mirror of
https://github.com/classilla/tenfourfox.git
synced 2024-12-25 21:29:53 +00:00
1423 lines
49 KiB
C
1423 lines
49 KiB
C
|
/* vim: set ts=8 sw=8 noexpandtab: */
|
||
|
// qcms
|
||
|
// Copyright (C) 2009 Mozilla Corporation
|
||
|
// Copyright (C) 1998-2007 Marti Maria
|
||
|
//
|
||
|
// Permission is hereby granted, free of charge, to any person obtaining
|
||
|
// a copy of this software and associated documentation files (the "Software"),
|
||
|
// to deal in the Software without restriction, including without limitation
|
||
|
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
|
// and/or sell copies of the Software, and to permit persons to whom the Software
|
||
|
// is furnished to do so, subject to the following conditions:
|
||
|
//
|
||
|
// The above copyright notice and this permission notice shall be included in
|
||
|
// all copies or substantial portions of the Software.
|
||
|
//
|
||
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
|
||
|
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
||
|
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||
|
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
||
|
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
|
||
|
#include <stdlib.h>
|
||
|
#include <math.h>
|
||
|
#include <assert.h>
|
||
|
#include <string.h> //memcpy
|
||
|
#include "qcmsint.h"
|
||
|
#include "chain.h"
|
||
|
#include "matrix.h"
|
||
|
#include "transform_util.h"
|
||
|
|
||
|
/* for MSVC, GCC, Intel, and Sun compilers */
|
||
|
#if defined(_M_IX86) || defined(__i386__) || defined(__i386) || defined(_M_AMD64) || defined(__x86_64__) || defined(__x86_64)
|
||
|
#define X86
|
||
|
#endif /* _M_IX86 || __i386__ || __i386 || _M_AMD64 || __x86_64__ || __x86_64 */
|
||
|
|
||
|
/**
|
||
|
* AltiVec detection for PowerPC CPUs
|
||
|
* In case we have a method of detecting do the runtime detection.
|
||
|
* Otherwise statically choose the AltiVec path in case the compiler
|
||
|
* was told to build with AltiVec support.
|
||
|
*/
|
||
|
#if(0)
|
||
|
// TenFourFox uses a different method.
|
||
|
#if (defined(__POWERPC__) || defined(__powerpc__))
|
||
|
#if defined(__linux__)
|
||
|
#include <unistd.h>
|
||
|
#include <fcntl.h>
|
||
|
#include <stdio.h>
|
||
|
#include <elf.h>
|
||
|
#include <linux/auxvec.h>
|
||
|
#include <asm/cputable.h>
|
||
|
#include <link.h>
|
||
|
|
||
|
static inline qcms_bool have_altivec() {
|
||
|
static int available = -1;
|
||
|
int new_avail = 0;
|
||
|
ElfW(auxv_t) auxv;
|
||
|
ssize_t count;
|
||
|
int fd, i;
|
||
|
|
||
|
if (available != -1)
|
||
|
return (available != 0 ? true : false);
|
||
|
|
||
|
fd = open("/proc/self/auxv", O_RDONLY);
|
||
|
if (fd < 0)
|
||
|
goto out;
|
||
|
do {
|
||
|
count = read(fd, &auxv, sizeof(auxv));
|
||
|
if (count < 0)
|
||
|
goto out_close;
|
||
|
|
||
|
if (auxv.a_type == AT_HWCAP) {
|
||
|
new_avail = !!(auxv.a_un.a_val & PPC_FEATURE_HAS_ALTIVEC);
|
||
|
goto out_close;
|
||
|
}
|
||
|
} while (auxv.a_type != AT_NULL);
|
||
|
|
||
|
out_close:
|
||
|
close(fd);
|
||
|
out:
|
||
|
available = new_avail;
|
||
|
return (available != 0 ? true : false);
|
||
|
}
|
||
|
#elif defined(__APPLE__) && defined(__MACH__)
|
||
|
#include <sys/sysctl.h>
|
||
|
|
||
|
/**
|
||
|
* rip-off from ffmpeg AltiVec detection code.
|
||
|
* this code also appears on Apple's AltiVec pages.
|
||
|
*/
|
||
|
static inline qcms_bool have_altivec() {
|
||
|
int sels[2] = {CTL_HW, HW_VECTORUNIT};
|
||
|
static int available = -1;
|
||
|
size_t len = sizeof(available);
|
||
|
int err;
|
||
|
|
||
|
if (available != -1)
|
||
|
return (available != 0 ? true : false);
|
||
|
|
||
|
err = sysctl(sels, 2, &available, &len, NULL, 0);
|
||
|
|
||
|
if (err == 0)
|
||
|
if (available != 0)
|
||
|
return true;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
#elif defined(__ALTIVEC__) || defined(__APPLE_ALTIVEC__)
|
||
|
#define have_altivec() true
|
||
|
#else
|
||
|
#define have_altivec() false
|
||
|
#endif
|
||
|
#endif // (defined(__POWERPC__) || defined(__powerpc__))
|
||
|
|
||
|
#else
|
||
|
// Our method is determined at build-time.
|
||
|
#ifdef TENFOURFOX_VMX
|
||
|
#warning qcms VMX support enabled
|
||
|
#define have_altivec() true
|
||
|
#else
|
||
|
#define have_altivec() false
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
// Build a White point, primary chromas transfer matrix from RGB to CIE XYZ
|
||
|
// This is just an approximation, I am not handling all the non-linear
|
||
|
// aspects of the RGB to XYZ process, and assumming that the gamma correction
|
||
|
// has transitive property in the tranformation chain.
|
||
|
//
|
||
|
// the alghoritm:
|
||
|
//
|
||
|
// - First I build the absolute conversion matrix using
|
||
|
// primaries in XYZ. This matrix is next inverted
|
||
|
// - Then I eval the source white point across this matrix
|
||
|
// obtaining the coeficients of the transformation
|
||
|
// - Then, I apply these coeficients to the original matrix
|
||
|
static struct matrix build_RGB_to_XYZ_transfer_matrix(qcms_CIE_xyY white, qcms_CIE_xyYTRIPLE primrs)
|
||
|
{
|
||
|
struct matrix primaries;
|
||
|
struct matrix primaries_invert;
|
||
|
struct matrix result;
|
||
|
struct vector white_point;
|
||
|
struct vector coefs;
|
||
|
|
||
|
double xn, yn;
|
||
|
double xr, yr;
|
||
|
double xg, yg;
|
||
|
double xb, yb;
|
||
|
|
||
|
xn = white.x;
|
||
|
yn = white.y;
|
||
|
|
||
|
if (yn == 0.0)
|
||
|
return matrix_invalid();
|
||
|
|
||
|
xr = primrs.red.x;
|
||
|
yr = primrs.red.y;
|
||
|
xg = primrs.green.x;
|
||
|
yg = primrs.green.y;
|
||
|
xb = primrs.blue.x;
|
||
|
yb = primrs.blue.y;
|
||
|
|
||
|
primaries.m[0][0] = xr;
|
||
|
primaries.m[0][1] = xg;
|
||
|
primaries.m[0][2] = xb;
|
||
|
|
||
|
primaries.m[1][0] = yr;
|
||
|
primaries.m[1][1] = yg;
|
||
|
primaries.m[1][2] = yb;
|
||
|
|
||
|
primaries.m[2][0] = 1 - xr - yr;
|
||
|
primaries.m[2][1] = 1 - xg - yg;
|
||
|
primaries.m[2][2] = 1 - xb - yb;
|
||
|
primaries.invalid = false;
|
||
|
|
||
|
white_point.v[0] = xn/yn;
|
||
|
white_point.v[1] = 1.;
|
||
|
white_point.v[2] = (1.0-xn-yn)/yn;
|
||
|
|
||
|
primaries_invert = matrix_invert(primaries);
|
||
|
|
||
|
coefs = matrix_eval(primaries_invert, white_point);
|
||
|
|
||
|
result.m[0][0] = coefs.v[0]*xr;
|
||
|
result.m[0][1] = coefs.v[1]*xg;
|
||
|
result.m[0][2] = coefs.v[2]*xb;
|
||
|
|
||
|
result.m[1][0] = coefs.v[0]*yr;
|
||
|
result.m[1][1] = coefs.v[1]*yg;
|
||
|
result.m[1][2] = coefs.v[2]*yb;
|
||
|
|
||
|
result.m[2][0] = coefs.v[0]*(1.-xr-yr);
|
||
|
result.m[2][1] = coefs.v[1]*(1.-xg-yg);
|
||
|
result.m[2][2] = coefs.v[2]*(1.-xb-yb);
|
||
|
result.invalid = primaries_invert.invalid;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
