mirror of
https://github.com/elliotnunn/sys7.1-doc-wip.git
synced 2024-12-13 11:29:15 +00:00
221 lines
6.5 KiB
C
221 lines
6.5 KiB
C
/************************************************************
|
|
|
|
Created: Monday, June 27, 1988 12:42:53 PM
|
|
Complex.h
|
|
C Interface to the Macintosh Libraries
|
|
|
|
|
|
Copyright Apple Computer, Inc. 1985-1991
|
|
All rights reserved.
|
|
This file is used in these builds: ROM System
|
|
|
|
|
|
Change History (most recent first):
|
|
|
|
<2> 8/8/91 JL Update copyright
|
|
|
|
To Do:
|
|
************************************************************/
|
|
|
|
#ifndef __COMPLEX__
|
|
#define __COMPLEX__
|
|
|
|
#ifndef __SANE__
|
|
#include <SANE.h>
|
|
#endif
|
|
|
|
struct complex;
|
|
|
|
/*
|
|
NOTE to users of the complex class stream i/o functionality:
|
|
|
|
In order to use the complex stream functionality prototyped by the two following
|
|
function declarations one must include either <IOStream.h> or <Stream.h> before
|
|
including <Complex.h>.
|
|
|
|
*/
|
|
#ifdef __IOSTREAM__
|
|
ostream& operator<<(ostream&, complex);
|
|
istream& operator>>(istream&, complex&);
|
|
#endif
|
|
|
|
struct complex {
|
|
extended re;
|
|
extended im;
|
|
|
|
#ifdef __cplusplus
|
|
|
|
complex() { re =0.0; im =0.0; }
|
|
complex(extended r, extended i =0.0) { re =r; im =i; }
|
|
|
|
friend extended real(const complex);
|
|
friend extended imag(const complex);
|
|
friend extended abs(complex);
|
|
friend extended norm(complex);
|
|
friend extended arg(complex);
|
|
|
|
friend complex acos(complex);
|
|
friend complex acosh(complex);
|
|
friend complex asin(complex);
|
|
friend complex asinh(complex);
|
|
friend complex atan(complex);
|
|
friend complex atanh(complex);
|
|
friend complex conj(complex);
|
|
friend complex cos(complex);
|
|
friend complex cosh(complex);
|
|
friend complex exp(complex);
|
|
friend complex log(complex);
|
|
friend complex pow(complex, complex);
|
|
friend complex pow(complex, long);
|
|
friend complex pow(complex, extended);
|
|
friend complex pow(extended, complex);
|
|
friend complex polar(extended, extended);
|
|
friend complex sin(complex);
|
|
friend complex sinh(complex);
|
|
friend complex sqrt(complex);
|
|
friend complex sqr(complex);
|
|
friend complex tan(complex);
|
|
friend complex tanh(complex);
|
|
friend complex operator +(complex, complex);
|
|
friend complex operator -(complex, complex);
|
|
friend complex operator -(complex);
|
|
friend complex operator *(complex, complex);
|
|
friend complex operator *(complex, extended);
|
|
friend complex operator *(extended, complex);
|
|
friend complex operator /(complex, complex);
|
|
friend complex operator /(complex, extended);
|
|
friend complex operator /(extended, complex);
|
|
friend int operator ==(complex, complex);
|
|
friend int operator !=(complex, complex);
|
|
complex operator +=(complex);
|
|
complex operator -=(complex);
|
|
complex operator *=(complex);
|
|
complex operator *=(extended);
|
|
complex operator /=(complex);
|
|
complex operator /=(extended);
|
|
|
|
#endif
|
|
};
|
|
|
|
|
|
|
|
#ifndef __cplusplus
|
|
typedef struct complex complex;
|
|
#else
|
|
extern "C" {
|
|
#endif
|
|
|
|
complex cadd( complex x, complex y );
|
|
complex csub( complex x, complex y );
|
|
complex cmul( complex x, complex y );
|
|
complex cdiv( complex x, complex y );
|
|
complex xdivc( extended x, complex y );
|
|
complex csqrt( complex z );
|
|
complex csin( complex z );
|
|
complex ccos( complex z );
|
|
complex csquare( complex z );
|
|
complex cexp( complex z );
|
|
complex clog( complex z );
|
|
complex cepwry( extended x, complex y );
|
|
complex cxpwri( complex x, long y );
|
|
complex cxpwre( complex x, extended y );
|
|
complex cxpwry( complex x, complex y );
|
|
complex csinh( complex z );
