/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsSVGPathDataParser.h" #include "mozilla/gfx/Point.h" #include "nsSVGDataParser.h" #include "SVGContentUtils.h" #include "SVGPathData.h" #include "SVGPathSegUtils.h" using namespace mozilla; using namespace mozilla::gfx; static inline char16_t ToUpper(char16_t aCh) { return aCh >= 'a' && aCh <= 'z' ? aCh - 'a' + 'A' : aCh; } bool nsSVGPathDataParser::Parse() { mPathSegList->Clear(); return ParsePath(); } //---------------------------------------------------------------------- bool nsSVGPathDataParser::ParseCoordPair(float& aX, float& aY) { return SVGContentUtils::ParseNumber(mIter, mEnd, aX) && SkipCommaWsp() && SVGContentUtils::ParseNumber(mIter, mEnd, aY); } bool nsSVGPathDataParser::ParseFlag(bool& aFlag) { if (mIter == mEnd || (*mIter != '0' && *mIter != '1')) { return false; } aFlag = (*mIter == '1'); ++mIter; return true; } //---------------------------------------------------------------------- bool nsSVGPathDataParser::ParsePath() { while (SkipWsp()) { if (!ParseSubPath()) { return false; } } return true; } //---------------------------------------------------------------------- bool nsSVGPathDataParser::ParseSubPath() { return ParseMoveto() && ParseSubPathElements(); } bool nsSVGPathDataParser::ParseSubPathElements() { while (SkipWsp() && !IsStartOfSubPath()) { char16_t commandType = ToUpper(*mIter); // Upper case commands have absolute co-ordinates, // lower case commands have relative co-ordinates. bool absCoords = commandType == *mIter; ++mIter; SkipWsp(); if (!ParseSubPathElement(commandType, absCoords)) { return false; } } return true; } bool nsSVGPathDataParser::ParseSubPathElement(char16_t aCommandType, bool aAbsCoords) { switch (aCommandType) { case 'Z': return ParseClosePath(); case 'L': return ParseLineto(aAbsCoords); case 'H': return ParseHorizontalLineto(aAbsCoords); case 'V': return ParseVerticalLineto(aAbsCoords); case 'C': return ParseCurveto(aAbsCoords); case 'S': return ParseSmoothCurveto(aAbsCoords); case 'Q': return ParseQuadBezierCurveto(aAbsCoords); case 'T': return ParseSmoothQuadBezierCurveto(aAbsCoords); case 'A': return ParseEllipticalArc(aAbsCoords); } return false; } bool nsSVGPathDataParser::IsStartOfSubPath() const { return *mIter == 'm' || *mIter == 'M'; } //---------------------------------------------------------------------- bool nsSVGPathDataParser::ParseMoveto() { if (!IsStartOfSubPath()) { return false; } bool absCoords = (*mIter == 'M'); ++mIter; SkipWsp(); float x, y; if (!ParseCoordPair(x, y)) { return false; } if (NS_FAILED(mPathSegList->AppendSeg( absCoords ? PATHSEG_MOVETO_ABS : PATHSEG_MOVETO_REL, x, y))) { return false; } if (!SkipWsp() || IsAlpha(*mIter)) { // End of data, or start of a new command return true; } SkipCommaWsp(); // Per SVG 1.1 Section 8.3.2 // If a moveto is followed by multiple pairs of coordinates, // the subsequent pairs are treated as implicit lineto commands return ParseLineto(absCoords); } //---------------------------------------------------------------------- bool nsSVGPathDataParser::ParseClosePath() { return NS_SUCCEEDED(mPathSegList->AppendSeg(PATHSEG_CLOSEPATH)); } //---------------------------------------------------------------------- bool nsSVGPathDataParser::ParseLineto(bool aAbsCoords) { while (true) { float x, y; if (!ParseCoordPair(x, y)) { return false; } if (NS_FAILED(mPathSegList->AppendSeg( aAbsCoords ? PATHSEG_LINETO_ABS : PATHSEG_LINETO_REL, x, y))) { return false; } if (!SkipWsp() || IsAlpha(*mIter)) { // End of data, or start of a new command return