struct CIE_XYZ {
|
||
|
double X;
|
||
|
double Y;
|
||
|
double Z;
|
||
|
};
|
||
|
|
||
|
/* CIE Illuminant D50 */
|
||
|
static const struct CIE_XYZ D50_XYZ = {
|
||
|
0.9642,
|
||
|
1.0000,
|
||
|
0.8249
|
||
|
};
|
||
|
|
||
|
/* from lcms: xyY2XYZ()
|
||
|
* corresponds to argyll: icmYxy2XYZ() */
|
||
|
static struct CIE_XYZ xyY2XYZ(qcms_CIE_xyY source)
|
||
|
{
|
||
|
struct CIE_XYZ dest;
|
||
|
dest.X = (source.x / source.y) * source.Y;
|
||
|
dest.Y = source.Y;
|
||
|
dest.Z = ((1 - source.x - source.y) / source.y) * source.Y;
|
||
|
return dest;
|
||
|
}
|
||
|
|
||
|
/* from lcms: ComputeChromaticAdaption */
|
||
|
// Compute chromatic adaption matrix using chad as cone matrix
|
||
|
static struct matrix
|
||
|
compute_chromatic_adaption(struct CIE_XYZ source_white_point,
|
||
|
struct CIE_XYZ dest_white_point,
|
||
|
struct matrix chad)
|
||
|
{
|
||
|
struct matrix chad_inv;
|
||
|
struct vector cone_source_XYZ, cone_source_rgb;
|
||
|
struct vector cone_dest_XYZ, cone_dest_rgb;
|
||
|
struct matrix cone, tmp;
|
||
|
|
||
|
tmp = chad;
|
||
|
chad_inv = matrix_invert(tmp);
|
||
|
|
||
|
cone_source_XYZ.v[0] = source_white_point.X;
|
||
|
cone_source_XYZ.v[1] = source_white_point.Y;
|
||
|
cone_source_XYZ.v[2] = source_white_point.Z;
|
||
|
|
||
|
cone_dest_XYZ.v[0] = dest_white_point.X;
|
||
|
cone_dest_XYZ.v[1] = dest_white_point.Y;
|
||
|
cone_dest_XYZ.v[2] = dest_white_point.Z;
|
||
|
|
||
|
cone_source_rgb = matrix_eval(chad, cone_source_XYZ);
|
||
|
cone_dest_rgb = matrix_eval(chad, cone_dest_XYZ);
|
||
|
|
||
|
cone.m[0][0] = cone_dest_rgb.v[0]/cone_source_rgb.v[0];
|
||
|
cone.m[0][1] = 0;
|
||
|
cone.m[0][2] = 0;
|
||
|
cone.m[1][0] = 0;
|
||
|
cone.m[1][1] = cone_dest_rgb.v[1]/cone_source_rgb.v[1];
|
||
|
cone.m[1][2] = 0;
|
||
|
cone.m[2][0] = 0;
|
||
|
cone.m[2][1] = 0;
|
||
|
cone.m[2][2] = cone_dest_rgb.v[2]/cone_source_rgb.v[2];
|
||
|
cone.invalid = false;
|
||
|
|
||
|
// Normalize
|
||
|
return matrix_multiply(chad_inv, matrix_multiply(cone, chad));
|
||
|
}
|
||
|
|
||
|
/* from lcms: cmsAdaptionMatrix */
|
||
|
// Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll
|
||
|
// Bradford is assumed
|
||
|
static struct matrix
|
||
|
adaption_matrix(struct CIE_XYZ source_illumination, struct CIE_XYZ target_illumination)
|
||
|
{
|
||
|
struct matrix lam_rigg = {{ // Bradford matrix
|
||
|
{ 0.8951f, 0.2664f, -0.1614f },
|
||
|
{ -0.7502f, 1.7135f, 0.0367f },
|
||
|
{ 0.0389f, -0.0685f, 1.0296f }
|
||
|
}};
|
||
|
return compute_chromatic_adaption(source_illumination, target_illumination, lam_rigg);
|
||
|
}
|
||
|
|
||
|
/* from lcms: cmsAdaptMatrixToD50 */
|
||
|
static struct matrix adapt_matrix_to_D50(struct matrix r, qcms_CIE_xyY source_white_pt)
|
||
|
{
|
||
|
struct CIE_XYZ Dn;
|
||
|
struct matrix Bradford;
|
||
|
|
||
|
if (source_white_pt.y == 0.0)
|
||
|
return matrix_invalid();
|
||
|
|
||
|
Dn = xyY2XYZ(source_white_pt);
|
||
|
|
||
|
Bradford = adaption_matrix(Dn, D50_XYZ);
|
||
|
return matrix_multiply(Bradford, r);
|
||
|
}
|
||
|
|
||
|
qcms_bool set_rgb_colorants(qcms_profile *profile, qcms_CIE_xyY white_point, qcms_CIE_xyYTRIPLE primaries)
|
||
|
{
|
||
|
struct matrix colorants;
|
||
|
colorants = build_RGB_to_XYZ_transfer_matrix(white_point, primaries);
|
||
|
colorants = adapt_matrix_to_D50(colorants, white_point);
|
||
|
|
||
|
if (colorants.invalid)
|
||
|
return false;
|
||
|
|
||
|
/* note: there's a transpose type of operation going on here */
|
||
|
profile->redColorant.X = double_to_s15Fixed16Number(colorants.m[0][0]);
|
||
|
profile->redColorant.Y = double_to_s15Fixed16Number(colorants.m[1][0]);
|
||
|
profile->redColorant.Z = double_to_s15Fixed16Number(colorants.m[2][0]);
|
||
|
|
||
|
profile->greenColorant.X = double_to_s15Fixed16Number(colorants.m[0][1]);
|
||
|
profile->greenColorant.Y = double_to_s15Fixed16Number(colorants.m[1][1]);
|
||
|
profile->greenColorant.Z = double_to_s15Fixed16Number(colorants.m[2][1]);
|
||
|
|
||
|
profile->blueColorant.X = double_to_s15Fixed16Number(colorants.m[0][2]);
|
||
|
profile->blueColorant.Y = double_to_s15Fixed16Number(colorants.m[1][2]);
|
||
|
profile->blueColorant.Z = double_to_s15Fixed16Number(colorants.m[2][2]);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
qcms_bool get_rgb_colorants(struct matrix *colorants, qcms_CIE_xyY white_point, qcms_CIE_xyYTRIPLE primaries)
|
||
|
{
|
||
|
*colorants = build_RGB_to_XYZ_transfer_matrix(white_point, primaries);
|
||
|
*colorants = adapt_matrix_to_D50(*colorants, white_point);
|
||
|
|
||
|
return (colorants->invalid ? true : false);
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
static void qcms_transform_data_rgb_out_pow(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
||
|
{
|
||
|
int i;
|
||
|
float (*mat)[4] = transform->matrix;
|
||
|
for (i=0; i<length; i++) {
|
||
|
unsigned char device_r = *src++;
|
||
|
unsigned char device_g = *src++;
|
||
|
unsigned char device_b = *src++;
|
||
|
|
||
|
float linear_r = transform->input_gamma_table_r[device_r];
|
||
|
float linear_g = transform->input_gamma_table_g[device_g];
|
||
|
float linear_b = transform->input_gamma_table_b[device_b];
|
||
|
|
||
|
float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
|
||
|
float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
|
||
|
float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
|
||
|
|
||
|
float out_device_r = pow(out_linear_r, transform->out_gamma_r);
|
||
|
float out_device_g = pow(out_linear_g, transform->out_gamma_g);
|
||
|
float out_device_b = pow(out_linear_b, transform->out_gamma_b);
|
||
|
|
||
|
dest[OUTPUT_R_INDEX] = clamp_u8(255*out_device_r);
|
||
|
dest[OUTPUT_G_INDEX] = clamp_u8(255*out_device_g);
|
||
|
dest[OUTPUT_B_INDEX] = clamp_u8(255*out_device_b);
|
||
|
dest += RGB_OUTPUT_COMPONENTS;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static void qcms_transform_data_gray_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
for (i = 0; i < length; i++) {
|
||
|
float out_device_r, out_device_g, out_device_b;
|
||
|
unsigned char device = *src++;
|
||
|
|
||
|
float linear = transform->input_gamma_table_gray[device];
|
||
|
|
||
|
out_device_r = lut_interp_linear(linear, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
|
||
|
out_device_g = lut_interp_linear(linear, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
|
||
|
out_device_b = lut_interp_linear(linear, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
|
||
|
|
||
|
dest[OUTPUT_R_INDEX] = clamp_u8(out_device_r*255);
|
||
|
dest[OUTPUT_G_INDEX] = clamp_u8(out_device_g*255);
|
||
|
dest[OUTPUT_B_INDEX] = clamp_u8(out_device_b*255);
|
||
|
dest += RGB_OUTPUT_COMPONENTS;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Alpha is not corrected.
