2 ;...C2+Z*C4
|
|
|
|
FMUL.X FP3,FP1 ;...Z*(C3+Z*C5), FP3 RELEASED
|
|
FMUL.X FP0,FP2 ;...Y*(C2+Z*C4)
|
|
|
|
FADD.D ATANC1,FP1 ;...C1+Z*(C3+Z*C5)
|
|
FMUL.X XATAN(a6),FP0 ;...X'*Y <1/4/91, JPO>
|
|
|
|
FADD.X FP2,FP1 ;...[Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)]
|
|
|
|
|
|
FMUL.X FP1,FP0 ;...X'*Y*([B1+Z*(B3+Z*B5)]
|
|
* ;... +[Y*(B2+Z*(B4+Z*B6))])
|
|
FADD.X XATAN(a6),FP0 ; <1/4/91, JPO>
|
|
|
|
FMOVE.L d1,FPCR ;restore users exceptions
|
|
|
|
btst.b #7,(a0)
|
|
beq.b pos_big
|
|
|
|
neg_big:
|
|
; FADD.X NPIBY2,FP0 ; deleted <1/4/91, JPO>
|
|
FADD.X MPIBY2,FP0 ; <1/4/91, JPO>
|
|
bra t_frcinx
|
|
|
|
pos_big:
|
|
; FADD.X PPIBY2,FP0 ; deleted <1/4/91, JPO>
|
|
FADD.X PIBY2,FP0 ; <1/4/91, JPO>
|
|
bra t_frcinx
|
|
|
|
ATANHUGE:
|
|
*--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY
|
|
btst.b #7,(a0)
|
|
beq.b pos_huge
|
|
|
|
neg_huge:
|
|
; FMOVE.X NPIBY2,fp0 ; deleted <1/4/91, JPO>
|
|
FMOVE.X MPIBY2,fp0 ; <1/4/91, JPO>
|
|
fmove.l d1,fpcr
|
|
; fsub.x NTINY,fp0 ; deleted <1/4/91, JPO>
|
|
fadd.x PTINY,fp0 ; <1/4/91, JPO>
|
|
bra t_frcinx
|
|
|
|
pos_huge:
|
|
; FMOVE.X PPIBY2,fp0 ; deleted <1/4/91, JPO>
|
|
FMOVE.X PIBY2,fp0 ; <1/4/91, JPO>
|
|
fmove.l d1,fpcr
|
|
fsub.x PTINY,fp0
|
|
bra t_frcinx
|
|
|
|
|