true; } SkipCommaWsp(); } } //---------------------------------------------------------------------- bool nsSVGPathDataParser::ParseHorizontalLineto(bool aAbsCoords) { while (true) { float x; if (!SVGContentUtils::ParseNumber(mIter, mEnd, x)) { return false; } if (NS_FAILED(mPathSegList->AppendSeg( aAbsCoords ? PATHSEG_LINETO_HORIZONTAL_ABS : PATHSEG_LINETO_HORIZONTAL_REL, x))) { return false; } if (!SkipWsp() || IsAlpha(*mIter)) { // End of data, or start of a new command return true; } SkipCommaWsp(); } } //---------------------------------------------------------------------- bool nsSVGPathDataParser::ParseVerticalLineto(bool aAbsCoords) { while (true) { float y; if (!SVGContentUtils::ParseNumber(mIter, mEnd, y)) { return false; } if (NS_FAILED(mPathSegList->AppendSeg( aAbsCoords ? PATHSEG_LINETO_VERTICAL_ABS : PATHSEG_LINETO_VERTICAL_REL, y))) { return false; } if (!SkipWsp() || IsAlpha(*mIter)) { // End of data, or start of a new command return true; } SkipCommaWsp(); } } //---------------------------------------------------------------------- bool nsSVGPathDataParser::ParseCurveto(bool aAbsCoords) { while (true) { float x1, y1, x2, y2, x, y; if (!(ParseCoordPair(x1, y1) && SkipCommaWsp() && ParseCoordPair(x2, y2) && SkipCommaWsp() && ParseCoordPair(x, y))) { return false; } if (NS_FAILED(mPathSegList->AppendSeg( aAbsCoords ? PATHSEG_CURVETO_CUBIC_ABS : PATHSEG_CURVETO_CUBIC_REL, x1, y1, x2, y2, x, y))) { return false; } if (!SkipWsp() || IsAlpha(*mIter)) { // End of data, or start of a new command return true; } SkipCommaWsp(); } } //---------------------------------------------------------------------- bool nsSVGPathDataParser::ParseSmoothCurveto(bool aAbsCoords) { while (true) { float x2, y2, x, y; if (!(ParseCoordPair(x2, y2) && SkipCommaWsp() && ParseCoordPair(x, y))) { return false; } if (NS_FAILED(mPathSegList->AppendSeg( aAbsCoords ? PATHSEG_CURVETO_CUBIC_SMOOTH_ABS : PATHSEG_CURVETO_CUBIC_SMOOTH_REL, x2, y2, x, y))) { return false; } if (!SkipWsp() || IsAlpha(*mIter)) { // End of data, or start of a new command return true; } SkipCommaWsp(); } } //---------------------------------------------------------------------- bool nsSVGPathDataParser::ParseQuadBezierCurveto(bool aAbsCoords) { while (true) { float x1, y1, x, y; if (!(ParseCoordPair(x1, y1) && SkipCommaWsp() && ParseCoordPair(x, y))) { return false; } if (NS_FAILED(mPathSegList->AppendSeg( aAbsCoords ? PATHSEG_CURVETO_QUADRATIC_ABS : PATHSEG_CURVETO_QUADRATIC_REL, x1, y1, x, y))) { return false; } if (!SkipWsp() || IsAlpha(*mIter)) { // Start of a new command return true; } SkipCommaWsp(); } } //---------------------------------------------------------------------- bool nsSVGPathDataParser::ParseSmoothQuadBezierCurveto(bool aAbsCoords) { while (true) { float x, y; if (!ParseCoordPair(x, y)) { return false; } if (NS_FAILED(mPathSegList->AppendSeg( aAbsCoords ? PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS : PATHSEG_CURVETO_QUADRATIC_SMOOTH_REL, x, y))) { return false; } if (!SkipWsp() || IsAlpha(*mIter)) { // End of data, or start of a new command return true; } SkipCommaWsp(); } } //---------------------------------------------------------------------- bool nsSVGPathDataParser::ParseEllipticalArc(bool aAbsCoords) { while (true) { float r1, r2, angle, x, y; bool largeArcFlag, sweepFlag; if (!(SVGContentUtils::ParseNumber(mIter, mEnd, r1) && SkipCommaWsp() && SVGContentUtils::ParseNumber(mIter, mEnd, r2) && SkipCommaWsp() && SVGContentUtils::ParseNumber(mIter, mEnd, angle)&& SkipCommaWsp() && ParseFlag(largeArcFlag) && SkipCommaWsp() && ParseFlag(sweepFlag) && SkipCommaWsp() && ParseCoordPair(x, y))) { return false; } // We can only pass floats after 'type', and per the SVG spec for arc, // non-zero args are treated at 'true'. if (NS_FAILED(mPathSegList->AppendSeg( aAbsCoords ? PATHSEG_ARC_ABS : PATHSEG_ARC_REL, r1, r2, angle, largeArcFlag ? 