|
||
|
A rationale for this is found in Alvy Ray's "Should Alpha Be Nonlinear If
|
||
|
RGB Is?" Tech Memo 17 (December 14, 1998).
|
||
|
See: ftp://ftp.alvyray.com/Acrobat/17_Nonln.pdf
|
||
|
*/
|
||
|
|
||
|
static void qcms_transform_data_graya_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
for (i = 0; i < length; i++) {
|
||
|
float out_device_r, out_device_g, out_device_b;
|
||
|
unsigned char device = *src++;
|
||
|
unsigned char alpha = *src++;
|
||
|
|
||
|
float linear = transform->input_gamma_table_gray[device];
|
||
|
|
||
|
out_device_r = lut_interp_linear(linear, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
|
||
|
out_device_g = lut_interp_linear(linear, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
|
||
|
out_device_b = lut_interp_linear(linear, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
|
||
|
|
||
|
dest[OUTPUT_R_INDEX] = clamp_u8(out_device_r*255);
|
||
|
dest[OUTPUT_G_INDEX] = clamp_u8(out_device_g*255);
|
||
|
dest[OUTPUT_B_INDEX] = clamp_u8(out_device_b*255);
|
||
|
dest[OUTPUT_A_INDEX] = alpha;
|
||
|
dest += RGBA_OUTPUT_COMPONENTS;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
static void qcms_transform_data_gray_out_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
for (i = 0; i < length; i++) {
|
||
|
unsigned char device = *src++;
|
||
|
uint16_t gray;
|
||
|
|
||
|
float linear = transform->input_gamma_table_gray[device];
|
||
|
|
||
|
/* we could round here... */
|
||
|
gray = linear * PRECACHE_OUTPUT_MAX;
|
||
|
|
||
|
dest[OUTPUT_R_INDEX] = transform->output_table_r->data[gray];
|
||
|
dest[OUTPUT_G_INDEX] = transform->output_table_g->data[gray];
|
||
|
dest[OUTPUT_B_INDEX] = transform->output_table_b->data[gray];
|
||
|
dest += RGB_OUTPUT_COMPONENTS;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void qcms_transform_data_graya_out_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
for (i = 0; i < length; i++) {
|
||
|
unsigned char device = *src++;
|
||
|
unsigned char alpha = *src++;
|
||
|
uint16_t gray;
|
||
|
|
||
|
float linear = transform->input_gamma_table_gray[device];
|
||
|
|
||
|
/* we could round here... */
|
||
|
gray = linear * PRECACHE_OUTPUT_MAX;
|
||
|
|
||
|
dest[OUTPUT_R_INDEX] = transform->output_table_r->data[gray];
|
||
|
dest[OUTPUT_G_INDEX] = transform->output_table_g->data[gray];
|
||
|
dest[OUTPUT_B_INDEX] = transform->output_table_b->data[gray];
|
||
|
dest[OUTPUT_A_INDEX] = alpha;
|
||
|
dest += RGBA_OUTPUT_COMPONENTS;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void qcms_transform_data_rgb_out_lut_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
float (*mat)[4] = transform->matrix;
|
||
|
for (i = 0; i < length; i++) {
|
||
|
unsigned char device_r = *src++;
|
||
|
unsigned char device_g = *src++;
|
||
|
unsigned char device_b = *src++;
|
||
|
uint16_t r, g, b;
|
||
|
|
||
|
float linear_r = transform->input_gamma_table_r[device_r];
|
||
|
float linear_g = transform->input_gamma_table_g[device_g];
|
||
|
float linear_b = transform->input_gamma_table_b[device_b];
|
||
|
|
||
|
float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
|
||
|
float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
|
||
|
float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
|
||
|
|
||
|
out_linear_r = clamp_float(out_linear_r);
|
||
|
out_linear_g = clamp_float(out_linear_g);
|
||
|
out_linear_b = clamp_float(out_linear_b);
|
||
|
|
||
|
/* we could round here... */
|
||
|
r = out_linear_r * PRECACHE_OUTPUT_MAX;
|
||
|
g = out_linear_g * PRECACHE_OUTPUT_MAX;
|
||
|
b = out_linear_b * PRECACHE_OUTPUT_MAX;
|
||
|
|
||
|
dest[OUTPUT_R_INDEX] = transform->output_table_r->data[r];
|
||
|
dest[OUTPUT_G_INDEX] = transform->output_table_g->data[g];
|
||
|
dest[OUTPUT_B_INDEX] = transform->output_table_b->data[b];
|
||
|
dest += RGB_OUTPUT_COMPONENTS;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void qcms_transform_data_rgba_out_lut_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
float (*mat)[4] = transform->matrix;
|
||
|
for (i = 0; i < length; i++) {
|
||
|
unsigned char device_r = *src++;
|
||
|
unsigned char device_g = *src++;
|
||
|
unsigned char device_b = *src++;
|
||
|
unsigned char alpha = *src++;
|
||
|
uint16_t r, g, b;
|
||
|
|
||
|
float linear_r = transform->input_gamma_table_r[device_r];
|
||
|
float linear_g = transform->input_gamma_table_g[device_g];
|
||
|
float linear_b = transform->input_gamma_table_b[device_b];
|
||
|
|
||
|
float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
|
||
|
float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
|
||
|
float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
|
||
|
|
||
|
out_linear_r = clamp_float(out_linear_r);
|
||
|
out_linear_g = clamp_float(out_linear_g);
|
||
|
out_linear_b = clamp_float(out_linear_b);
|
||
|
|
||
|
/* we could round here... */
|
||
|
r = out_linear_r * PRECACHE_OUTPUT_MAX;
|
||
|
g = out_linear_g * PRECACHE_OUTPUT_MAX;
|
||
|
b = out_linear_b * PRECACHE_OUTPUT_MAX;
|
||
|
|
||
|
dest[OUTPUT_R_INDEX] = transform->output_table_r->data[r];
|
||
|
dest[OUTPUT_G_INDEX] = transform->output_table_g->data[g];
|
||
|
dest[OUTPUT_B_INDEX] = transform->output_table_b->data[b];
|
||
|
dest[OUTPUT_A_INDEX] = alpha;
|
||
|
dest += RGBA_OUTPUT_COMPONENTS;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Not used
|
||
|
/*
|
||
|
static void qcms_transform_data_clut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) {
|
||
|
unsigned int i;
|
||
|
int xy_len = 1;
|
||
|
int x_len = transform->grid_size;
|
||
|
int len = x_len * x_len;
|
||
|
float* r_table = transform->r_clut;
|
||
|
float* g_table = transform->g_clut;
|
||
|
float* b_table = transform->b_clut;
|
||
|
|
||
|
for (i = 0; i < length; i++) {
|
||
|
unsigned char in_r = *src++;
|
||
|
unsigned char in_g = *src++;
|
||
|
unsigned char in_b = *src++;
|
||
|
float linear_r = in_r/255.0f, linear_g=in_g/255.0f, linear_b = in_b/255.0f;
|
||
|
|
||
|
int x = floorf(linear_r * (transform->grid_size-1));
|
||
|
int y = floorf(linear_g * (transform->grid_size-1));
|
||
|
int z = floorf(linear_b * (transform->grid_size-1));
|
||
|
int x_n = ceilf(linear_r * (transform->grid_size-1));
|
||
|
int y_n = ceilf(linear_g * (transform->grid_size-1));
|
||
|
int z_n = ceilf(linear_b * (transform->grid_size-1));
|
||
|
float x_d = linear_r * (transform->grid_size-1) - x;
|
||
|
float y_d = linear_g * (transform->grid_size-1) - y;
|
||
|
float z_d = linear_b * (transform->grid_size-1) - z;
|
||
|
|
||
|
float r_x1 = lerp(CLU(r_table,x,y,z), CLU(r_table,x_n,y,z), x_d);
|
||
|
float r_x2 = lerp(CLU(r_table,x,y_n,z), CLU(r_table,x_n,y_n,z), x_d);
|
||
|
float r_y1 = lerp(r_x1, r_x2, y_d);
|
||
|
float r_x3 = lerp(CLU(r_table,x,y,z_n), CLU(r_table,x_n,y,z_n), x_d);
|
||
|
float r_x4 = lerp(CLU(r_table,x,y_n,z_n), CLU(r_table,x_n,y_n,z_n), x_d);