|
|
complex ccosh( complex z );
|
|
complex ctanh( complex z );
|
|
complex ctan( complex z );
|
|
complex casin( complex z );
|
|
complex casinh( complex z );
|
|
complex cacos( complex z );
|
|
complex cacosh( complex z );
|
|
complex catan( complex z );
|
|
complex catanh( complex z );
|
|
complex cconj( complex z );
|
|
|
|
extended cabs( complex z );
|
|
extended carg( complex z );
|
|
|
|
#ifdef __cplusplus
|
|
} // close the extern "C" declaration
|
|
|
|
inline extended real(const complex a) { return a.re; }
|
|
inline extended imag(const complex a) { return a.im; }
|
|
inline extended abs(complex a) { return cabs(a); }
|
|
inline extended norm(complex a) { return a.re*a.re+a.im*a.im; }
|
|
inline extended arg(complex a) { return carg(a); }
|
|
inline complex acos(complex a) { return cacos(a); }
|
|
inline complex acosh(complex a) { return cacosh(a); }
|
|
inline complex asin(complex a) { return casin(a); }
|
|
inline complex asinh(complex a) { return casinh(a); }
|
|
inline complex atan(complex a) { return catan(a); }
|
|
inline complex atanh(complex a) { return catanh(a); }
|
|
inline complex conj(complex a) { return complex(a.re, -a.im); }
|
|
inline complex cos(complex a) { return ccos(a); }
|
|
inline complex cosh(complex a) { return ccosh(a); }
|
|
inline complex exp(complex a) { return cexp(a); }
|
|
inline complex log(complex a) { return clog(a); }
|
|
inline complex pow(complex a, complex b) { return cxpwry(a, b); }
|
|
inline complex pow(complex a, long b) { return cxpwri(a, b); }
|
|
inline complex pow(complex a, extended b) { return cxpwre(a, b); }
|
|
inline complex pow(extended a, complex b) { return cepwry(a, b); }
|
|
inline complex polar(extended r, extended theta) { return complex(r*cos(theta), r*sin(theta) ); }
|
|
inline complex sin(complex a) { return csin(a); }
|
|
inline complex sinh(complex a) { return csinh(a); }
|
|
inline complex sqrt(complex a) { return csqrt(a); }
|
|
inline complex sqr(complex a) { return csquare(a); }
|
|
inline complex tan(complex a) { return ctan(a); }
|
|
inline complex tanh(complex a) { return ctanh(a); }
|
|
inline complex operator +(complex a, complex b) { return complex(a.re+b.re, a.im+b.im); }
|
|
inline complex operator -(complex a,complex b) { return complex(a.re-b.re, a.im-b.im); }
|
|
inline complex operator -(complex a) { return complex(-a.re, -a.im); }
|
|
inline complex operator *(complex a, complex b) { return cmul(a, b); }
|
|
inline complex operator *(complex a, extended b) { return complex(a.re*b, a.im*b); }
|
|
inline complex operator *(extended a, complex b) { return complex(a*b.re, a*b.im); }
|
|
inline complex operator /(complex a, complex b) { return cdiv(a, b); }
|
|
inline complex operator /(complex a, extended b) { return complex(a.re/b, a.im/b); }
|
|
inline complex operator /(extended a, complex b) { return xdivc(a, b); }
|
|
inline int operator ==(complex a, complex b) { return (a.re==b.re && a.im==b.im); }
|
|
inline int operator !=(complex a, complex b) { return (a.re!=b.re || a.im!=b.im); }
|
|
|
|
inline complex complex::operator +=(complex a)
|
|
{
|
|
re += a.re;
|
|
im += a.im;
|
|
return complex(re, im);
|
|
}
|
|
|
|
inline complex complex::operator -=(complex a)
|
|
{
|
|
re -= a.re;
|
|
im -= a.im;
|
|
return complex(re, im);
|
|
}
|
|
|
|
inline complex complex::operator *=(complex a)
|
|
{
|
|
return *this = cmul(*this, a);
|
|
}
|
|
|
|
inline complex complex::operator *=(extended a)
|
|
{
|
|
re *= a;
|
|
im *= a;
|
|
return complex(re, im);
|
|
}
|
|
|
|
inline complex complex::operator /=(complex a)
|
|
{
|
|
return *this = cdiv(*this, a);
|
|
}
|
|
|
|
inline complex complex::operator /=(extended a)
|
|
{
|
|
re /= a;
|
|
im /= a;
|
|
return complex(re, im);
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|