1.0f : 0.0f, sweepFlag ? 1.0f : 0.0f, x, y))) { return false; } if (!SkipWsp() || IsAlpha(*mIter)) { // End of data, or start of a new command return true; } SkipCommaWsp(); } } //----------------------------------------------------------------------- static double CalcVectorAngle(double ux, double uy, double vx, double vy) { double ta = atan2(uy, ux); double tb = atan2(vy, vx); if (tb >= ta) return tb-ta; return 2 * M_PI - (ta-tb); } nsSVGArcConverter::nsSVGArcConverter(const Point& from, const Point& to, const Point& radii, double angle, bool largeArcFlag, bool sweepFlag) { const double radPerDeg = M_PI/180.0; mSegIndex = 0; if (from == to) { mNumSegs = 0; return; } // Convert to center parameterization as shown in // http://www.w3.org/TR/SVG/implnote.html mRx = fabs(radii.x); mRy = fabs(radii.y); mSinPhi = sin(angle*radPerDeg); mCosPhi = cos(angle*radPerDeg); double x1dash = mCosPhi * (from.x-to.x)/2.0 + mSinPhi * (from.y-to.y)/2.0; double y1dash = -mSinPhi * (from.x-to.x)/2.0 + mCosPhi * (from.y-to.y)/2.0; double root; double numerator = mRx*mRx*mRy*mRy - mRx*mRx*y1dash*y1dash - mRy*mRy*x1dash*x1dash; if (numerator < 0.0) { // If mRx , mRy and are such that there is no solution (basically, // the ellipse is not big enough to reach from 'from' to 'to' // then the ellipse is scaled up uniformly until there is // exactly one solution (until the ellipse is just big enough). // -> find factor s, such that numerator' with mRx'=s*mRx and // mRy'=s*mRy becomes 0 : double s = sqrt(1.0 - numerator/(mRx*mRx*mRy*mRy)); mRx *= s; mRy *= s; root = 0.0; } else { root = (largeArcFlag == sweepFlag ? -1.0 : 1.0) * sqrt( numerator/(mRx*mRx*y1dash*y1dash + mRy*mRy*x1dash*x1dash) ); } double cxdash = root*mRx*y1dash/mRy; double cydash = -root*mRy*x1dash/mRx; mC.x = mCosPhi * cxdash - mSinPhi * cydash + (from.x+to.x)/2.0; mC.y = mSinPhi * cxdash + mCosPhi * cydash + (from.y+to.y)/2.0; mTheta = CalcVectorAngle(1.0, 0.0, (x1dash-cxdash)/mRx, (y1dash-cydash)/mRy); double dtheta = CalcVectorAngle((x1dash-cxdash)/mRx, (y1dash-cydash)/mRy, (-x1dash-cxdash)/mRx, (-y1dash-cydash)/mRy); if (!sweepFlag && dtheta>0) dtheta -= 2.0*M_PI; else if (sweepFlag && dtheta<0) dtheta += 2.0*M_PI; // Convert into cubic bezier segments <= 90deg mNumSegs = static_cast(ceil(fabs(dtheta/(M_PI/2.0)))); mDelta = dtheta/mNumSegs; mT = 8.0/3.0 * sin(mDelta/4.0) * sin(mDelta/4.0) / sin(mDelta/2.0); mFrom = from; } bool nsSVGArcConverter::GetNextSegment(Point* cp1, Point* cp2, Point* to) { if (mSegIndex == mNumSegs) { return false; } double cosTheta1 = cos(mTheta); double sinTheta1 = sin(mTheta); double theta2 = mTheta + mDelta; double cosTheta2 = cos(theta2); double sinTheta2 = sin(theta2); // a) calculate endpoint of the segment: to->x = mCosPhi * mRx*cosTheta2 - mSinPhi * mRy*sinTheta2 + mC.x; to->y = mSinPhi * mRx*cosTheta2 + mCosPhi * mRy*sinTheta2 + mC.y; // b) calculate gradients at start/end points of segment: cp1->x = mFrom.x + mT * ( - mCosPhi * mRx*sinTheta1 - mSinPhi * mRy*cosTheta1); cp1->y = mFrom.y + mT * ( - mSinPhi * mRx*sinTheta1 + mCosPhi * mRy*cosTheta1); cp2->x = to->x + mT * ( mCosPhi * mRx*sinTheta2 + mSinPhi * mRy*cosTheta2); cp2->y = to->y + mT * ( mSinPhi * mRx*sinTheta2 - mCosPhi * mRy*cosTheta2); // do next segment mTheta = theta2; mFrom = *to; ++mSegIndex; return true; }