|
||
|
float r_y2 = lerp(r_x3, r_x4, y_d);
|
||
|
float clut_r = lerp(r_y1, r_y2, z_d);
|
||
|
|
||
|
float g_x1 = lerp(CLU(g_table,x,y,z), CLU(g_table,x_n,y,z), x_d);
|
||
|
float g_x2 = lerp(CLU(g_table,x,y_n,z), CLU(g_table,x_n,y_n,z), x_d);
|
||
|
float g_y1 = lerp(g_x1, g_x2, y_d);
|
||
|
float g_x3 = lerp(CLU(g_table,x,y,z_n), CLU(g_table,x_n,y,z_n), x_d);
|
||
|
float g_x4 = lerp(CLU(g_table,x,y_n,z_n), CLU(g_table,x_n,y_n,z_n), x_d);
|
||
|
float g_y2 = lerp(g_x3, g_x4, y_d);
|
||
|
float clut_g = lerp(g_y1, g_y2, z_d);
|
||
|
|
||
|
float b_x1 = lerp(CLU(b_table,x,y,z), CLU(b_table,x_n,y,z), x_d);
|
||
|
float b_x2 = lerp(CLU(b_table,x,y_n,z), CLU(b_table,x_n,y_n,z), x_d);
|
||
|
float b_y1 = lerp(b_x1, b_x2, y_d);
|
||
|
float b_x3 = lerp(CLU(b_table,x,y,z_n), CLU(b_table,x_n,y,z_n), x_d);
|
||
|
float b_x4 = lerp(CLU(b_table,x,y_n,z_n), CLU(b_table,x_n,y_n,z_n), x_d);
|
||
|
float b_y2 = lerp(b_x3, b_x4, y_d);
|
||
|
float clut_b = lerp(b_y1, b_y2, z_d);
|
||
|
|
||
|
*dest++ = clamp_u8(clut_r*255.0f);
|
||
|
*dest++ = clamp_u8(clut_g*255.0f);
|
||
|
*dest++ = clamp_u8(clut_b*255.0f);
|
||
|
}
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
static int int_div_ceil(int value, int div) {
|
||
|
return ((value + div - 1) / div);
|
||
|
}
|
||
|
|
||
|
// Using lcms' tetra interpolation algorithm.
|
||
|
static void qcms_transform_data_tetra_clut_rgba(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) {
|
||
|
unsigned int i;
|
||
|
int xy_len = 1;
|
||
|
int x_len = transform->grid_size;
|
||
|
int len = x_len * x_len;
|
||
|
float* r_table = transform->r_clut;
|
||
|
float* g_table = transform->g_clut;
|
||
|
float* b_table = transform->b_clut;
|
||
|
float c0_r, c1_r, c2_r, c3_r;
|
||
|
float c0_g, c1_g, c2_g, c3_g;
|
||
|
float c0_b, c1_b, c2_b, c3_b;
|
||
|
float clut_r, clut_g, clut_b;
|
||
|
for (i = 0; i < length; i++) {
|
||
|
unsigned char in_r = *src++;
|
||
|
unsigned char in_g = *src++;
|
||
|
unsigned char in_b = *src++;
|
||
|
unsigned char in_a = *src++;
|
||
|
float linear_r = in_r/255.0f, linear_g=in_g/255.0f, linear_b = in_b/255.0f;
|
||
|
|
||
|
int x = in_r * (transform->grid_size-1) / 255;
|
||
|
int y = in_g * (transform->grid_size-1) / 255;
|
||
|
int z = in_b * (transform->grid_size-1) / 255;
|
||
|
int x_n = int_div_ceil(in_r * (transform->grid_size-1), 255);
|
||
|
int y_n = int_div_ceil(in_g * (transform->grid_size-1), 255);
|
||
|
int z_n = int_div_ceil(in_b * (transform->grid_size-1), 255);
|
||
|
float rx = linear_r * (transform->grid_size-1) - x;
|
||
|
float ry = linear_g * (transform->grid_size-1) - y;
|
||
|
float rz = linear_b * (transform->grid_size-1) - z;
|
||
|
|
||
|
c0_r = CLU(r_table, x, y, z);
|
||
|
c0_g = CLU(g_table, x, y, z);
|
||
|
c0_b = CLU(b_table, x, y, z);
|
||
|
|
||
|
if( rx >= ry ) {
|
||
|
if (ry >= rz) { //rx >= ry && ry >= rz
|
||
|
c1_r = CLU(r_table, x_n, y, z) - c0_r;
|
||
|
c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z);
|
||
|
c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
|
||
|
c1_g = CLU(g_table, x_n, y, z) - c0_g;
|
||
|
c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z);
|
||
|
c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
|
||
|
c1_b = CLU(b_table, x_n, y, z) - c0_b;
|
||
|
c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z);
|
||
|
c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
|
||
|
} else {
|
||
|
if (rx >= rz) { //rx >= rz && rz >= ry
|
||
|
c1_r = CLU(r_table, x_n, y, z) - c0_r;
|
||
|
c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
|
||
|
c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z);
|
||
|
c1_g = CLU(g_table, x_n, y, z) - c0_g;
|
||
|
c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
|
||
|
c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z);
|
||
|
c1_b = CLU(b_table, x_n, y, z) - c0_b;
|
||
|
c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
|
||
|
c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z);
|
||
|
} else { //rz > rx && rx >= ry
|
||
|
c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n);
|
||
|
c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
|
||
|
c3_r = CLU(r_table, x, y, z_n) - c0_r;
|
||
|
c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n);
|
||
|
c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
|
||
|
c3_g = CLU(g_table, x, y, z_n) - c0_g;
|
||
|
c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n);
|
||
|
c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
|
||
|
c3_b = CLU(b_table, x, y, z_n) - c0_b;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
if (rx >= rz) { //ry > rx && rx >= rz
|
||
|
c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z);
|
||
|
c2_r = CLU(r_table, x, y_n, z) - c0_r;
|
||
|
c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
|
||
|
c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z);
|
||
|
c2_g = CLU(g_table, x, y_n, z) - c0_g;
|
||
|
c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
|
||
|
c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z);
|
||
|
c2_b = CLU(b_table, x, y_n, z) - c0_b;
|
||
|
c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
|
||
|
} else {
|
||
|
if (ry >= rz) { //ry >= rz && rz > rx
|
||
|
c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
|
||
|
c2_r = CLU(r_table, x, y_n, z) - c0_r;
|
||
|
c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z);
|
||
|
c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
|
||
|
c2_g = CLU(g_table, x, y_n, z) - c0_g;
|
||
|
c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z);
|
||
|
c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
|
||
|
c2_b = CLU(b_table, x, y_n, z) - c0_b;
|
||
|
c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z);
|
||
|
} else { //rz > ry && ry > rx
|
||
|
c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
|
||
|
c2_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y, z_n);
|
||
|
c3_r = CLU(r_table, x, y, z_n) - c0_r;
|
||
|
c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
|
||
|
c2_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y, z_n);
|
||
|
c3_g = CLU(g_table, x, y, z_n) - c0_g;
|
||
|
c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
|
||
|
c2_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y, z_n);
|
||
|
c3_b = CLU(b_table, x, y, z_n) - c0_b;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
clut_r = c0_r + c1_r*rx + c2_r*ry + c3_r*rz;
|
||
|
clut_g = c0_g + c1_g*rx + c2_g*ry + c3_g*rz;
|
||
|
clut_b = c0_b + c1_b*rx + c2_b*ry + c3_b*rz;
|
||
|
|
||
|
dest[OUTPUT_R_INDEX] = clamp_u8(clut_r*255.0f);
|
||
|
dest[OUTPUT_G_INDEX] = clamp_u8(clut_g*255.0f);
|
||
|
dest[OUTPUT_B_INDEX] = clamp_u8(clut_b*255.0f);
|
||
|
dest[OUTPUT_A_INDEX] = in_a;
|
||
|
dest += RGBA_OUTPUT_COMPONENTS;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Using lcms' tetra interpolation code.
|
||
|
static void qcms_transform_data_tetra_clut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) {
|
||
|
unsigned int i;
|
||
|
int xy_len = 1;
|
||
|
int x_len = transform->grid_size;
|
||
|
int len = x_len * x_len;
|
||
|
float* r_table = transform->r_clut;
|
||
|
float* g_table = transform->g_clut;
|
||
|
float* b_table = transform->b_clut;
|
||
|
float c0_r, c1_r, c2_r, c3_r;
|
||
|
float c0_g, c1_g, c2_g, c3_g;
|
||
|
float c0_b, c1_b, c2_b, c3_b;
|
||
|
float clut_r, clut_g, clut_b;
|
||
|
for (i = 0; i < length; i++) {
|
||
|
unsigned char in_r = *src++;
|
||
|
unsigned char in_g = *src++;
|
||
|
unsigned char in_b = *src++;
|
||
|
float linear_r = in_r/255.0f, linear_g=in_g/255.0f, linear_b = in_b/255.0f;
|
||
|
|
||
|
int x = in_r * (transform->grid_size-1) / 255;
|
||
|
int y = in_g * (transform->grid_size-1) / 255;
|
||
|
int z = in_b * (transform->grid_size-1) / 255;
|
||
|
int x_n = int_div_ceil(in_r * (transform->grid_size-1), 255);
|
||
|
int y_n = int_div_ceil(in_g * (transform->grid_size-1), 255);
|
||
|
int z_n = int_div_ceil(in_b * (transform->grid_size-1), 255);
|
||
|
float rx = linear_r * (transform->grid_size-1) - x;
|
||
|
float ry = linear_g * (transform->grid_size-1) - y;
|
||
|
float rz = linear_b * (transform->grid_size-1) - z;
|
||
|
|
||
|
c0_r = CLU(r_table, x, y, z);
|
||
|
c0_g = CLU(g_table, x, y, z);
|
||
|
c0_b = CLU(b_table, x, y, z);
|
||
|
|
||
|
if( rx >= ry ) {
|
||
|
if (ry >= rz) { //rx >= ry && ry >= rz
|
||
|
c1_r = CLU(r_table, x_n, y, z) - c0_r;
|
||
|
c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z);
|
||
|
c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
|
||
|
c1_g = CLU(g_table, x_n, y, z) - c0_g;
|
||
|
c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z);
|
||
|
c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
|
||
|
c1_b = CLU(b_table, x_n, y, z) - c0_b;
|
||
|
c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z);
|
||
|
c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
|
||
|
} else {
|
||
|
if (rx >= rz) { //rx >= rz && rz >= ry
|
||
|
c1_r = CLU(r_table, x_n, y, z) - c0_r;
|
||
|
c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
|
||
|
c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z);
|
||
|
c1_g = CLU(g_table, x_n, y, z) - c0_g;
|
||
|
c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
|
||
|
c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z);
|
||
|
c1_b = CLU(b_table, x_n, y, z) - c0_b;
|
||
|
c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
|
||
|
c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z);
|
||
|
} else { //rz > rx && rx >= ry
|
||
|
c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n);
|
||
|
c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
|
||
|
c3_r = CLU(r_table, x, y, z_n) - c0_r;
|
||
|
c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n);
|
||
|
c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
|
||
|
c3_g = CLU(g_table, x, y, z_n) - c0_g;
|
||
|
c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n);
|
||
|
c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
|
||
|
c3_b = CLU(b_table, x, y, z_n) - c0_b;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
if (rx >= rz) { //ry > rx && rx >= rz
|
||
|
c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z);
|
||
|
c2_r = CLU(r_table, x, y_n, z) - c0_r;
|
||
|
c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
|
||
|
c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z);
|
||
|
c2_g = CLU(g_table, x, y_n, z) - c0_g;
|
||
|
c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
|
||
|
c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z);
|
||
|
c2_b = CLU(b_table, x, y_n, z) - c0_b;
|
||
|
c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
|
||
|
} else {
|
||
|
if (ry >= rz) { //ry >= rz && rz > rx
|
||
|
c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
|
||
|
c2_r = CLU(r_table, x, y_n, z) - c0_r;
|
||
|
c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z);
|
||
|
c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
|
||
|
c2_g = CLU(g_table, x, y_n, z) - c0_g;
|
||
|
c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z);
|
||
|
c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
|
||
|
c2_b = CLU(b_table, x, y_n, z) - c0_b;
|
||
|
c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z);
|
||
|
} else { //rz > ry && ry > rx
|
||
|
c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
|
||
|
c2_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y, z_n);
|
||
|
c3_r = CLU(r_table, x, y, z_n) - c0_r;
|
||
|
c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
|
||
|
c2_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y, z_n);
|
||
|
c3_g = CLU(g_table, x, y, z_n) - c0_g;
|
||
|
c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
|
||
|
c2_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y, z_n);
|
||
|
c3_b = CLU(b_table, x, y, z_n) - c0_b;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
clut_r = c0_r + c1_r*rx + c2_r*ry + c3_r*rz;
|
||
|
clut_g = c0_g + c1_g*rx + c2_g*ry + c3_g*rz;
|
||
|
clut_b = c0_b + c1_b*rx + c2_b*ry + c3_b*rz;
|
||
|
|
||
|
dest[OUTPUT_R_INDEX] = clamp_u8(clut_r*255.0f);
|
||
|
dest[OUTPUT_G_INDEX] = clamp_u8(clut_g*255.0f);
|
||
|
dest[OUTPUT_B_INDEX] = clamp_u8(clut_b*255.0f);
|
||
|
dest += RGB_OUTPUT_COMPONENTS;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void qcms_transform_data_rgb_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
float (*mat)[4] = transform->matrix;
|
||
|
for (i = 0; i < length; i++) {
|
||
|
unsigned char device_r = *src++;
|
||
|
unsigned char device_g = *src++;
|
||
|
unsigned char device_b = *src++;
|
||
|
float out_device_r, out_device_g, out_device_b;
|
||
|
|
||
|
float linear_r = transform->input_gamma_table_r[device_r];
|
||
|
float linear_g = transform->input_gamma_table_g[device_g];
|
||
|
float linear_b = transform->input_gamma_table_b[device_b];
|
||
|
|
||
|
float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
|
||
|
float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
|
||
|
float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
|
||
|
|
||
|
out_linear_r = clamp_float(out_linear_r);
|
||
|
out_linear_g = clamp_float(out_linear_g);
|
||
|
out_linear_b = clamp_float(out_linear_b);
|
||
|
|
||
|
out_device_r = lut_interp_linear(out_linear_r,
|
||
|
transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
|
||
|
out_device_g = lut_interp_linear(out_linear_g,
|
||
|
transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
|
||
|
out_device_b = lut_interp_linear(out_linear_b,
|
||
|
transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
|
||
|
|
||
|
dest[OUTPUT_R_INDEX] = clamp_u8(out_device_r*255);
|
||
|
dest[OUTPUT_G_INDEX] = clamp_u8(out_device_g*255);
|
||
|
dest[OUTPUT_B_INDEX] = clamp_u8(out_device_b*255);
|
||
|
dest += RGB_OUTPUT_COMPONENTS;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void qcms_transform_data_rgba_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
float (*mat)[4] = transform->matrix;
|
||
|
for (i = 0; i < length; i++) {
|
||
|
unsigned char device_r = *src++;
|
||
|
unsigned char device_g = *src++;
|
||
|
unsigned char device_b = *src++;
|
||
|
unsigned char alpha = *src++;
|
||
|
float out_device_r, out_device_g, out_device_b;
|
||
|
|
||
|
float linear_r = transform->input_gamma_table_r[device_r];
|
||
|
float linear_g = transform->input_gamma_table_g[device_g];
|
||
|
float linear_b = transform->input_gamma_table_b[device_b];
|
||
|
|
||
|
float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
|
||
|
float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
|
||
|
float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
|
||
|
|
||
|
out_linear_r = clamp_float(out_linear_r);
|
||
|
out_linear_g = clamp_float(out_linear_g);
|
||
|
out_linear_b = clamp_float(out_linear_b);
|
||
|
|
||
|
out_device_r = lut_interp_linear(out_linear_r,
|
||
|
transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
|
||
|
out_device_g = lut_interp_linear(out_linear_g,
|
||
|
transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
|
||
|
out_device_b = lut_interp_linear(out_linear_b,
|
||
|
transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
|
||
|
|
||
|
dest[OUTPUT_R_INDEX] = clamp_u8(out_device_r*255);
|
||
|
dest[OUTPUT_G_INDEX] = clamp_u8(out_device_g*255);
|
||
|
dest[OUTPUT_B_INDEX] = clamp_u8(out_device_b*255);
|
||
|
dest[OUTPUT_A_INDEX] = alpha;
|
||
|
dest += RGBA_OUTPUT_COMPONENTS;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
static void qcms_transform_data_rgb_out_linear(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
||
|
{
|
||
|
int i;
|
||
|
float (*mat)[4] = transform->matrix;
|
||
|
for (i = 0; i < length; i++) {
|
||
|
unsigned char device_r = *src++;
|
||
|
unsigned char device_g = *src++;
|
||
|
unsigned char device_b = *src++;
|
||
|
|
||
|
float linear_r = transform->input_gamma_table_r[device_r];
|
||
|
float linear_g = transform->input_gamma_table_g[device_g];
|
||
|
float linear_b = transform->input_gamma_table_b[device_b];
|
||
|
|
||
|
float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
|
||
|
float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
|
||
|
float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
|
||
|
|
||
|
*dest++ = clamp_u8(out_linear_r*255);
|
||
|
*dest++ = clamp_u8(out_linear_g*255);
|
||
|
*dest++ = clamp_u8(out_linear_b*255);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* If users create and destroy objects on different threads, even if the same
|
||
|
* objects aren't used on different threads at the same time, we can still run
|
||
|
* in to trouble with refcounts if they aren't atomic.
|
||
|
*
|
||
|
* This can lead to us prematurely deleting the precache if threads get unlucky
|
||
|
* and write the wrong value to the ref count.
|
||
|
*/
|
||
|
static struct precache_output *precache_reference(struct precache_output *p)
|
||
|
{
|
||
|
qcms_atomic_increment(p->ref_count);
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
static struct precache_output *precache_create()
|
||
|
{
|
||
|
struct precache_output *p = malloc(sizeof(struct precache_output));
|
||
|
if (p)
|
||
|
p->ref_count = 1;
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
void precache_release(struct precache_output *p)
|
||
|
{
|
||
|
if (qcms_atomic_decrement(p->ref_count) == 0) {
|
||
|
free(p);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef HAVE_POSIX_MEMALIGN
|
||
|
static qcms_transform *transform_alloc(void)
|
||
|
{
|
||
|
qcms_transform *t;
|
||
|
|
||
|
void *allocated_memory;
|
||
|
if (!posix_memalign(&allocated_memory, 16, sizeof(qcms_transform))) {
|
||
|
/* Doing a memset to initialise all bits to 'zero'*/
|
||
|
memset(allocated_memory, 0, sizeof(qcms_transform));
|
||
|
t = allocated_memory;
|
||
|
return t;
|
||
|
} else {
|
||
|
return NULL;
|
||
|
}
|
||
|
}
|
||
|
static void transform_free(qcms_transform *t)
|
||
|
{
|
||
|
free(t);
|
||
|
}
|
||
|
#else
|
||
|
static qcms_transform *transform_alloc(void)
|
||
|
{
|
||
|
/* transform needs to be aligned on a 16byte boundrary */
|
||
|
char *original_block = calloc(sizeof(qcms_transform) + sizeof(void*) + 16, 1);
|
||
|
/* make room for a pointer to the block returned by calloc */
|
||
|
void *transform_start = original_block + sizeof(void*);
|
||
|
/* align transform_start */
|
||
|
qcms_transform *transform_aligned = (qcms_transform*)(((uintptr_t)transform_start + 15) & ~0xf);
|
||
|
|
||
|
/* store a pointer to the block returned by calloc so that we can free it later */
|
||
|
void **(original_block_ptr) = (void**)transform_aligned;
|
||
|
if (!original_block)
|
||
|
return NULL;
|
||
|
original_block_ptr--;
|
||
|
*original_block_ptr = original_block;
|
||
|
|
||
|
return transform_aligned;
|
||
|
}
|
||
|
static void transform_free(qcms_transform *t)
|
||
|
{
|
||
|
/* get at the pointer to the unaligned block returned by calloc */
|
||
|
void **p = (void**)t;
|
||
|
p--;
|
||
|
free(*p);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
void qcms_transform_release(qcms_transform *t)
|
||
|
{
|
||
|
/* ensure we only free the gamma tables once even if there are
|
||
|
* multiple references to the same data */
|
||
|
|
||
|
if (t->output_table_r)
|
||
|
precache_release(t->output_table_r);
|
||
|
if (t->output_table_g)
|
||
|
precache_release(t->output_table_g);
|
||
|
if (t->output_table_b)
|
||
|
precache_release(t->output_table_b);
|
||
|
|
||
|
free(t->input_gamma_table_r);
|
||
|
if (t->input_gamma_table_g != t->input_gamma_table_r)
|
||
|
free(t->input_gamma_table_g);
|
||
|
if (t->input_gamma_table_g != t->input_gamma_table_r &&
|
||
|
t->input_gamma_table_g != t->input_gamma_table_b)
|
||
|
free(t->input_gamma_table_b);
|
||
|
|
||
|
free(t->input_gamma_table_gray);
|
||
|
|
||
|
free(t->output_gamma_lut_r);
|
||
|
free(t->output_gamma_lut_g);
|
||
|
free(t->output_gamma_lut_b);
|
||
|
|
||
|
transform_free(t);
|
||
|
}
|
||
|
|
||
|
#ifdef X86
|
||
|
// Determine if we can build with SSE2 (this was partly copied from jmorecfg.h in
|
||
|
// mozilla/jpeg)
|
||
|
// -------------------------------------------------------------------------
|
||
|
#if defined(_M_IX86) && defined(_MSC_VER)
|
||
|
#define HAS_CPUID
|
||
|
/* Get us a CPUID function. Avoid clobbering EBX because sometimes it's the PIC
|
||
|
register - I'm not sure if that ever happens on windows, but cpuid isn't
|
||
|
on the critical path so we just preserve the register to be safe and to be
|
||
|
consistent with the non-windows version. */
|
||
|
static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d) {
|
||
|
uint32_t a_, b_, c_, d_;
|
||
|
__asm {
|
||
|
xchg ebx, esi
|
||
|
mov eax, fxn
|
||
|
cpuid
|
||
|
mov a_, eax
|
||
|
mov b_, ebx
|
||
|
mov c_, ecx
|
||
|
mov d_, edx
|
||
|
xchg ebx, esi
|
||
|
}
|
||
|
*a = a_;
|
||
|
*b = b_;
|
||
|
*c = c_;
|
||
|
*d = d_;
|
||
|
}
|
||
|
#elif (defined(__GNUC__) || defined(__SUNPRO_C)) && (defined(__i386__) || defined(__i386))
|
||
|
#define HAS_CPUID
|
||
|
/* Get us a CPUID function. We can't use ebx because it's the PIC register on
|
||
|
some platforms, so we use ESI instead and save ebx to avoid clobbering it. */
|
||
|
static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d) {
|
||
|
|
||
|
uint32_t a_, b_, c_, d_;
|
||
|
__asm__ __volatile__ ("xchgl %%ebx, %%esi; cpuid; xchgl %%ebx, %%esi;"
|
||
|
: "=a" (a_), "=S" (b_), "=c" (c_), "=d" (d_) : "a" (fxn));
|
||
|
*a = a_;
|
||
|
*b = b_;
|
||
|
*c = c_;
|
||
|
*d = d_;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// -------------------------Runtime SSEx Detection-----------------------------
|
||
|
|
||
|
/* MMX is always supported per
|
||
|
* Gecko v1.9.1 minimum CPU requirements */
|
||
|
#define SSE1_EDX_MASK (1UL << 25)
|
||
|
#define SSE2_EDX_MASK (1UL << 26)
|
||
|
#define SSE3_ECX_MASK (1UL << 0)
|
||
|
|
||
|
static int sse_version_available(void)
|
||
|
{
|
||
|
#if defined(__x86_64__) || defined(__x86_64) || defined(_M_AMD64)
|
||
|
/* we know at build time that 64-bit CPUs always have SSE2
|
||
|
* this tells the compiler that non-SSE2 branches will never be
|
||
|
* taken (i.e. OK to optimze away the SSE1 and non-SIMD code */
|
||
|
return 2;
|
||
|
#elif defined(HAS_CPUID)
|
||
|
static int sse_version = -1;
|
||
|
uint32_t a, b, c, d;
|
||
|
uint32_t function = 0x00000001;
|
||
|
|
||
|
if (sse_version == -1) {
|
||
|
sse_version = 0;
|
||
|
cpuid(function, &a, &b, &c, &d);
|
||
|
if (c & SSE3_ECX_MASK)
|
||
|
sse_version = 3;
|
||
|
else if (d & SSE2_EDX_MASK)
|
||
|
sse_version = 2;
|
||
|
else if (d & SSE1_EDX_MASK)
|
||
|
sse_version = 1;
|
||
|
}
|
||
|
|
||
|
return sse_version;
|
||
|
#else
|
||
|
return 0;
|
||
|
#endif
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static const struct matrix bradford_matrix = {{ { 0.8951f, 0.2664f,-0.1614f},
|
||
|
{-0.7502f, 1.7135f, 0.0367f},
|
||
|
{ 0.0389f,-0.0685f, 1.0296f}},
|
||
|
false};
|
||
|
|
||
|
static const struct matrix bradford_matrix_inv = {{ { 0.9869929f,-0.1470543f, 0.1599627f},
|
||
|
{ 0.4323053f, 0.5183603f, 0.0492912f},
|
||
|
{-0.0085287f, 0.0400428f, 0.9684867f}},
|
||
|
false};
|
||
|
|
||
|
// See ICCv4 E.3
|
||
|
struct matrix compute_whitepoint_adaption(float X, float Y, float Z) {
|
||
|
float p = (0.96422f*bradford_matrix.m[0][0] + 1.000f*bradford_matrix.m[1][0] + 0.82521f*bradford_matrix.m[2][0]) /
|
||
|
(X*bradford_matrix.m[0][0] + Y*bradford_matrix.m[1][0] + Z*bradford_matrix.m[2][0] );
|
||
|
float y = (0.96422f*bradford_matrix.m[0][1] + 1.000f*bradford_matrix.m[1][1] + 0.82521f*bradford_matrix.m[2][1]) /
|
||
|
(X*bradford_matrix.m[0][1] + Y*bradford_matrix.m[1][1] + Z*bradford_matrix.m[2][1] );
|
||
|
float b = (0.96422f*bradford_matrix.m[0][2] + 1.000f*bradford_matrix.m[1][2] + 0.82521f*bradford_matrix.m[2][2]) /
|
||
|
(X*bradford_matrix.m[0][2] + Y*bradford_matrix.m[1][2] + Z*bradford_matrix.m[2][2] );
|
||
|
struct matrix white_adaption = {{ {p,0,0}, {0,y,0}, {0,0,b}}, false};
|
||
|
return matrix_multiply( bradford_matrix_inv, matrix_multiply(white_adaption, bradford_matrix) );
|
||
|
}
|
||
|
|
||
|
void qcms_profile_precache_output_transform(qcms_profile *profile)
|
||
|
{
|
||
|
/* we only support precaching on rgb profiles */
|
||
|
if (profile->color_space != RGB_SIGNATURE)
|
||
|
return;
|
||
|
|
||
|
if (qcms_supports_iccv4) {
|
||
|
/* don't precache since we will use the B2A LUT */
|
||
|
if (profile->B2A0)
|
||
|
return;
|
||
|
|
||
|
/* don't precache since we will use the mBA LUT */
|
||
|
if (profile->mBA)
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* don't precache if we do not have the TRC curves */
|
||
|
if (!profile->redTRC || !profile->greenTRC || !profile->blueTRC)
|
||
|
return;
|
||
|
|
||
|
if (!profile->output_table_r) {
|
||
|
profile->output_table_r = precache_create();
|
||
|
if (profile->output_table_r &&
|
||
|
!compute_precache(profile->redTRC, profile->output_table_r->data)) {
|
||
|
precache_release(profile->output_table_r);
|
||
|
profile->output_table_r = NULL;
|
||
|
}
|
||
|
}
|
||
|
if (!profile->output_table_g) {
|
||
|
profile->output_table_g = precache_create();
|
||
|
if (profile->output_table_g &&
|
||
|
!compute_precache(profile->greenTRC, profile->output_table_g->data)) {
|
||
|
precache_release(profile->output_table_g);
|
||
|
profile->output_table_g = NULL;
|
||
|
}
|
||
|
}
|
||
|
if (!profile->output_table_b) {
|
||
|
profile->output_table_b = precache_create();
|
||
|
if (profile->output_table_b &&
|
||
|
!compute_precache(profile->blueTRC, profile->output_table_b->data)) {
|
||
|
precache_release(profile->output_table_b);
|
||
|
profile->output_table_b = NULL;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Replace the current transformation with a LUT transformation using a given number of sample points */
|
||
|
qcms_transform* qcms_transform_precacheLUT_float(qcms_transform *transform, qcms_profile *in, qcms_profile *out,
|
||
|
int samples, qcms_data_type in_type)
|
||
|
{
|
||
|
/* The range between which 2 consecutive sample points can be used to interpolate */
|
||
|
uint16_t x,y,z;
|
||
|
uint32_t l;
|
||
|
uint32_t lutSize = 3 * samples * samples * samples;
|
||
|
float* src = NULL;
|
||
|
float* dest = NULL;
|
||
|
float* lut = NULL;
|
||
|
|
||
|
src = malloc(lutSize*sizeof(float));
|
||
|
dest = malloc(lutSize*sizeof(float));
|
||
|
|
||
|
if (src && dest) {
|
||
|
/* Prepare a list of points we want to sample */
|
||
|
l = 0;
|
||
|
for (x = 0; x < samples; x++) {
|
||
|
for (y = 0; y < samples; y++) {
|
||
|
for (z = 0; z < samples; z++) {
|
||
|
src[l++] = x / (float)(samples-1);
|
||
|
src[l++] = y / (float)(samples-1);
|
||
|
src[l++] = z / (float)(samples-1);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
lut = qcms_chain_transform(in, out, src, dest, lutSize);
|
||
|
if (lut) {
|
||
|
transform->r_clut = &lut[0];
|
||
|
transform->g_clut = &lut[1];
|
||
|
transform->b_clut = &lut[2];
|
||
|
transform->grid_size = samples;
|
||
|
if (in_type == QCMS_DATA_RGBA_8) {
|
||
|
transform->transform_fn = qcms_transform_data_tetra_clut_rgba;
|
||
|
} else {
|
||
|
transform->transform_fn = qcms_transform_data_tetra_clut;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
//XXX: qcms_modular_transform_data may return either the src or dest buffer. If so it must not be free-ed
|
||
|
if (src && lut != src) {
|
||
|
free(src);
|
||
|
}
|
||
|
if (dest && lut != dest) {
|
||
|
free(dest);
|
||
|
}
|
||
|
|
||
|
if (lut == NULL) {
|
||
|
return NULL;
|
||
|
}
|
||
|
return transform;
|
||
|
}
|
||
|
|
||
|
#define NO_MEM_TRANSFORM NULL
|
||
|
|
||
|
qcms_transform* qcms_transform_create(
|
||
|
qcms_profile *in, qcms_data_type in_type,
|
||
|
qcms_profile *out, qcms_data_type out_type,
|
||
|
qcms_intent intent)
|
||
|
{
|
||
|
bool precache = false;
|
||
|
|
||
|
qcms_transform *transform = transform_alloc();
|
||
|
if (!transform) {
|
||
|
return NULL;
|
||
|
}
|
||
|
if (out_type != QCMS_DATA_RGB_8 &&
|
||
|
out_type != QCMS_DATA_RGBA_8) {
|
||
|
assert(0 && "output type");
|
||
|
qcms_transform_release(transform);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
if (out->output_table_r &&
|
||
|
out->output_table_g &&
|
||
|
out->output_table_b) {
|
||
|
precache = true;
|
||
|
}
|
||
|
|
||
|
// This precache assumes RGB_SIGNATURE (fails on GRAY_SIGNATURE, for instance)
|
||
|
if (qcms_supports_iccv4 &&
|
||
|
(in_type == QCMS_DATA_RGB_8 || in_type == QCMS_DATA_RGBA_8) &&
|
||
|
(in->A2B0 || out->B2A0 || in->mAB || out->mAB))
|
||
|
{
|
||
|
// Precache the transformation to a CLUT 33x33x33 in size.
|
||
|
// 33 is used by many profiles and works well in pratice.
|
||
|
// This evenly divides 256 into blocks of 8x8x8.
|
||
|
// TODO For transforming small data sets of about 200x200 or less
|
||
|
// precaching should be avoided.
|
||
|
qcms_transform *result = qcms_transform_precacheLUT_float(transform, in, out, 33, in_type);
|
||
|
if (!result) {
|
||
|
assert(0 && "precacheLUT failed");
|
||
|
qcms_transform_release(transform);
|
||
|
return NULL;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
if (precache) {
|
||
|
transform->output_table_r = precache_reference(out->output_table_r);
|
||
|
transform->output_table_g = precache_reference(out->output_table_g);
|
||
|
transform->output_table_b = precache_reference(out->output_table_b);
|
||
|
} else {
|
||
|
if (!out->redTRC || !out->greenTRC || !out->blueTRC) {
|
||
|
qcms_transform_release(transform);
|
||
|
return NO_MEM_TRANSFORM;
|
||
|
}
|
||
|
build_output_lut(out->redTRC, &transform->output_gamma_lut_r, &transform->output_gamma_lut_r_length);
|
||
|
build_output_lut(out->greenTRC, &transform->output_gamma_lut_g, &transform->output_gamma_lut_g_length);
|
||
|
build_output_lut(out->blueTRC, &transform->output_gamma_lut_b, &transform->output_gamma_lut_b_length);
|
||
|
if (!transform->output_gamma_lut_r || !transform->output_gamma_lut_g || !transform->output_gamma_lut_b) {
|
||
|
qcms_transform_release(transform);
|
||
|
return NO_MEM_TRANSFORM;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (in->color_space == RGB_SIGNATURE) {
|
||
|
struct matrix in_matrix, out_matrix, result;
|
||
|
|
||
|
if (in_type != QCMS_DATA_RGB_8 &&
|
||
|
in_type != QCMS_DATA_RGBA_8){
|
||
|
assert(0 && "input type");
|
||
|
qcms_transform_release(transform);
|
||
|
return NULL;
|
||
|
}
|
||
|
if (precache) {
|
||
|
#ifdef X86
|
||
|
if (sse_version_available() >= 2) {
|
||
|
if (in_type == QCMS_DATA_RGB_8)
|
||
|
transform->transform_fn = qcms_transform_data_rgb_out_lut_sse2;
|
||
|
else
|
||
|
transform->transform_fn = qcms_transform_data_rgba_out_lut_sse2;
|
||
|
|
||
|
#if !(defined(_MSC_VER) && defined(_M_AMD64))
|
||
|
/* Microsoft Compiler for x64 doesn't support MMX.
|
||
|
* SSE code uses MMX so that we disable on x64 */
|
||
|
} else
|
||
|
if (sse_version_available() >= 1) {
|
||
|
if (in_type == QCMS_DATA_RGB_8)
|
||
|
transform->transform_fn = qcms_transform_data_rgb_out_lut_sse1;
|
||
|
else
|
||
|
transform->transform_fn = qcms_transform_data_rgba_out_lut_sse1;
|
||
|
#endif
|
||
|
} else
|
||
|
#endif
|
||
|
#ifdef TENFOURFOX_VMX
|
||
|
if (have_altivec()) {
|
||
|
if (in_type == QCMS_DATA_RGB_8)
|
||
|
transform->transform_fn = qcms_transform_data_rgb_out_lut_altivec;
|
||
|
else
|
||
|
transform->transform_fn = qcms_transform_data_rgba_out_lut_altivec;
|
||
|
} else
|
||
|
#endif
|
||
|
{
|
||
|
if (in_type == QCMS_DATA_RGB_8)
|
||
|
transform->transform_fn = qcms_transform_data_rgb_out_lut_precache;
|
||
|
else
|
||
|
transform->transform_fn = qcms_transform_data_rgba_out_lut_precache;
|
||
|
}
|
||
|
} else {
|
||
|
if (in_type == QCMS_DATA_RGB_8)
|
||
|
transform->transform_fn = qcms_transform_data_rgb_out_lut;
|
||
|
else
|
||
|
transform->transform_fn = qcms_transform_data_rgba_out_lut;
|
||
|
}
|
||
|
|
||
|
//XXX: avoid duplicating tables if we can
|
||
|
transform->input_gamma_table_r = build_input_gamma_table(in->redTRC);
|
||
|
transform->input_gamma_table_g = build_input_gamma_table(in->greenTRC);
|
||
|
transform->input_gamma_table_b = build_input_gamma_table(in->blueTRC);
|
||
|
if (!transform->input_gamma_table_r || !transform->input_gamma_table_g || !transform->input_gamma_table_b) {
|
||
|
qcms_transform_release(transform);
|
||
|
return NO_MEM_TRANSFORM;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* build combined colorant matrix */
|
||
|
in_matrix = build_colorant_matrix(in);
|
||
|
out_matrix = build_colorant_matrix(out);
|
||
|
out_matrix = matrix_invert(out_matrix);
|
||
|
if (out_matrix.invalid) {
|
||
|
qcms_transform_release(transform);
|
||
|
return NULL;
|
||
|
}
|
||
|
result = matrix_multiply(out_matrix, in_matrix);
|
||
|
|
||
|
/* check for NaN values in the matrix and bail if we find any */
|
||
|
for (unsigned i = 0 ; i < 3 ; ++i) {
|
||
|
for (unsigned j = 0 ; j < 3 ; ++j) {
|
||
|
if (result.m[i][j] != result.m[i][j]) {
|
||
|
qcms_transform_release(transform);
|
||
|
return NULL;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* store the results in column major mode
|
||
|
* this makes doing the multiplication with sse easier */
|
||
|
transform->matrix[0][0] = result.m[0][0];
|
||
|
transform->matrix[1][0] = result.m[0][1];
|
||
|
transform->matrix[2][0] = result.m[0][2];
|
||
|
transform->matrix[0][1] = result.m[1][0];
|
||
|
transform->matrix[1][1] = result.m[1][1];
|
||
|
transform->matrix[2][1] = result.m[1][2];
|
||
|
transform->matrix[0][2] = result.m[2][0];
|
||
|
transform->matrix[1][2] = result.m[2][1];
|
||
|
transform->matrix[2][2] = result.m[2][2];
|
||
|
|
||
|
} else if (in->color_space == GRAY_SIGNATURE) {
|
||
|
if (in_type != QCMS_DATA_GRAY_8 &&
|
||
|
in_type != QCMS_DATA_GRAYA_8){
|
||
|
assert(0 && "input type");
|
||
|
qcms_transform_release(transform);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
transform->input_gamma_table_gray = build_input_gamma_table(in->grayTRC);
|
||
|
if (!transform->input_gamma_table_gray) {
|
||
|
qcms_transform_release(transform);
|
||
|
return NO_MEM_TRANSFORM;
|
||
|
}
|
||
|
|
||
|
if (precache) {
|
||
|
if (in_type == QCMS_DATA_GRAY_8) {
|
||
|
transform->transform_fn = qcms_transform_data_gray_out_precache;
|
||
|
} else {
|
||
|
transform->transform_fn = qcms_transform_data_graya_out_precache;
|
||
|
}
|
||
|
} else {
|
||
|
if (in_type == QCMS_DATA_GRAY_8) {
|
||
|
transform->transform_fn = qcms_transform_data_gray_out_lut;
|
||
|
} else {
|
||
|
transform->transform_fn = qcms_transform_data_graya_out_lut;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
assert(0 && "unexpected colorspace");
|
||
|
qcms_transform_release(transform);
|
||
|
return NULL;
|
||
|
}
|
||
|
return transform;
|
||
|
}
|
||
|
|
||
|
#if defined(__GNUC__) && defined(__i386__)
|
||
|
/* we need this to avoid crashes when gcc assumes the stack is 128bit aligned */
|
||
|
__attribute__((__force_align_arg_pointer__))
|
||
|
#endif
|
||
|
void qcms_transform_data(qcms_transform *transform, void *src, void *dest, size_t length)
|
||
|
{
|
||
|
transform->transform_fn(transform, src, dest, length);
|
||
|
}
|
||
|
|
||
|
qcms_bool qcms_supports_iccv4;
|
||
|
void qcms_enable_iccv4()
|
||
|
{
|
||
|
qcms_supports_iccv4 = true;
|
||
|
}
|